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BIAS REDUCTION OF FINITE POPULATION 
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ABSTRACT 

Missing data is a nuisance in statistics. Real donor imputation can be used with 
item nonresponse. A pool of donor units with similar values on auxiliary 
variables is matched to each unit with missing values. The missing value is then 
replaced by a copy of the corresponding observed value from a randomly drawn 
donor. Such methods can to some extent protect against nonresponse bias. But 
bias also depends on the estimator and the nature of the data. We adopt 
techniques from kernel estimation to combat this bias. Motivated by Pólya urn 
sampling, we sequentially update the set of potential donors with units already 
imputed, and use multiple imputations via Bayesian bootstrap to account for 
imputation uncertainty. Simulations with a single auxiliary variable show that our 
imputation method performs almost as well as competing methods with linear 
data, but better when data is nonlinear, especially with large samples. 

Key words: bayesian bootstrap, boundary and nonresponse bias, missing data, 
multiple imputation, Pólya urn models, real donor imputation. 

1. Introduction 

In sample surveys missing data often has to be dealt with. Imputation is a 
standard treatment for sporadically missing values in the sample data due to item 
nonresponse. Given observed auxiliary variable(s) X related to the incomplete 
study variable Y, an imputation model is usually estimated from units where both 
x and y values are observed, modelled by the missing at random (MAR) 
mechanism which assumes that the probability of missingness only depends on 
observed values. The missing y values are then replaced by imputed values, and 
multiple imputation can account for the fact that imputed values differs from the 
true ones, so that standard methods can be used (Rubin, 1987). Imputed values 
may be non-observable values derived from a model, or real-donor values derived 
from observed values (Laaksonen, 2000). Donors to each donee (or recipient) are 
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usually found by selecting units close to the donee according to some distance 
measure on X. 

Imputation methods employing parametric models may be effective (Schafer, 
1997), but their benefits diminish with sample size and can lead to severe bias if 
the underlying assumptions are violated. Methods based on nonparametric models 
can then provide robustness to nonresponse bias at the cost of some efficiency. 
Bias of methods based on nonparametric models also depends on the derivation of 
the imputed values, and the nature of the bounded data. The bias of a mean 
estimate of y is related to the individual unit bias of x, the expectation over donor 
x’s minus the actual x, through individual unit bias of y. When X is continuous, 
the asymptotic bias of x for an interior donee can easily be set to zero. This is 
more difficult for donees that lie on the boundary of the data. By viewing 
imputation as pointwise kernel smoothing, and adopting bias reduction techniques 
from that area, we propose a real donor method which aims at mitigating such 
bias of individual x as to implicitly reduce bias of the mean estimator of y. 

Our method starts out from the popular hot deck imputation; see Little and 
Andridge (2010) for a review. For each donee unit where y is missing, a pool 
consisting of k potential donor units with observed y-values is identified. The 
missing y value of the donee is then filled in by a copy of the observed y value 
from a unit in the donor pool. Adjustment cells imputation bring together all zero 
distance donors and donees, having the same categorized x, creating an illusion 
that individual x’s are unbiased. Cells may therefore only contain donees. This is 
avoided by non-categorizing distance measures, which produce donor pools that 
can be better matched to the donee, but the number of k nearest neighbour (kNN) 
donors has to be decided. Justified by Bayesian exchangeability through Pólya 
sampling (Feller, 1971), we extend the set of potential donors to include 
previously imputed donees, and handle imputation uncertainty through multiple 
imputation. 

Individual bias in x is first addressed by relating distances between the donee 
and the donors to the donor selection probabilities, giving closer donors higher 
donation probability. Siddique and Belin (2008) set selection probabilities 
inversely proportional to the distance between predictive means of donor and 
donee units, while Conti, Marella and Scanu (2008) let a Gaussian kernel decide 
the selection probabilities. We propose to use an Epanechnikov (1969) kernel, 
which asymptotically can minimize mean squared error of an estimate. We expect 
reduction of variance in general and boundary donee bias of x. 

Boundary bias can also be reduced by letting the selection probabilities be 
found from local linearization (Simonoff, 1996). Aerts, Claeskens, Hens and 
Molenberghs (2002) use non-negative constrained weights asymptotically 
equivalent to kernel weights as selection probabilities. We calibrate our selection 
probabilities by a Lagrange function, similar to calibration of design weights 
(Deville and Särndal, 1992), but on a pointwise level. 

Our third bias reduction method is inspired by Rice (1984), who tightened the 
kernel at the boundary. By reducing k for boundary donees, on average closer but 
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fewer donors are obtained compared to interior donees, which contribute to the 
bias reduction of x. 

The paper is structured as follows: Section 2 presents real donor imputation 
with Pólya urn sampling and multiple imputation. Our proposed methods are 
described in Section 3, and further studied by simulations in Section 4. The paper 
is then concluded in Section 5. 

2. Background on real donor and multiple imputation  

A simple random sample (SRS) of i=1, …, n units from a population of N units 
is drawn with the aim to estimate the mean Nyy i /∑=  of the study variable Y, 
and the value yi is observed in the sample. The indicator Ri=1 for the r units where 
yi is observed, while Ri=0 for nonresponding units. In real donor imputation, each 
donee i should have a donor pool of ki units. Denote by qi the number of units that 
possibly could enter pool i. Given our SRS design, we simply set ki=qi=r for all i, 
and use all respondents as potential donors. Later we allow ki, qi, and r to differ, 
and may omit index i when it is dispensable. 

For each donee i, a donor j is selected with probability ijλ , and the imputed 
value iŷ  is a copy of yj. When all n-r missing values have been imputed, an 
estimate of y  is 
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the individual bias of iŷ  is 
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Due to the SRS design it follows that ( ) yyE i = . The bias of (1) is therefore 
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Now, assume a known auxiliary variable X and a MAR mechanism, so that 
the response probability does not depend on y; P(R=1|Y,X)=P(R=1|X). We further 
assume that the expected value of Y does not depend on R, E(Y|X)=g(X), which is 
another consequence of MAR. Denote the x-value of the donor selected for donee 
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i by ix̂ . Its expectation is ( ) ∑
=
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ˆ λ . We may expect to reduce (3), and 

thereby (4), by reducing the bias of xi 
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ˆˆ λ . (5) 

2.1. Adjustment cells and k-nearest neighbour imputation 

As a background we first describe two common methods for imputation, 
adjustment cells and nearest neighbour imputation. Our suggested method in 
Subsection 3.3 is based on the latter. All methods are illustrated on the simple 
dataset in Table 1, where x is observed on all n=7 units, while y is only observed 
on r=5 units. Table 1 is ordered after x. The cut off between the two adjustment 
cells is set to x=0. Let iij k1=λ  for donee i=3, 6 and donor j. Since donor pools 
are determined from x, we usually have that ki<qi. 

Example 1. Imputation within adjustment cells. Only units within the same 
adjustment cell may be used as donors. Thus, although q3=r=5, the k3=4 potential 
donors for Unit 3 are Units 1, 2, 4 and 5, and ( ) 013.0ˆ3 −≈xB . We randomly draw 
one of them, say Unit 4, and impute the missing y-value as 022.0ˆ3 =y . Unit 7 is 
the only (k6=1) potential donor to Unit 6, so ( ) 231.0ˆ6 =xB  and we impute 

099.0ˆ6 −=y . If single donor situations are not allowed, a common solution is to 
collapse adjustment cells. Units 1, 2, 4, 5 and 7 are then the (k3=q3=5) potential 
donors to Unit 3, and ( ) 107.0ˆ3 −≈xB . Assume again we draw Unit 4. Unit 6 has 
the same donors, so ( ) 247.0ˆ6 −≈xB . If the imputed Unit 3 also had been allowed 
to act as a donor (so that k6=q6=r+1=6) we would have had ( ) .265.0ˆ6 −=xB  

Table 1. Data in Examples 1-5, with x and y generated by model NO in    
 Subsection 4.1. 

Unit no. 1 2 3 4 5 6 7 
x-cat. 1 1 1 1 1 2 2 
x -0.413 -0.381 -0.255 -0.152 -0.125 0.099 0.330 
y -0.555 -0.476 Missing (-0.136) 0.022 0.349 Missing (0.335) -0.099 

Note: (the true but unknown value in parenthesis is given here for illustrative purposes.) 

Example 2. Imputation by kNN. We now discard the categorization of x, and 
use 4NN imputation (i.e. k3=k6=4). Since Units 1, 2, 4 and 5 are the closest 
(among the q3=5) units to donee Unit 3, ( ) 013.0ˆ3 −≈xB  as in Example 1. Assume 
unit 4 was drawn. Unit 6 then has Units 2, 4, 5 and 7 as donors with 
( ) 181.0ˆ6 −=xB . By allowing the imputed Unit 3 as a donor (so that q6=r+1=6) we 

get ( ) 150.0ˆ6 −≈xB  based on Units 3, 4, 5, and 7. 
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Adjustment cells imputation effectively matches donors to a donee and is 
widely used. But having a single donor can severely affect variances, as explained 
in Subsection 2.3. Collapsing cells is a simple solution, but kNN can provide 
better matching. Since Unit 3 has half of its donors on each side (as k3=4) we call 
it an interior unit, while Unit 6 with only a single donor on the right is called a 
boundary unit. We will make use of this distinction in Subsection 3.3, where we 
suggest how to further improve kNN matching and try to reduce bias. Allowing 
imputed donees to act as donors for subsequent donees differs from usual donor 
imputation, but a Bayesian justification based on Exchangeability and Pólya urns 
is given in Subsection 2.2. 

2.2. Imputation by Pólya urn sampling and Bayesian bootstrap 

Descriptions of imputation methods which use previously imputed values in 
subsequent imputations can be found in Rubin (1987) and Kong, Liu and Wong 
(1994). These methods attempt to impute the missing values by draws from their 
posterior predictive distributions, and rely on a Bayesian motivation going back to 
de Finetti’s (1931) theorem on exchangeable sequences. If the probability 
distribution for any finite sequence of n random variables drawn from an infinite 
series of random variables is the same, then any such infinite series is 
exchangeable. A sequence of independent and identically distributed (iid) random 
variables is always exchangeable, but the opposite is not true. But under some 
assumptions any exchangeable sequence is distributed as a sequence that is iid, 
given some parameters which in turn have a prior distribution. Hewitt and Savage 
(1955) generalized de Finetti’s theorem to non-binary variables, and Diaconis and 
Freedman (1980) showed that it is approximately true for long but finite 
sequences of variables, implying finite exchangeability. 

Pólya urn sampling produces an exchangeable but non-iid series, see Feller 
(1971). Assume a sample of n units where we have observed either the value 0 or 
1 on variable Y. Then, 1) draw a single unit at random from the sample, 2) 
duplicate the drawn unit, and 3) replace both the drawn and the duplicated unit 
into the sample. The procedure is then repeated, but now with the updated sample 
of size n+1. By repeating the procedure ad infinitum, the generated sequence of 
values on the units is then an infinite exchangeable sequence. Blackwell and 
MacQueen (1973) generalized Pólya urn sampling to allow for more than two 
categories, and Ferguson (1973) extended to continuous variables. 

Finite population Bayesian bootstrap (FPBB) (Lo, 1988) is based on Pólya urn 
sampling from a sample (of size n) to a large finite population (of size N). If a 
sample is drawn by SRS and the observed units are randomly drawn from the 
sample itself by SRS, then the observed units may be treated as a part of an 
exchangeable series of variables. In our example (Table 1) we may treat the 
sample as the population, and the five observed units as our sample. Pólya 
sampling may then be applied to reconstruct the remaining n-r units from the r 
observed ones, corresponding to imputation within the collapsed adjustment cells 



144                                                                       N. Pettersson: Bias reduction of finite … 

 

 

using Unit 3 as potential donor to Unit 6 in Example 1 (where k6=q6= r+1=6). 
Knowing the full population size, Pólya sampling can be done to the whole 
population, starting from the r observed units, and sequentially impute all N-r 
units. An estimate of y  is then simply the mean of the bootstrap population. 

As ∞→N , FPBB approaches the model based Bayesian bootstrap by Rubin 
(1981). They raise two objections to bootstrap methods in connection to the 
exchangeability assumption. First, they ask whether it is reasonable to assume that 
all possible distinct values of a variable have been observed in a sample. The 
objection is definitely valid with the continuous and very small sample in Table 1. 
Assuming unlimited precision all realized values of a continuous variable are 
unique, so we will not observe all values until we have observed the whole 
population. But our ability to grasp the data distribution should improve with the 
sample size, unless data is censored or if missingness in other ways is 
concentrated to certain regions of the data. This (strong) dependence on sample 
size is a characteristic common to nonparametric methods, simply because they 
refrain from parametric assumptions. 

Assuming all possible distinct values are observed, Rubin’s second objection 
is that the probabilities of occurrences for similar values might be dependent. This 
calls for smoothing of probabilities, but bootstrapping assumes strict 
independence. If the distribution of realized or bootstrap samples differs much 
from the true population, some estimators might perform poorly. As for the first 
objection, the larger the sample, the more likely we are to observe the distribution 
of the true data, so benefits from smoothing should, in general, diminish. 

2.3. Bayesian bootstrap and multiple imputation 

Imputation by FPBB basically corresponds to multiple imputation (Rubin, 
1987). A general overview of variance estimation with single imputation is given 
in Little and Rubin (2002), and an overview for hot deck imputation in Andridge 
and Little (2010). 

Assume a sample from a finite population of exchangeable units with n-r 
missing values on variable Y imputed d=1, …, D times. The distribution of the 
estimates 
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then reflects the imputation uncertainty due to that imputed values for the same unit 
differs between the imputed datasets. A point estimate of y  is given by 
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and the variance of nŷ  is estimated as 



STATISTICS IN TRANSITION-new series, Spring 2013 

 

145 

 ( ) nnn WB
D

DyV +
+

=
1ˆˆ . (8) 

Component ( )∑
=

−
−

=
D

d
nndn yy

D
B

1

2

,
ˆˆ

1
1  accounts for imputation uncertainty, 

and sampling uncertainty is covered by the variance component ∑
=

=
D

d
ndn W

D
W

1
,

1 , 

where  




















−+








−








−








−
−

= ∑∑
+==

2

1
,

2

1
,,

ˆˆˆ
1

1
1

n

ri
nddi

r

i
nddind yyyy

nN
nNW , d=1,…,D, (9) 

is the estimated variance within a bootstrap set. The term 
1−

−
N

nN  is the finite 

population correction. If both the n-r non-responding and the N-n non-sampled 
units in each bootstrap set had been imputed, then a population estimate similar to (7) 
would have been 
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Sampling uncertainty vanishes with a completely imputed population, so (8) 

simplifies to 
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With missing values deterministically imputed, as in the uncollapsed cell in 

Example 1 with a single donor (k6=1), all imputed bootstrap sets will have the 
same value imputed, so BN (or Bn) will be underestimated. In particular, if all 
values are deterministically imputed, then NNDN yyy ˆˆ...ˆ

,,1 === , implying that 

0=NB , so that ( ) 0ˆˆ =NyV  in (11). 

3. Kernel estimation and kernel imputation 

One may look at donor imputation from the view of kernel estimation. We 
give a brief introduction to the area, describe the connections to imputation, and 
suggest how to improve estimation and achieve bias reduction of (7) or (10) using 
auxiliary variable X. 
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3.1. Short background on kernel estimation 

Kernel estimation is a method to estimate density. Assume that q values are 
observed on x and the density f(x) at a point xi is to be estimated. Denote the 
distance xi-xj by ijx~ . Given a kernel function K, the pointwise kernel estimate of f 
at xi is then 

 ( ) ( )∑∑
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where K is typically symmetric, unimodal and integrates to 1. We confine our 
considerations to situations where K is proportional to the indicator function 
( )hxI ij <
~ , which is 1 if the statement is true. Function Kh is K scaled by the 

bandwidth (or smoothing) parameter h, which determines that K is positive if 
hxij <

~ , and zero if hxij ≥
~ . The choice of h is usually more important than K. If 

h is fixed for all i, the number of units ki≥0 within the range hxi ±  is random. 
Instead, if the number of units ki is fixed at k, the bandwidth hi will be random. 
Methods to select a fixed h or k range from subjective judgement of plots and 
simple automatic rules of thumb, to more sophisticated methods based on cross-
validation and plug-in estimates (Wand and Jones, 1995). Fixing h is more 
frequent, and a fixed k is best used when the exact size is noncritical, typically 
with 21qk ≈  (Silverman, 1986). 

A commonly used measure of accuracy is the mean integrated squared error 
(MISE) 

 ( ) ( ) ( )( ) ( ){ }( ) ( ){ }dxxfVdxxfBdxxfxfEfMISE ∫∫∫ +=−= ˆˆˆˆ 22
, (12) 

where a pointwise approximation of the bias component is given by 
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and an approximation of the variance with independent xj is given by 

 ( ){ } ( ){ }ijh
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i xKV
k
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Given that K is symmetric and h (or k) is reduced, bias in (13) will decrease 
while variance in (14) will increase. The variance goes to zero as ∞→qh  (or 

∞→k ), while bias depends on the curvature of f and is asymptotically unrelated 
to q, unless 0→h  (or 0/ →qk ) as ∞→q . Bias then converge to zero if xi lies 
in the interior (unbounded) part of x, while if xi lies within a bandwidth h from the 
boundary of x, the bias will not vanish. Given an optimal choice of h, MISE in 
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(12) is approximately minimized if K is set to the unimodal Epanechnikov (1969) 
function 

 ( ) ( ){ } ( )hxIxxK ijijij
Ep
h <−= ~~1

4
3~ 2 . (15) 

3.2. Kernel imputation 

Assume Kh is a positive function scaled so that ( ) 1~
1

=∑
=

q

j
ijh xK , where 

jiij xxx −=~  and the sum is over the donor pool described in Subsection 2.1. 
When the selection probabilities are given by ( )ijhij xK ~=λ  we call the technique 
kernel imputation. The expectation of iŷ  in (2) thus becomes the Nadaraya-
Watson (1964) estimator 
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With a uniform kernel ( ) ( )hxIxK ijij
Un
h <∝ ~~ , the donee i has k potential donor 

units within the range hxi ±  with selection probabilities ( ) kxK ij
Un
hij 1~ ==λ , and 

q-k units outside the range with 0=ijλ . When donor data at xi is sparse, fixing k 
instead of h will cover more distant donors, which avoids situations with no or 
few donors. With donors densely located in a vicinity of xi, using an adaptable 
parameter hi (caused by the fixed k) will in general result in donor pools that are 
better matched to donee i. 

3.3. Kernel imputation with bias reduction 

We suggest the use of multiple kernel imputation but also add three special 
devices, mainly to decrease imputation bias, but also to decrease the random 
errors. The bias ( )iyB ˆ  in (4) is related to ( )ixB ˆ  in (5) and ( ){ }ixfB ˆ  in (13) 
through ( )iyB ˆ  in (3) and ( )ijhij xK ~∝λ . Given a model E(Y|X)=g(X) and a response 

mechanism P(R=1|X), we will probably reduce ( )iyB ˆ  by reducing ( ){ }ixfB ˆ  or 
( )ixB ˆ . Examples 3 to 5 are in line with this, and each presents one of our three 

proposed devices. 
Example 3. Imputation with Epanechnikov selection probabilities. It is easy to 

believe that giving donors close to the donee higher probabilities is better than 
using a uniform kernel function. This is the idea behind this example. Due to the 
optimality properties shown by the non-negative Epanechnikov function in Kernel 
estimation, we suggest to use it here. In Example 2, donee 3 had k=4 donors, with 
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( ) 013.0ˆ3 −≈xB  and ( ) 176.0ˆ3 −=yE . With Epanechnikov probabilities 
( )j

Ep
h

Ep
j xK 33

~=λ  from (15), the closer (furthest) donor is more (less) likely to 
donate. With h3=0.3715, Units 1, 2, 4 and 5 are assigned probabilities 0.238, 
0.252, 0.260 and 0.250, so ( ) 010.0ˆ3 −≈xB  and ( ) 170.0ˆ3 −=yE . Suppose that we 
draw Unit 4. If h6=0.417 units 3, 4, 5 and 7 will get the probabilities Ep

j6λ  at 0.125, 
0.274, 0.304 and 0.297, so that ( ) 113.0ˆ6 −=xB  and ( ) 068.0ˆ6 =yE , compared to 
( ) 150.0ˆ6 −≈xB  and ( ) 052.0ˆ6 ≈yE  in Example 2. 

Given a symmetric kernel function the expected bias of interior donees is 
zero, so we only expect a reduction of variance by the change from KUn to KEp. 
But given the same bandwidth h (or k), we do expect some reduction of bias for 
boundary donees since we switch from KUn to the parabolic shaped KEp. 

Example 4. Imputation with adjusted selection probabilities. A technique 
which fully eliminates ( )ixB ˆ  is to adjust the probabilities given by the kernel so 
that the expectation over the x-values equals the donee xi. More technically we 
propose to replace ijλ  by 'ijλ  as close as possible but such that ( ) ii xxE =ˆ  holds. 

'ijλ  is easily found by Lagrange minimisation as the solution to 
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−Λ+









Λ+− ∑∑∑
===

=ΛΛ
1~''min

1
2

1
1

1,...,1,,, 21

k

j
ij

k

j
ijij

k

j
ijijkj

xL
ij

λλλλ
λ

, (16) 

where ( )'ijijL λλ −  is a distance function and 1Λ  and 2Λ  are Lagrange 
multipliers.  

For the data in Table 1 and using Euclidean distances we get 217.0'31 ≈Epλ , 

235.0'32 ≈Epλ , 277.0'34 ≈Epλ  and 272.0'35 ≈Epλ , with ( ) 143.0ˆ3 −≈yE . Assuming 
Unit 4 is drawn, we get 011.0'6 ≈Ep

jλ , 217.0'6 ≈Ep
jλ , 263.0'6 ≈Ep

jλ  and 508.0'6 ≈Ep
jλ , 

with ( ) 036.0ˆ6 ≈yE . Both ( )ixB ˆ  are zero. 
By solving (16) it is possible to obtain 'ijλ  that results in ( ) 0ˆ =ixB  for both 

interior and boundary donees, as long as there are possible donors at both sides of 
xi. (Other restrictions, for example, deterministic situations, may also prohibit 
unbiased solutions). The proposed adjustment of selection probabilities resembles 
the use of approximate kernel regression weights in imputation (Aerts, Claeskens, 
Hens, and Molenberghs, 2002), or calibration of design weights (Deville and 
Särndal, 1992) but on a pointwise level. 

Example 5. Imputation with fewer donors at the boundary. Problems occur at 
the boundaries since there may be none or only few possible donor x-values at one 
side of xi. We suggest that the width of the kernel then should be decreased. With 
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multidimensional x one could also use an oblong donor pool instead of a spherical 
(quadratic) one. 

Consider only boundary Unit 6. Setting k=2 shrinks the bandwidth from 
h6=0.417 to h6=0.241, which results in selection probabilities 624.065 ≈Epλ  and 

376.067 ≈Epλ  for donors 5 and 7, with ( ) 053.0ˆ6 −≈xB  and ( ) 181.0ˆ6 ≈yE , 
compared to ( ) 150.0ˆ6 −≈xB  and ( ) 052.0ˆ6 ≈yE  from Example 3. Applying the 
Lagrange adjustment in (16) results in 508.0'65 ≈Epλ  and 492.0'67 ≈Epλ , with 
( ) 0ˆ6 =xB  and ( ) 128.0ˆ6 ≈yE . 

The expected bias of boundary units is directly related to the bandwidth and 
the reduction of ( )6x̂B  from shrinking k is in line with this. But this bias 
reduction is expected to come at the cost of higher ( )6x̂V  since we use fewer 
possible donors.  

4. Simulation study 

Here we use our suggested bias reduction methods from Subsection 3.3 in a 
design-based simulation study with simulated data, and compare with other 
imputation methods. 

4.1. Setup of simulation study 

We construct two related populations. First N=1 600 values are simulated 
from a Un(0,1) distribution (u) and a standard normal distribution (e) using R (R 
Development Core Team, 2009). The populations are then constructed, one with a 
linear (LI) relationship  (xLI=u-1/2; yLI=u+e/7-1/2) and one with a nonlinear (NO) 
relationship (xLI=u-1/2; yNO=sin(uπ)+e/7-2/π). From each population we draw 
1 000 samples of size n=100, 400 and 900. In each sample we create 50% 
nonresponse on y-, using the MAR mechanism P(y- is observed)∝ 1-u1/4. 

Table 2. Bias correction in kernel imputation 

ID for kernel imputation methods U E L S EL ES LS ELS 

Epanechnikov selection probabilities No Yes No No Yes Yes No Yes 

Lagrange adjustment of biased units  No No Yes No Yes No Yes Yes 

Shrinkage to k=k5/6 at boundary No No No Yes No Yes Yes Yes 

The missing data in the sample or the population were imputed by all 
combinations of the three bias correction methods: Epanechnikov (E) selection 
probabilities, Lagrange (L) adjustment, and shrinkage (S) of the donor pool for 
boundary biased units. The methods’ initial letters are used for notation as 
displayed in Table 2. The k potential donors were found using Euclidian distance 
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and a square root rule ½qk = , where q is the number of eligible (observed and 
imputed) donor units. 

Mean estimates of LIy  and NOy  from our methods are compared to estimates 

based on complete data (CD) and complete cases (CC). Estimates _ˆ
ny  based on 

imputed samples are also compared to estimates from ten single imputation 
methods, SIi i=1,…,10, and thirteen multiple imputation methods, MIi i=1,…,13. 
Estimates −

Nŷ  based on fully imputed populations are only compared to the MIi 
methods. All MIi and SIi methods are derived from the R-packages described in 
Appendix 1. Appendix 2 and 3 contain results for estimates of LIy  and NOy  with 
the comparison methods. 

The SIi point and variance estimates −
nŷ  and ( )−nyV ˆˆ  are calculated as in (6) 

and (9), while all multiple imputation estimates −
nŷ  and −

Nŷ  are calculated as in 

(7) and (10), with variance estimates ( )−−yV ˆˆ  given by (8) and (11). We used either 
D=5 or D=20 replicates for all multiple imputation methods. To simplify the 
description, we henceforth replace −

−ŷ  by −
−ŷ . Empirical averages from 

simulations, with M representing n or N, are calculated as ∑
=

−− =
1000

1
,1000

1
g

MgM GG , 

where −
MgG ,  is a function based on the g:th data, such as a point estimate −

Mgy ,
ˆ , 

the empirical mean squared error ( ) ( )∑
=

−−− −=
M

i
MgiMg yy

M
yMSE

1

2
,,

ˆ1ˆ , bias 

( ) −−− −= yyyB gg M,M,
ˆˆ  or variance ( ) ( )∑
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−−− −
−

=
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M
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1
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,,,

ˆˆ
1
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estimated variance ( )−
M,

ˆˆ
gyV , or the average double sided confidence interval 

length ( ) ( ){ } 21

M,,1
ˆˆ2 −

−= gdf yVtCIL α  and coverage { }2/ˆ
, CILyICIC Mg ≤= − . The 

significance level of the t-statistic is always set to α=0.05, and the degrees of 

freedom ( )
2

1
111 








+

++=
M

M

B
W

D
Dv  where W  and B are the variances 

components of (8) as described in Subsection 2.3 (Rubin, 1987). We always 
multiply −

MG  by 100 (1002) if −
MgG ,  is a first (second) moment function. 

4.2. Results from simulation study 

Results for LIy−
ˆ  ( NOy−

ˆ ) are presented in Table 3 (4), and for comparison 
methods in Appendix 2 (3). We only show results for sample sizes 100 and 900, 
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and 20 imputed datasets for multiple (including kernel) imputation. Results using 
n=400 ended up in between n=100 and n=900 with kernel imputation. This was 
mostly the case for multiple imputation comparison methods as well, except for 
bias (and sometimes for MSE dominated by bias) which tended to be highest with 
n=400. Comparing D=20 and D=5, most simulation results were up to 15% lower 
for kernel imputation with D=20 compared to D=5. Confidence coverage was 
only slightly smaller, but interval lengths were down to 30% shorter. Bias was 
rather unaffected by D, with ( )LI

nyB ˆ  as an exception which almost halved but 
from a low level. Results for multiple imputation comparison methods had the 
same tendencies, but were more mixed. 

Table 3. Simulation results for estimates of LIy , including 95% confidence 
intervals 

  Sample size n=100, nonresponse  
r=50 

Sample size n=900, nonresponse 
r=450 

M ID MSE B V V^ CIC CIL MSE B V V^ CIC CIL 

n;
 sa

m
pl

e 
im

pu
te

d 

U 14.4 0.69 13.9 11.9 93.2 14.1 0.85 0.17 0.82 0.79 95.5 3.7 
E 13.8 0.47 13.6 11.8 92.9 14.0 0.84 0.13 0.82 0.80 95.8 3.7 
L 14.0 0.60 13.6 12.0 92.9 14.1 0.84 0.15 0.81 0.85 96.3 3.8 
S 14.2 0.58 13.8 11.9 93.5 14.1 0.84 0.14 0.81 0.80 95.2 3.7 
             
EL 13.7 0.40 13.5 11.8 93.0 14.0 0.85 0.12 0.83 0.84 95.7 3.8 
ES 13.6 0.41 13.5 11.7 92.9 13.9 0.84 0.12 0.83 0.80 95.8 3.7 
LS 13.9 0.52 13.7 12.0 93.6 14.1 0.85 0.13 0.83 0.85 95.6 3.8 
ELS 13.6 0.36 13.5 11.8 93.6 14.0 0.84 0.11 0.83 0.84 95.6 3.8 

              

N
; p

op
ul

at
io

n 
im

pt
ue

d U 6.2 0.78 5.6 4.4 91.0 8.6 0.44 0.15 0.42 0.40 93.6 2.6 
E 6.0 0.58 5.7 4.0 88.9 8.2 0.45 0.13 0.43 0.40 93.7 2.6 
L 6.1 0.66 5.7 4.4 90.0 8.6 0.48 0.17 0.45 0.45 93.7 2.8 
S 6.1 0.70 5.6 4.3 90.0 8.5 0.44 0.13 0.42 0.39 94.9 2.6 
             
EL 6.1 0.52 5.8 4.0 89.5 8.2 0.47 0.13 0.45 0.43 93.7 2.7 
ES 5.9 0.51 5.7 3.7 88.6 7.9 0.44 0.12 0.43 0.41 94.4 2.6 
LS 6.1 0.59 5.8 4.2 88.6 8.4 0.48 0.15 0.46 0.45 94.0 2.8 
ELS 6.0 0.45 5.8 3.9 89.4 8.0 0.47 0.12 0.45 0.44 94.1 2.7 

 
With the sample imputed in Table 3, bias decreased with increased sample 

size and added bias corrections (E, S or L). Variance dominated mean squared 
error, and seemed to decrease slightly with bias corrections and n=100. Average 
estimated variance was below the true value for n=100 and 400, but the 
underestimation was ameliorated by the added bias correction and it almost 
disappeared for n=900. Confidence interval coverage (CIC) was slightly below 
the stated 95% for n=100 and 400, but slightly above for n=900. Confidence 
interval lengths (CIL) decreased with sample size. Patterns were similar for the 



152                                                                       N. Pettersson: Bias reduction of finite … 

 

 

whole population imputed but all figures were lower. An exception is ( )LIyB n
ˆ , 

which was smaller than ( )LIyB N
ˆ , but became more alike with increased sample 

size. 
Single imputation methods (in Appendix 2) had similar or slightly better MSE 

compared to ELS, except SI3- SI6 which also had large bias. They always 
underestimated variance, and interval coverage decreased with sample size. Many 
multiple imputation methods behaved as well or somewhat better than ELS. 
Exceptions were MI5 and MI13 (and mostly MI12) with underestimated variance 
and poor coverage. MI13 also had huge bias. With the whole sample imputed MI6 
also underestimated variance severely, and MI9 and MI10 had extremely large 
bias for n=100. 

Table 4. Simulation results for estimates of NOy , including 95% confidence 
intervals 

  Sample size n=100, nonresponse r=50 Sample size n=900, nonresponse r=450 
M ID MSE B V V^ CIC CIL MSE B V V^ CIC CIL 

n;
 sa

m
pl

e 
im

pu
te

d 

U 20.9 2.29 15.6 13.6 89.2 15.1 1.30 0.68 0.84 0.86 91.3 3.8 
E 17.6 1.65 14.9 13.0 92.1 14.8 1.12 0.53 0.84 0.87 93.4 3.8 
L 18.1 1.83 14.7 14.0 91.6 15.3 1.14 0.55 0.84 0.94 94.4 4.0 
S 19.0 1.90 15.3 13.4 90.8 15.0 1.18 0.58 0.84 0.86 92.8 3.8 
             
EL 16.3 1.37 14.4 13.3 92.3 14.9 1.05 0.45 0.85 0.92 94.8 4.0 
ES 16.8 1.40 14.8 12.9 91.5 14.7 1.05 0.46 0.84 0.87 93.6 3.8 
LS 17.2 1.60 14.6 13.6 92.1 15.1 1.07 0.49 0.84 0.93 94.3 4.0 
ELS 15.9 1.23 14.4 13.1 92.9 14.8 1.00 0.40 0.83 0.91 95.2 3.9 

              

N
; p

op
ul

at
io

n 
im

pt
ue

d U 14.0 2.45 8.0 6.5 83.1 10.4 0.88 0.65 0.46 0.43 82.6 2.7 
E 10.4 1.81 7.1 5.4 84.8 9.5 0.73 0.51 0.46 0.43 86.6 2.7 
L 11.2 1.96 7.4 6.6 87.3 10.5 0.77 0.54 0.48 0.49 87.0 2.9 
S 11.5 1.97 7.6 6.0 86.2 10.0 0.76 0.55 0.46 0.42 86.7 2.7 
             
EL 9.4 1.54 7.0 5.4 86.6 9.5 0.66 0.43 0.47 0.46 90.3 2.8 
ES 9.0 1.48 6.8 4.9 86.3 9.0 0.66 0.46 0.45 0.42 88.8 2.7 
LS 10.1 1.66 7.4 6.0 87.4 10.0 0.70 0.47 0.48 0.48 89.5 2.9 
ELS 8.5 1.30 6.8 5.0 87.2 9.1 0.62 0.38 0.47 0.46 90.9 2.8 

 
In Table 4, both ( )NO

nyMSE ˆ  and ( )NO
nyB ˆ  decreased in all cases with added 

bias correction and increasing sample size when the sample was imputed. 
Variance fell with sample size and somewhat with bias corrections for n=100. The 
underestimation of variance lessened with sample size, and ( )NOyV n

ˆˆ  was even 
somewhat higher then ( )NO

nyV ˆ  with n=900. Confidence interval coverage 
increased with sample size and added bias corrections, but was always below the 
stated 95% except for ELS with n=900. Confidence interval lengths decreased 
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with sample size. The patterns were similar when the whole population was 
imputed, but all figures were lower except for bias, which was somewhat higher 
with n=100, about the same with n=400, and slightly lower with n=900. 

With only the sample imputed, nearest neighbour methods SI7- SI10 and 
predictive mean matching methods MI5-MI6 in Appendix 3 had MSE similar to 
ELS, but with lower bias and higher variance. Their underestimation of variance 
also increased with sample size, with worsening confidence interval coverage. 
With the whole population imputed, MI5-MI6 gave small or zero estimates of 
variance. Method MI12 gave better coverage rate than ELS, both with the sample 
and population imputed, but overestimated the high variance severely and gave 
very wide confidence intervals. All other methods had much larger MSE than 
ELS, due to larger bias or variance. Several methods that rely on regression 
models had MSE similar to complete cases, with bias dominating the MSE. 

5. Conclusions 

Our proposed imputation method for missing value of a study variable 
assumes a relationship to a fully observed continuous auxiliary variable. Common 
to other methods based on nonparametric models, our method relies on having 
observed the data dispersion, which is more probable with larger samples. The 
non-informative Bayesian approach with Pólya urn sampling only using the 
sample as a prior and with multiple imputation can effectively address uncertainty 
with minimal assumptions. Given a missing at random mechanism, the real donor 
approach with imputed values selected among already observed (and thus 
presumably realistic) values, can also effectively remove nonresponse bias even 
with nonlinearities in the data. The use of kernel methods addresses the bias 
caused by having sparse and bounded finite sample data. 

As expected, the simulation study with linear data demonstrated a small loss 
of efficiency compared to methods utilizing parametric assumptions, but with the 
nonlinear data the improvement by bias corrections was relatively larger, and 
comparison methods were generally outperformed. In both cases, our three 
suggested devices (Epanechnikov kernel, Lagrange adjustment, and shrinkage at 
the boundary) always reduced bias. Properties seemed to improve with increasing 
the sample size, which agrees with the nonparametric reliance on the sample size. 
Many of the multiple imputation comparison methods managed to give at least 
95% coverage with linear data, which kernel imputation only did for the largest 
sample imputed. However, except for one extremely inefficient comparison 
method, kernel imputation with all bias corrections and the largest sample was the 
only method which reached 95% coverage with the nonlinear data. Since the 
response probabilities were strongly related to the study variable through the 
auxiliary, imputation methods with linear parametric assumptions displayed bias 
(and hence MSE) sometimes even larger than for complete cases when imputing 
the nonlinear data. 
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Variance (and hence MSE) went down when the whole population was 
imputed instead of just the sample. The effect is similar to what would have been 
expected from applying (post-) stratification weights based on the auxiliary. Since 
the bias share of MSE increased when the sample was imputed the confidence 
interval coverage rates fell. A similar but weaker effect was seen when the 
number of imputed datasets was increased.  

Several extensions of the proposed method could be explored, including 
multivariate auxiliary and study variables, use of more or other prior information, 
estimators other than means, alternative distance metrics, more elaborate ways of 
choosing the number of donors, including the degree of shrinkage, or other 
aspects related to boundary donees. 
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APPENDICES 
Appendix 1. R-packages and code for alternative estimators 

R-Package ID R-code 
monomvn. 
Gramacy (2010) SI1 monomvn(data) 

mvnmle. 
Gross (2008) SI2 mlest(data) 

pcaMethods.* 
Stacklies, Redestig and 
Wright (2011) 

SI3 
llsImpute(data,k=1,center=T,correlation="pearson",verbose=F,allVar
iables=T) 

SI4 pca(data,method="nipals") 
SI5 pca(data,method="ppca") 
SI6 pca(data,method="svdImpute") 

robCompositions. 
Templ, Hron and 
Filzmoser (2010) 

SI7 impKNNa(data,k=1,metric="Euclidean",agg="median",primitive=T) 

SI8 impKNNa(data,k=5,metric="Euclidean",agg="median",primitive=T) 

SeqKnn. 
Kim and Yi (2008) 

SI9 SeqKNN(data,k=1) 
SI10 SeqKNN(data,k=5) 

Amelia. 
Honaker, King and 
Blackwell (2011) 

MI1 amelia(data,m = D) 

Hmisc. 
Harrell (2010) 

MI2 aregImpute(as.formula(~I(x)+I(y)),n.impute=D,type='regression',mat
ch='closest',nk=0,curtail=T,boot.method="approximate bayesian") 

MI3 aregImpute(as.formula(~I(x)+I(y)),n.impute=D,type='regression',mat
ch='closest',nk=0,curtail=F,boot.method="approximate bayesian") 

MI4 aregImpute(as.formula(~I(x)+I(y)),n.impute=D,type='regression',mat
ch='weighted',nk=0,curtail=T,boot.method="approximate bayesian") 

MI5 aregImpute(as.formula(~I(x)+I(y)),n.impute=D,type='pmm',match='
closest',nk=0,curtail=T,boot.method="approximate bayesian") 

MI6 aregImpute(as.formula(~I(x)+I(y)),n.impute=D,type='pmm',match='
weighted',nk=0,curtail=T,boot.method="approximate bayesian") 

MI7 aregImpute(as.formula(~I(x)+I(y)),n.impute=D,type='regression',mat
ch='closest',nk=c(0,3:5),B=10,curtail=T,boot.method= 
"approximate bayesian") 

MI8 aregImpute(as.formula(~I(x)+I(y)),n.impute=D,type='regression',mat
ch='closest',nk=c(0,3:5),B=10,tlinear=F,curtail=T,boot.method="app
roximate bayesian") 

mi. 
Gelman (2010) 

MI9 mi(data.frame(data),n.imp=D,add.noise=noise.control(method="resh
uffling",K=1,post.run.iter=20),n.iter=30) 

MI10 mi(data.frame(data),n.imp=D,add.noise=noise.control(method="fadi
ng",pct.aug=10,post.run.iter=20),n.iter=30) 

mice. 
van Buuren and 
Groothuis-Oudshoorn 
(2010) 

MI11 mice(data,m=D,method="norm") 

MI12 mice(data,m=D,method="pmm") 
sbgcop. 
Hoff (2010) 

MI13 sbgcop.mcmc(data,nsamp=D) 

R-packages for single (SI) and multiple (MI) imputation methods are available at 
http://cran.r-project.org/web/packages/ and (*) http://www.biocondoctor.org/biocLite.R. 

The object ‘data’ is created as ‘data <- cbind(x,y)’ in R, where ‘x’ is the fully 
observed auxiliary variable vector, and ‘y’ is the partly observed study variable vector. 
Object ‘D’ is the number of imputed datasets. 
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Appendix 2.  Simulation results, alternative LIy - estimators 
  Sample size n=100, nonresponse r=50 Sample size n=900, nonresponse r=450 
M ID MSE B V V^ CIC CIL MSE B V V^ CIC CIL 

n CD 9.7 -.03 9.7 10.0 94.2 12.4 0.49 -.01 0.49 0.51 95.1 2.8 
CC 32.7 3.5 20.4 10.7 70.2 12.8 13.4 3.43 1.67 0.87 11.6 3.7 

              

n;
 sa

m
pl

e 
im

pu
te

d 
 

SI1 12.1 -.15 12.1 10.1 92.3 12.4 0.73 -.02 0.73 0.51 90.8 2.8 
SI2 12.1 -.15 12.1 9.9 92.3 12.3 0.73 -.02 0.73 0.51 90.8 2.8 
SI3 20.9 2.77 13.2 8.7 79.6 11.6 11.3 3.24 0.85 0.45 1.8 2.6 
SI4 39.5 4.81 16.4 5.0 42.6 8.7 31.6 5.51 1.18 0.25 0.0 1.9 
SI5 23.7 3.09 14.2 8.1 73.2 11.1 37.0 5.98 1.30 0.23 0.0 1.9 
             
SI6 51.2 5.72 18.4 4.6 32.4 8.3 44.3 6.55 1.40 0.23 0.0 1.9 
SI7 14.1 -.06 14.1 9.9 89.1 12.3 1.21 -.02 1.21 0.51 78.4 2.8 
SI8 13.3 0.08 13.3 9.2 88.7 11.8 0.92 -.06 0.92 0.48 83.8 2.7 
SI9 14.3 -.03 14.3 9.9 88.6 12.3 1.24 -.03 1.24 0.51 78.5 2.8 
SI10 13.3 0.01 13.3 9.4 89.4 12.0 0.95 -.01 0.95 0.49 83.5 2.7 
             
MI1 12.5 -.54 12.2 12.4 95.4 14.4 0.75 0.11 0.73 0.90 97.9 3.9 
MI2 12.3 0.04 12.3 12.2 95.7 14.3 0.74 0.03 0.73 0.82 96.8 3.7 
MI3 12.2 -.14 12.1 12.8 95.5 14.7 0.75 -.03 0.75 0.85 97.4 3.8 
MI4 12.2 0.05 12.2 12.2 95.2 14.3 0.73 0.03 0.73 0.82 97.3 3.7 
MI5 14.1 -.06 14.1 9.9 89.3 12.3 1.20 -.02 1.20 0.51 80.3 2.9 
             
MI6 12.9 0.11 12.9 10.6 93.0 13.3 0.80 0.25 0.73 0.63 93.1 3.2 
MI7 12.3 0.04 12.3 12.1 94.9 14.3 0.74 0.03 0.74 0.82 96.7 3.7 
MI8 12.2 0.06 12.2 12.2 95.3 14.3 0.74 0.03 0.74 0.82 97.0 3.7 
MI9 12.1 -.03 12.1 13.2 96.1 14.9 0.74 -.10 0.73 0.87 97.4 3.8 
MI10 12.4 -.25 12.3 12.6 95.0 14.5 0.75 -.03 0.75 0.86 97.3 3.8 
             
MI11 12.2 -.26 12.2 12.9 96.0 14.7 0.73 0.07 0.73 0.92 98.1 4.0 
MI12 12.7 0.19 12.7 12.2 94.9 14.3 1.12 0.09 1.11 0.76 90.4 3.6 
MI13 28.5 3.71 14.7 12.1 81.7 14.3 14.5 3.67 0.99 0.70 2.4 3.4 

              

N
; p

op
ul

at
io

n 
im

pt
ue

d 

MI1 5.3 0.12 5.3 4.9 94.1 9.0 0.39 -.05 0.39 0.36 93.8 2.5 
MI2 5.4 0.44 5.2 8.7 98.6 12.1 0.41 0.03 0.41 0.68 98.9 3.4 
MI3 5.2 0.11 5.2 10.7 98.8 13.4 0.40 -.01 0.39 0.71 98.9 3.5 
MI4 5.7 0.46 5.5 9.5 98.2 12.7 0.41 0.03 0.41 0.69 98.2 3.4 
MI5 7.5 0.29 7.4 0 0 0 0.85 -.06 0.84 0.00 6.5 0.2 
             
MI6 6.9 0.62 6.5 0.1 21.8 1.3 0.45 0.24 0.39 0.10 65.8 1.3 
MI7 5.6 0.46 5.4 9.0 98.4 12.3 0.39 0.04 0.39 0.69 99.5 3.4 
MI8 5.3 0.45 5.1 8.6 97.9 12.0 0.40 0.03 0.40 0.69 99.0 3.4 
MI9 52.8 6.01 16.7 14.4 68.5 15.9 0.39 0.12 0.38 0.49 96.8 2.9 
MI10 65.9 7.03 16.5 8.3 38.1 12.0 0.39 0.08 0.38 0.46 97.1 2.8 
             
MI11 5.5 0.82 4.9 4.2 93.0 8.5 0.37 0.00 0.37 0.60 99.3 3.2 
MI12 6.3 0.56 6.0 4.3 90.0 8.6 0.76 0.27 0.68 0.22 71.0 1.9 
MI13 59.0 6.29 19.5 0.5 9.5 3.1 26.3 5.02 1.10 0.25 0.0 2.1 

Estimators are based on complete data (CD), complete cases (CC), multiply imputed 
(MI) and singly imputed (SI) datasets. Confidence interval coverage (CIC) and length 
(CIL) are from double-sided intervals with 5% significance level. 



160                                                                       N. Pettersson: Bias reduction of finite … 

 

 

Appendix 3. Simulation results, alternative NOy - estimators 
  Sample size n=100. nonresponse r=50 Sample size n=900. nonresponse r=450 
M ID MSE B V V^ CIC CIL MSE B V V^ CIC CIL 

n CD 10.6 0.05 10.6 11.2 95.4 13.1 0.6 0.02 0.55 0.57 95.8 3.0 
CC 63.9 6.6 19.9 9.2 42.8 11.8 44.0 6.51 1.55 0.75 0.0 3.4 

              

n;
 sa

m
pl

e 
im

pu
te

d 
 

SI1 40.3 4.4 21.1 10.7 65.8 12.8 40.2 6.20 1.75 0.54 0.0 2.9 
SI2 40.3 4.4 21.1 10.5 65.3 12.6 40.2 6.20 1.75 0.54 0.0 2.9 
SI3 24.7 -.5 24.5 9.4 76.1 12.0 2.1 0.35 2.00 0.48 65.0 2.7 
SI4 29.1 3.1 19.3 5.5 57.4 9.1 22.8 4.61 1.49 0.28 0.4 2.1 
SI5 26.0 2.4 20.0 5.2 60.6 8.9 25.0 4.83 1.58 0.29 0.2 2.1 
             
SI6 25.9 2.4 20.1 5.2 60.7 8.9 15.0 3.66 1.56 0.26 2.1 2.0 
SI7 15.2 0.4 15.1 10.7 89.3 12.8 1.4 0.16 1.39 0.57 79.2 2.9 
SI8 14.9 0.8 14.2 9.7 87.5 12.2 1.1 0.19 1.09 0.53 83.1 2.9 
SI9 15.5 0.4 15.4 10.7 88.2 12.8 1.5 0.15 1.43 0.57 78.3 2.9 
SI10 14.8 0.6 14.4 10.1 88.8 12.4 1.2 0.20 1.13 0.54 83.4 2.9 
             
MI1 36.3 3.8 22.1 23.0 89.4 19.7 44.3 6.52 1.77 2.38 1.4 6.4 
MI2 44.1 4.8 21.1 24.7 85.7 20.5 40.8 6.24 1.88 2.28 2.0 6.2 
MI3 46.9 5.0 21.7 27.6 87.0 21.5 41.1 6.26 1.84 2.31 1.6 6.3 
MI4 43.8 4.7 21.5 24.7 86.5 20.4 40.7 6.23 1.82 2.27 1.9 6.2 
MI5 15.2 0.4 15.1 10.7 89.3 12.8 1.4 0.16 1.39 0.57 79.6 3.0 
             
MI6 13.9 0.7 13.4 11.5 93.1 13.8 1.7 0.95 0.84 0.68 79.9 3.4 
MI7 43.7 4.8 21.0 25.3 86.7 20.7 40.4 6.21 1.84 2.27 1.6 6.2 
MI8 43.5 4.8 20.9 25.0 86.3 20.6 40.5 6.22 1.83 2.29 2.0 6.3 
MI9 42.7 4.6 21.7 22.3 85.4 19.5 39.9 6.17 1.84 1.90 1.1 5.7 
MI10 38.8 4.0 22.8 21.8 86.6 19.2 40.4 6.22 1.76 2.03 1.5 5.9 
             
MI11 38.3 4.1 21.1 23.4 88.1 20.0 42.8 6.40 1.75 2.31 1.3 6.3 
MI12 59.5 -2.2 54.6 74.6 93.7 35.1 2.1 0.85 1.37 18.6 100 17.6 
MI13 36.6 4.2 19.0 14.5 79.4 15.7 28.2 5.17 1.49 1.00 1.0 4.1 

              

N
; p

op
ul

at
io

n 
im

pu
te

d 

MI1 97.9 8.5 26.3 24.2 61.0 20.1 36.9 5.91 1.95 1.93 1.7 5.7 
MI2 92.6 8.3 23.1 42.0 80.1 26.6 37.5 5.95 2.03 3.57 9.2 7.8 
MI3 105 8.9 25.9 53.9 84.4 30.1 38.1 6.00 2.05 3.65 8.8 7.9 
MI4 98.6 8.7 23.1 45.5 81.0 27.7 37.6 5.97 2.00 3.58 8.4 7.8 
MI5 9.1 1.0 8.0 0.0 0 0 0.8 0.06 0.84 0.00 7.8 0.2 
             
MI6 9.8 1.6 7.2 0.1 19.6 1.4 1.3 0.93 0.41 0.12 36.5 1.4 
MI7 94.2 8.4 23.4 44.5 79.8 27.4 37.5 5.96 2.01 3.55 8.1 7.8 
MI8 95.3 8.5 22.9 42.2 79.8 26.6 37.8 5.97 2.07 3.61 9.7 7.9 
MI9 45.3 5.1 19.2 18.0 79.6 17.7 35.2 5.77 1.89 2.20 3.5 6.1 
MI10 58.7 6.3 18.9 10.7 55.3 13.7 34.2 5.68 2.01 1.83 2.9 5.6 
             
MI11 110 9.3 23.5 17.3 46.3 17.4 37.3 5.95 1.88 2.66 3.6 6.8 
MI12 75.4 -1.3 73.6 146 96.9 47.9 2.3 -.90 1.49 24.7 100 20.3 
MI13 38.6 4.3 19.9 0.7 20.9 3.4 18.4 4.10 1.54 0.53 2.3 3.0 

Estimators are based on complete data (CD), complete cases (CC), multiply imputed 
(MI) and singly imputed (SI) datasets. Confidence interval coverage (CIC) and length 
(CIL) are from double-sided intervals with 5% significance level. 


	BIAS REDUCTION OF FINITE POPULATION IMPUTATION BY KERNEL METHODS
	REFERENCES

