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ABSTRACT 

Ensemble approach has been applied with a success to regression and 
discrimination tasks [see for example Gatnar 2008]. Nevertheless, the idea of 
ensemble approach, that is combining (aggregating) the results of many base 
models, can be applied to cluster analysis of symbolic data.  
The aim of the article is to present suitable ensemble clustering based on 
symbolic data. The empirical part of the paper presents results simulation studies 
(based on artificial data sets with known cluster structure) of ensemble clustering 
based on co-occurrence matrix for symbolic interval-valued data, compared with 
single clustering method. The results are compared according to corrected Rand 
index. 

Key words: Ensemble clustering; interval-valued symbolic data. 

1. Introduction  

Ensemble techniques based on aggregating information (results) from 
different models have been applied with a success in context of supervised 
learning (discrimination and regression). The ensemble techniques are applied in 
order to improve the accuracy and stability of classification algorithms (Breinman 
1996).  

Ensemble clustering means combining (aggregating) N base clustering results 
(models) NPP ,,1   into one model *P  with *k  clusters (see: Fred and Jain 
2005).  

Recently several studies on combination method have established a new area 
in classical taxonomy. Nevertheless, the idea of ensemble approach, that is 
combining (aggregating) the results of many base models, can be applied to 
cluster analysis of symbolic data. 

There are several proposals of applying the idea of ensemble approach in the 
context of clustering – aggregation of results of different clustering algorithms, 
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receiving different partitions by resampling the data, applying different subsets of 
variables, applying a given algorithm many times with different values of 
parameters or different initializations. 

2. Symbolic data 

Symbolic objects, unlike classical objects, can be described by many different 
symbolic variable types. Bock and Diday have defined five different symbolic 
variable types (Bock and Diday 2000, p. 2) − see table 1 for examples of symbolic 
variables: 
1) single quantitative value, 
2) categorical value, 
3) quantitative value of interval type, 
4) set of values or categories (multivalued variable), 
5) set of values or categories with weights (multivalued variable with weights), 
6) modal interval-valued variable proposed in Billard and Diday (Billard and  
    Diday 2006). 

Regardless of their type symbolic variables also can be the following (Bock 
and Diday 2000, p. 2): 
1) taxonomic – which present prior known structure, 
2) hierarchically dependent – rules which decide if a variable is applicable or not  
    have been defined, 
3) logically dependent – logical rules which affect variable’s values have been  
    defined. 

Table 1. Examples of symbolic variables 
Symbolic variable Realizations Variable type 

preferred price of a new 
car (in PLN) 

<25000; 36000>, <28000; 37000>,  
<30000; 50000>, <33000; 58000>,  
<65000; 80000>, <66000; 90000> 

interval-valued 
(non-disjoint) 

engine capacity 
<1000; 1200>, (1200; 1400>, 
(1400; 1600>, (1600; 1800>, 
(1800; 2000>, (2000; 2200> 

interval-valued 
(disjoint) 

colour {green, black, yellow, red, purple, blue} multivalued 

preferred brand of a car 

{60% Honda, 35% Toyota, 5% Audi} 
{40% Honda, 20% Skoda,  20% Toyota, 20% 
Audi} 
{80% Audi, 15% Opel, 5% Toyota} 

multivalued with 
weights 

Source: Own research. 
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There are two main symbolic objects types: 
1. First order objects (simple objects, individuals) – single respondent, product, 
company, etc., described by symbolic variable types. This objects are individuals 
that are symbolic by their nature. 
2. Second order objects (aggregate objects, super individuals) – more or less 
homogeneous classes, groups of individuals described by symbolic variables. 

3. Ensemble clustering methods 

There are two main approaches that can be applied in ensemble learning for 
symbolic interval-valued data (see: Gathemi et al. 2009; De Carvalho et al. 2012; 
Hornik 2005): 

1. Clustering algorithm for multiple relational matrices – proposed by De 
Carvalho et al. 2012. This approach is based on different distance matrices. 
Those distance matrices can be obtained by applying different distance 
measures, or subsets of variables or subsets of objects. Distance matrices are 
used to calculate relevance weight vectors. Relevance weight vectors and 
distance matrices are then applied to cluster a set of objects into k  clusters. 

2. Clustering ensemble that apply consensus functions in clustering ensembles. 
There are five main consensus functions that are applied in clustering 
ensemble. 
Hypergraph partitioning which assumes that clusters can be represented as 

hyperedges on a graph. Their vertices correspond to the objects to be clusters. 
Each hyperedge describes a set of objects belonging to the same cluster. The 
problem of consensus clustering is reduced to finding the minimum-cut of a 
hypergraph (Gathemi et. al. 2009, p. 638; Strehl and Gosh 2002). Different 
adaptations of hypergraph partitioning have been proposed by Strehl and Gosh 
(2002), Fern and Brodley (2004), Ng et al. (2002). 

The main idea of the voting approach is to permute cluster labels in such a 
way that best agreement between the labels of two partitions is obtained. All the 
partitions from the cluster ensemble must be relabelled according to a fixed 
reference partition. This reference partition can be taken from the ensemble or 
from a new clustering of the data set. Fisher and Buhman, and Dudoit and 
Fridlyand have presented a combination of partitions by relabeling and voting 
(Gathemi et al. 2009, p. 639). 

Mutual information approach assumes that the objective function of a 
clustering ensemble can be formulated as the mutual information between the 
empirical probability distribution of labels in the consensus partition and the 
labels in the ensemble. In this approach usually a generalized definition of mutual 
information is applied – for example in Topchy et al. (2003). Luo et al. (2006) 
have introduced consensus scheme via genetic algorithm based on information 
theory. Azimi et al. (2007) have proposed clustering ensemble method which 
generates a new feature space from initial clustering outputs (Gathemi et al. 2009, 
p. 640). 
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In the finite mixture model approach the main assumption is that the output 
labels are modelled as random variables drawn from probability distribution 
described as a mixture of multinomial component densities. The objective of 
consensus clustering is formulated as a maximum likelihood estimation. Usually 
the expectation maximization algorithm (EM) is used to solve the maximum 
likelihood problem. Such approach is presented by Topchy et al. (2004), Analoui 
and Sadighian (2006) (Gathemi et al. 2009, p. 641). 

The co-association based functions operate on the co-association (co-
occurrence) matrix. Numerous clustering methods can be applied to co-
association matrix to obtain the final partition. By applying different clustering 
methods, resampling the data, different subsets of variables, or the same 
clustering with different values of parameters or initializations we obtain N  
partitions (each can have different number of clusters) of set E (set of objects to 
be classified): 
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The algorithm of ensemble clustering that uses co-association matrix can be 
described as follows (Fred and Jain 2005, p. 848): 

a) obtain different base partitions, 
b) build the co-association matrix (co-occurrence matrix). The main idea of this 

matrix is that objects belonging to the same clusters (“natural clusters”) are 
likely to be co-located in the same clusters in different partitions. The 
elements of the co-association matrix are defined as follows: 

 ( ) ,,
N
n

jiC ij=  (2) 

 where: i , j  –  pattern (objects) numbers, ijn – number of times pattern ( )ji,  
is assigned to the same cluster among N  partitions, N  – total number of 
partitions,  

c) apply the co-association matrix as the data matrix for some classical 
clustering method – like single-link, average, k-means or pam, 

d) choose the best partition. Fred and Jain (2002) propose to apply “lifetime” 
criterion in the case of hierarchical clustering methods. They define lifetime 
as the value of threshold values on the dendrogram that leads to the 
identification of k  clusters – their suggestion is to look for the highest value 
of this threshold. 
Also other methods that will lead to identification of the final number of 

clusters can be applied – for example Baker & Hubert, Hubert & Levine, 
Russeeuw’s silhouette cluster quality indices (see for example Gatnar and 
Walesiak 2004, p. 342-343 for details). 
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4. Results of simulation studies 

In order to compare the results of single clustering method (single model) 
with results of ensemble clustering the adjusted Rand index was applied in the 
case of single clustering method. In the case of ensemble clustering average 
ensemble accuracy (that is based on adjusted Rand index) is applied. Average 
ensemble accuracy can be defined as follows: 

 ( ),,1
1
∑
=

′=
K

k

agr
kagr PPAR

K
A   (3) 

where: K − number of ensembles, AR − adjusted Rand index, agr
kP − 

classification on the base of k -th ensemble, P′ − known class labels. 

The individual accuracy is defined as follows: 
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where: J − number of ensemble members, k
jP − classification on the base of j -th 

member of k -th ensemble. 

To compare the results of single clustering methods with results of ensemble 
clustering four different artificial data sets where generated (models are obtained 
by applying culsterSim and mlbench packages of R software): 

1. Data set I – 120 symbolic objects in three elongated clusters described by 
two interval-valued variables. The observations are independently drawn from 
bivariate normal distribution with means ( ) ( ) ( )14,3,7,5.1,0,0  and covariance 
matrix Σ  ( ).9.0,1 −== jljj σσ   

2. Data set II – 120 symbolic objects divided into five clusters in three 
dimensions that are not well separated. The observations are independently drawn 
from multivariate normal distribution with means equal to: 
( ) ( ) ( ) ( ),0,0,0,3,3,3,3,3,3,5,5,5 −−−  ( ),5,5,5 −−−  and covariate matrix Σ , 
where ( ),311 ≤≤= jjjσ  and 9.0=jlσ ( ).31 ≤≠≤ lj  

To obtain symbolic interval data for data sets I and II the data were generated 
for each model twice into sets A and B and minimal (maximal) value of { }B

ij
A
ij xx ,  

is treated as the beginning (the end of interval). 
3. Data set III – is an adaptation of well-known cuboids data set (from 

mlbench package). Four clusters in three dimensions. 
4. Data set IV – is an adaptation of well-known smiley data set (from 

mlbench package). Four clusters in two dimensions. 
In order to build interval-valued variables from mlbench cuboids and smiley 

data sets the data obtained from mlbench package is treated as the “seed” of a 
rectangle. Each rectangle is therefore a vector of two intervals defined by: 
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[ ]( ) ,2/,2/ jjjj zz γγ +−  where jz  − is the value of variable for j -th variable, 

jγ − is the width and the height of the rectangle for j -th variable. The value jγ  is 

drawn randomly from the interval [ ]1,0 for each variable. The figure 1 presents 
data sets III and IV. 

Figure 1. Data sets III and IV  

 
 
 
 
 
 
 
 
 
 
 
 

 
 a) b) 

 
a) – data set IV (smiley); b) – data set III (cuboids) 
 
Source: own computations in R software. 

 
To determine the final number of clusters Rousseeuw's Silhouette, Baker & 

Hubert, Hubert & Levine cluster quality indices were used (Ichino-Yaguchi 
distance measure was applied). The most common result was taken into 
consideration. Results of clustering with application of single model and 
ensemble clustering results for each data set (with application of adjusted Rand 
index) are presented in table 2. 

Table 2. Results of clustering for four data sets 

Clustering  
approach 

Data set I Data set II Data set III Data set IV 
Number 

of  
clusters 

Rand 
index 

Number 
of  

clusters 

Rand 
index 

Number 
of  

clusters 

Rand 
index 

Number  
of  

clusters 

Rand 
index 

Single  
method: 
 - single link 
 - average link 
 - pam 

 
 

2 
2 
2 

 
 

1 
1 
1 

 
 

2 
2 
2 

 
 

0.1744 
0.3961 
0.3786 

 
 

11 
3 
3 

 
 

0.3314 
0.2943 
0.3171 

 
 

10 
2 
2 

 
 

0.2212 
0.1627 
0.2302 
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Table 2. Results of clustering for four data sets  (cont.) 

Clustering  
approach 

Data set I Data set II Data set III Data set IV 

Number 
of  

clusters 

Rand 
index 

Number 
of  

clusters 

Rand 
index 

Number 
of  

clusters 

Rand 
index 

Number  
of  

clusters 

Rand 
index 

Ensemble 
approach: 
 - different  
clustering 
methods 
applied; 
number of 
clusters chosen 
at random from 
the interval 
[2; 15] 

 
 
 
 
 

2 

 
 
 
 
 

1 

 
 
 
 
 

5 

 
 
 
 
 

1 

 
 
 
 
 

4 

 
 
 
 
 

0.8266 

 
 
 
 
 

4 

 
 
 
 
 

0.8457 

Source: Own research with application of R software. 

5. Final remarks 

Ensemble clustering methods that were developed to deal with classical data 
situation can be quite easily adapted to symbolic data situation. Ensemble 
clustering methods based on the co-association (co-occurrence) matrix can be 
applied to cluster symbolic interval-valued data.  

Symbolic interval-valued data often tends to form not well-separated clusters 
of many different shapes. Single clustering methods (hierarchical, divisive or 
iterative) not always can detect correct number of clusters. Ensemble approach in 
clustering can be a solution to these problems. 

For the purposes of simulation studies a R script was written by author. It 
allows co-occurrence matrix to be built and applied as the data matrix for any 
suitable clustering method. 

Simulation studies have shown that ensemble clustering based on co-
association matrix achieves better results (in terms of adjusted Rand index) than 
single clustering methods – especially when dealing not typical cluster structures, 
or not-well separated clusters. 

The most important aims for future work are: comparing ensemble clustering 
based on co-association matrix with other ensemble clustering approaches, do 
more simulation studies on ensemble learning for symbolic data.  
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