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ESTIMATION OF QUADRATIC
FINITE POPULATION FUNCTIONS
USING CALIBRATION
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ABSTRACT

Since the quadratic finite population functions can be expressed as totals over a
synthetic population consisting of some ordered pairs of elements of the initial
population, the traditional and penalized calibration technique is used to derive
some calibrated estimators of the quadratic finite population functions. A linear
combination of estimators discussed is considered as well. A comparison of
approximate variances of the calibrated estimators is also presented. A simulation
study is performed to analyze the empirical properties of the calibrated estimators
of the finite population variance and covariance which appear as special cases of
the quadratic functions. It is shown also how the calibrated estimators of the
population covariance (variance) can be applied in regression estimation of the
finite population total.

Key words: calibrated estimator; penalized calibration; auxiliary variables;
approximate variance.

1. Introduction

In many statistical offices and official statistics, auxiliary information
becomes more and more important at the estimation stage seeking to increase the
accuracy of estimators of finite population parameters. To this end, the calibration
approach is often used. The idea of the calibration technique for estimating the
finite population totals is presented by Deville and Sirndal (1992).

Since the population totals or means are the most popular parameters in survey
practice, there exists a lot of scientific literature which deals with the estimation of these
parameters using calibration methods. Some of them are discussed in the paper of
Sarndal (2007), where an overview of the calibration theory and its application in survey
sampling are given.
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The topic on the estimation of some quadratic finite population functions,
such as the finite population variance, covariance or variance of the Horvitz-
Thompson estimator (see e.g. Sdrndal, Swensson and Wretman, 1992, p. 43), is
not often met in the literature of survey statistics. Plikusas and Pumputis (2007)
introduced the calibrated estimators of the population covariance (variance),
which use one weighting system defined by various calibration equations and
distance measures. In the paper (Plikusas and Pumputis, 2010), the estimation of
population covariance (variance) is considered using several systems of calibrated
weights. The estimators, derived here, are applied to improve the regression
(GREG) estimators of the finite population total. A more detailed description
about that application is given in the Subsection 2.4.

Singh, Horn, Chowdhury and Yu (1999) proposed calibrated estimators of the
variance of the Horvitz-Thompson estimator. Sitter and Wu (2002) extended the
model calibration and pseudoempirical likelihood methods to obtain efficient
estimators of quadratic finite population functions. Using a general expression of
the new estimators, they also derived the corresponding model calibrated
estimators of the population variance, the covariance and variance of the Horvitz-
Thompson estimator, and analyzed their properties.

The structure of this paper is as follows. In the next section we derive some
calibrated estimators of the quadratic population functions by employing Sitter
and Wu’s (2002) idea to express the quadratic population functions as the
population totals and by applying Deville and Sarndal’s (1992) calibration
method as well as the penalized calibration approach (Farrell and Singh, 2002).
Subsection 2.3 provides a slightly different calibration which leads to a linear
combination of the Horvitz-Thompson type estimator and calibrated estimators
mentioned above. In Section 3 we first derive the approximate variances of the
calibrated estimators and then we present a comparison of them. Some numerical
results are presented in Section 4. Here we compare by simulation the calibrated
estimators of the finite population variance and covariance which are both special
cases of the quadratic functions. Section 5 is devoted to concluding remarks.

2. Estimators of quadratic functions

2.1. Deville and Sirndal’s calibration

Consider a finite population U = {“1 Uyl N} of N elements. Without loss
of generality, we can assume U={l,2,...,N{. Let y* :yl(k),yék),...,yl(f),
k=12,...,J, be J study variables defined on the population U and taking fixed
real values. The values of all variables are known only for sampled population
elements. Denote y, = (¥, y*,..., y).

We are interested in the estimation of the quadratic finite population function

T=% >¢y,y) (M

i=1 j=i+l



STATISTICS IN TRANSITION-new series, October 2011 311

under a probability sampling design (of fixed size) with strictly positive
second and fourth order inclusion probabilities. Here @(+,s) is a symmetric

function (a kernel of degree 2 for a U-statistic).
Well known finite population parameters, such as the finite population

variance of y*’

R TTE P G

i=l j=i+l

the finite population covariance between two study variables y(k) and y(l)

C(y(k),y(”) Vv I)ZN:ZN:( " _ k)xym <1>)’

i=l j=i+l

and the variance,

2

(HTy‘“) ZZ( ’Ty)(yf“/”i—y;“/’fj) ;

i=l j=i+l

. . ~ k .
of the Horvitz-Thompson estimator, Ly = Zdi yi( ), of the population

ies
N
total tym = z yfk ), are as special cases of function 7. Here 7, and 7, are the
i=1
first and second order inclusion probabilities, respectively; s, s — U, denotes the
probability sample set drawn from the population U; d; = l/ 7, 1is the sample
design weight of the element i, i=1,2,...,N .
The presented alternative expressions of the finite population variance and
covariance are useful in the context of our investigation. The variance V(f HE )

A

of the Horvitz-Thompson estimator ¢, J® is given in the Yates and Grundy

(1953) form.
Let us arrange all the pairs (ij), i < j, of indexes of population elements in a

sequence and number the elements of the sequence using m =1,2,..., N ", where

N* = N(N-1)/2 (For more details on the procedure see Sitter and Wu (2002)).
Then function 7 can be expressed in the following way:

”
T=2 b

m=1
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where ¢ =¢(y,,y;) for a pair of indices m = (ij). Now function T is

viewed as a population total of the variable ¢, :¢}’1’¢y2""’¢yN* , defined on a

synthetic finite population U™ = {1,2,. . N *} of size N'.
Thus, some calibration methods can be easily employed to derive the
estimators of function 7. But first, some elements of the sampling design in the

population U” should be defined. The sampling design in the population U is
defined so that the corresponding sample of pairs is §* = {m = (y)| i<j,,je s}

and it is treated as if it were drawn from population U’; the first order inclusion
probabilities over the synthetic population U” are coincident with the second

order inclusion probabilities over the population U : ﬂ; =z, for m = (if),
where 7, are assumed to be strictly positive. Then the sample design weights

over the population U" are equal to the inverse of second order inclusion
probabilities: d, = 1/72',: =1/7, for m=(ij). Denote d,; = d .
When sample design weights are defined and there is no auxiliary

information, the quadratic finite population function (1) can be estimated using
the Horvitz-Thompson type estimator:

fHT = Zd:;1¢ym = szg;¢(§'ia§'j)-

mes ies j>i

()
As it is known, estimator (2) is unbiased but its variance is often relatively
large.

The weights dij of the estimator 7, »r can be modified using auxiliary

variables and calibration methods to obtain estimators with a smaller variance. Let

(k)

x") serve as an auxiliary variable for the study variable y(k), k=12,..,J.

Denote x, =(x",x?,..,x"")). Assume also that the values of all auxiliary
variables are known only for sampled population elements and that the total

T, :i ﬁ:¢(xl_,xj) is known.

i=l j=i+l

Remark 1. The simple summary statistics of the auxiliary variables (e.g. a

total of x(k)) are independent of the survey and may be taken from an outside
source, such as national statistical institutes. The second-order summary statistics

T, are much more complicated and they are not often considered in real surveys.
Thus, the direct access to such a type of auxiliary information is not very realistic.
A situation when all the values X,,X,,...,X,, are known (referred to as complete



STATISTICS IN TRANSITION-new series, October 2011 313

auxiliary information) is more realistic and useful in practice. The auxiliary
variables may be taken from the previous complete surveys of the same
population, various administrative registers and databases. Knowing these

variables, one can easily calculate 7, and use it for the construction of the

calibrated estimators.

We consider here the calibrated estimators of the quadratic finite population
functions of the following shape

T,=Y > ol ¢(y.y,). 3)
ies j>i

where new (calibrated) weights a)lgcal) are defined under the following
conditions:

The weights @'“" satisfy some calibration equation;

y

(cal)

The distance between the weights d; and @, is minimal according to

some distance measures.

First, by applying Deville and Sérndal's (1992) calibration technique, we
define the calibrated estimator of quadratic function 7

fDS = Zza);‘DS)(é(yz'ayAf) )

ies j>i
“
where the weights a)éDS) minimize the distance measure
(DS) u
w: " —d,
L(a),d):ZZ( i l])
ies j>i d i
&)
and satisfy the calibration equation
N N
ZZW;DS)¢(XI‘,XJ) = z z¢(xiax‘/‘) = T¢‘_ .
ies j>i i=l j=i+l
(6)

Here g,,i,j€s, i< j, are free additional weights. The estimators can be
modified by choosing g, .

Calibration equation (6) shows that the known quadratic function 7, is

estimated by 7, Ds.g, = ZZ&);DSM(XI.,X ;) without error. In the case of a quite
ies j>i

high correlation between the variables ¢y and @ (where ¢_ is defined similarly
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as ¢,), it is natural to expect that the estimates of the function T are more

(DS)

accurate when the new weights ;" are applied in (4).

(DS)

The weights @, of estimator (4) are given by the following proposition

that is actually a corollary which follows from the derivation of weights of a
calibrated estimator of the finite population total (see Deville and Sérndal, 1992).
Proposition 1. The weights @ "

ij

,1,j€S8,i<j, which minimize the

distance measure (5) and satisfy equation (6), are defined by the equations:

(DS) qll¢( 1’X )
s T

Uues v>u
A number of other calibrated estimators may be derived using different
distance measures and calibration equations. In the following part of this paper,
we will analyze some cases.

Remark 2. By replacing the values ¢(y,,y;) and ¢(x,,Xx;) in the

(k) )

. : ~ Y
expression of the estimator T, with (7,7, —7,) Si 2 and
i 7[]
® 50y
(w7 fir/2" ~———— |, we obtain an estimator Vs (t HT ) of the variance
T, :

i J
(k)
of the Horvitz-Thompson estimator 7 HT o = Zd Y . Assume 77w, -7z, >0

ies

and let ¢, =0, / (ﬂ'lﬂ' it ), where (), are free additional constants. Then the

A

estimator V (f . ym) reduces to that considered by Singh, Horn, Chowdhury
and Yu (1999).

2.2. Penalized calibration estimators

Let us consider the estimator of quadratic finite population function 7 of the

(FS)

same form (3) and define the weights @, "', 7, j €S8, i < j, of it, using the same

calibration equation (6), but a different distance measure

L=y A) e )

ies j>i [] ij ies j>i d[/ql]
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the analog of which is proposed in the papers of Farrell and Singh (2002) and
Singh (2003), and called a penalized one. Minimization of this distance measure
subject to calibration equation (6) leads to the estimator with interesting features
that can be described by the words of Farrell and Singh (2002, p. 965): “... @ is a

positive quantity that reflects a penalty to be decided by the investigator based on
prior knowledge, or the desire for certain levels of efficiency and bias...increasing
@ results in a decrease in the mean square error of the estimator; unfortunately

has the side effect of increasing the bias”.

Denote by T s the new, just defined estimator. Since the function L, is
coincident with L as ¢ = 0, the new group of estimators

Tos =20 0 8(y,.y ;) @®)

ies j>i

includes the calibrated estimators 7, s -

Proposition 2. The weights a);FS)
distance measure (7) and satisfy the calibration equation (6), are defined by the
equations:

d. q;9(x,.X;)
#s) _ Y i P PRV
@y 1+(/72 szwqw (X,,X, )((H(o F. szwqj(xu’xvﬂ

ues v>u

i,jes,i<j, which minimize the

ues v>u

Proof. Let us take the distance measure (7) and calibration equation (6), and
define the Lagrange function

NS BRS T B E

1es j>1 l/qll ies j>l dl]ql] €S J>1
By solving the equations

oA

(Fs)
aa)y

=0,i,jes,i<j,
we get

1 1
w;FS) :de(l+51qy¢(xi,xj)j. 9
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Then, multiplying (9) by ¢(x;,x j), summing over the sample s’ elements
and taking into account calibration equation (6), we get an expression for A.
Substituting this expression into (9), we get an equation for coéFS) .

One can note that penalized calibration is usually used to penalize the
magnitude of the calibrated weights when a lot of calibration constraints are used
and the sample is particularly unbalanced so that negative or very large weights
occur after the calibration procedure (see Guggemos and Tillé, 2010). In this
paper, we consider penalized calibration in the case of only one calibration
equation, because we are seeking only to find out if the penalized distance
measure may be more advantageous than function (5) when the resulting
estimators are derived using the same calibration equation.

As it is shown below (see Subsections 3.2 and 4.2), the penalized estimator

T s has the lower approximate and empirical variances as compared to that of the
calibrated estimator 7' s » but according to the results of Farrell and Singh (2002),

the bias of 7 s becomes relatively large when the parameter ¢ is increasing.

This is not a desirable property that could inspire for the development of an
improved penalized estimator.

2.3. Linear combination of estimators

We consider here a slightly different calibration when the weights of
estimator (3) are derived by calibrating the original design weights d ; » multiplied

by some correction factor. The estimator under consideration is
roo_ (lin)
T =2, 2,04y ,5¥ ) (10)
ies j>i

)

. li e .
where the weights a)i(f " minimize the distance measure

o fo-a )
Lnew(a)’d) = #7

Z‘; d;q; (11
7 2
d,=cd;,c=a+p+y/(1+¢"), a+p+y=],

and satisfy the new calibration equation

Y of"px,x)=(1-a)l, +a).> d,#(x,.x,). (12)

ies j>i ies j>i
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Note that the right side of the calibration equation (12) consists of two terms:
the first one is the true value of T 4. multiplied by 1 -, and the second one — the

estimate of 7, multiplied by the coefficient .

Proposition 3. Minimization of the distance measure (11) subject to the
calibration equation (12) leads to the calibrated weights given by

qy¢(xi,x,)((1—a)T¢, +(a—c)22dw¢(xu,xv>j

ues v>u

szwquv¢2 (Xu’Xv) ' (13)

ues v>u

(lin) __
w;" =dy| c+

The proof is similar to that of Proposition 2.

By inserting the weights (13) into (10), we get the estimator

A

T, =afHT+ﬂfDS+yfFS,a+ﬁ+y=l, (14)

lin

which is a linear combination of 7}, 7, and Tpg.

In expression (14) one can see that & can be interpreted as a weight of the
Horvitz-Thompson estimate which is included into the expression of f",m .
Therefore, the absolute value of « reflects the rate of an influence of the Horvitz-
Thompson estimator on the accuracy of the estimator YA“ll.n . A similar discussion

can be provided about the coefficients f and y. As an example of a high
influence of the Horvitz-Thompson estimator can be obtained by choosing a value
close to one for & and the values close to zero for the coefficients f and ¥

(a+ f+y=1). Then the estimator f",m is almost unbiased with a variance
similar to that of the Horvitz-Thompson estimator. The variance of ﬁin can be

reduced by choosing a value of & close to zero, but then the estimator fzm may
be more biased.

Thus, the statistical properties of fzin can be controlled through the values of
coefficients a, f and y. Consequently, the (optimal) values of &, £ and V¥,
which minimize the mean square error of the estimator fzm subject to an

unbiasedness constraint, are more preferable than any set of &, £ and ¥ .
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2.4. Some aspects from a practical perspective

The main purpose of this subsection is to present some possibilities for the
practical applications of the calibrated estimators of some quadratic functions,
such as the finite population variance and covariance.

Note that according to the formulation of our problem, there is only one
auxiliary variable available when the estimated parameter is a finite population
variance and two auxiliaries are used in the case of estimation of the finite
population covariance. Further, for simplicity, we denote the study and auxiliary
variables, corresponding to the cases of estimation of variance and covariance, by
y and a,andby y,z and a, b.

By replacing the values ¢(y,,y ;) and ¢(x,,X;) in the expressions of the

.. . 1 ,
estimators Ty, Tpy, T, and 7, with ————(y,—-y; and
urs> Lpss L s I N(N—l)(y yj)
1
——(a,—aq, )?, we get four estimators of the finite population variance S )2 .
N(N -1)

We denote them by SA'f,T, SIZJS, SA';S, and S? respectively. Analogously, the

lin >

1
substitution ——(y. — v . )(z, —z,) and ——
N(N_l)(y, vz, —z;) NV _D)
to the four estimators of the finite population covariance C(y,z):
éHT, éDS, é’FS and C

The estimators derived can be useful in the following common situation. Let
us say, we want to estimate a population total

N
tyzkzz;yk.

In the case of only one known auxiliary variable, say a, one can take the

simple regression estimator (see e.g. Sérndal, Swensson and Wretman, 1992, p.
272)

(a,—a;)b,—b;) leads

lin *

~ N A& N
t, :—Adeyk+B Zak—Tdeak , (15)
Nkes k=1 Nkes

de[ak —Zd,a,/ﬁj(yk —Zd,yl/Nj

' Ak I I
where NZde,BZ = = =

= de[ak ~-Ndga, /sz

kes les
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If the variables y and a are well correlated, then estimator (15) is much
more accurate as compared to the Horvitz-Thompson estimator. For the sample

designs for which N=N , regression estimator (15) reduces to

=Dy + C(gz’ (Z ->4, akj (16)

kes a k=1 kes

C(y,a)——zd ("k Zda’/N)(y" _Zd,y,/Nj and

where kes les les

o2 1 .

S, = Py A a, — Zd a, / N | are standard only design based
kes les

estimators of the population covariance C(y,a) and variance S 5 , respectively.
As it is shown in (Plikusas and Pumputis, 2010), regression estimator (16) can be
improved by replacing the standard estimators C(y,a) and S ; with more

accurate ones. Thus the calibrated estimators C,, C,, C,, and S;¢, Srs, S ,fn
may be suitable for this purpose assuming that there are available two additional
known variables x and x, which serve as the auxiliaries for the variables y
and a, respectively.

Beside that application of the calibrated estimators of the finite population
variance and covariance, they can be used also to improve the estimates of other
finite population parameters, such as a finite population correlation coefficient

p(3:2)=C(r2)/(s,-5.)
which is a ratio of the covariance C(y,z) and product of the standard

deviations S, =./S y2 and S =4S’ . The simplest way to estimate the
correlation coefficient p(y,z) is to use the Horvitz—Thompson type estimators
C’HT, SIZ,Ty and S>
respectively, and to take the ratio

2 2
or.. for estimating covariance C(y,z) and variances S, S_,

b(y’z)zéHT SI%IT,)/.SI%IT,Z (17)

as the estimator of the correlation coefficient. More accurate estimates may be
obtained using in (17) the calibrated estimators instead of the corresponding

Horvitz-Thompson estimators of the covariance C(y,z) and variances S f and

S?.

z
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3. Comparison of estimators

3.1. Approximate variances

For practical and theoretical purposes, it is good to have expressions of the
exact or approximate variances of estimators, or even more, to know which

A A

estimator has the lowest variance. Since the estimators 7,¢,7,¢ and T, are
nonlinear functions of the Horvitz-Thompson estimators
Tir = 2.2 d,0(V Y ) Try, = 2.2 d,9(x,.%).
ies j>i ies j>i
A s A
THTWXZ = zzdijqij¢ (Xi’Xj) , THT,q¢X¢V = zzdiqu‘j¢(xi’xj)¢(yiayj) >
ies j>i ies j>i

of the population totals

N N N N
T.T,, Tq¢3 = Z Zqi/¢2(x[,x_,), Topy, = Z Z%fﬁ(xnxjﬁ(ywy/)’

i=l j=i+l i=1 j=i+l
respectively, we will use the Taylor linearization technique to derive
expressions of the approximate variances.

According to the Result 6.6.1 of (Sidrndal, Swensson and Wretman, 1992, p.
235), the approximate variance of T s can be written as

A V(fDS ): V(fHT — BTy, ) (18)

where B= TqM" / T‘”’xz .

Proposition 4. The approximate variances of calibrated estimators T s and

A

T, canbe expressed as follows
AV(fFS): mAV(TADS ) (19)
2
A V(fzm ): (%] AV(fDS )+ an( AHT )

1_a+ﬂ¢2 ~ ~ A
+20{7C(THT _BTHT,¢X’THT)'
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Proof. By substituting the weights a);FS) into (8), we obtain

fFS = fHT/(l"' §02)+ (chﬁx - AHT,¢X /(1 + (02 ))f[;;wz 'fHT’W%
f(T T, .7 ..T

HT >~ HT,$.>" HT q¢?° HTq¢X¢))

Thus, the estimator 7 s can be viewed as a nonlinear function depending on

A A A

the Horvitz-Thompson estimators 7T}, Ty; 4,7, T ad? and T, HT a9, that are
unbiased, i.e.
ET,, =T, ETHqu =T, ETHT o T ETHqu} Tqmy .

Using the Taylor linearization method, we derive a linear approximation of
the function 7.

The expansion of this estimator in a Taylor series up to the first order terms at the
point (T, Ty T T s )= (0,042, T LT, )i

HT >" HT.¢. > HT q¢2 >~ HT .q¢.4, A7 qpl 2" add,

1
I+¢

fv(linear) —

Ny~ BEr, — 07, ) 0

The approximate variance of the estimator T s 18 equal to the exact variance

of T ;é""ear) :

AV (T )=V (T,

By calculating the variance V( (inear) ) and taking into account equality (18),
we get the expression of A V(T s )

The approximate variance of the estimator fzm is obtained similarly, using an

expansion of fhn in a Taylor series at the point

oA B A (1-a)(1+¢”)
(THT’THT¢’THTq¢2’THT41¢¢) (T’l 0{+ﬂ¢) T T TqM O

Remark 3. The estimator of the variance of the estimator f s can be defined

as follows. First, we write

av(iy)=v (ZZd (p(v.oy ) - Box,.x, ))J Vs s0)

ies j>i



322 Dalius Pumputis, Andrius Ciginas: Estimation of quadratic ...

where 7T urg,-sg, 18 the Horvitz-Thompson estimator of the total of the
variable ¢, — B¢, defined on the population U’ and taking values ¢, —Bo,,
¢y2 _B¢x2’ A ¢yN* _B¢x Here ¢ym ¢(yiayj)’ ¢xm =¢(Xiixj) fOI' a pair

of indices m =(ij). Then, using Result 2.8.1 from (Sirndal, Swensson and

Wretman, 1992, p. 43), we get the more convenient expression of the approximate
variance

AV(fDS) (Hw) B¢) ii( 7T, m)¢yr ﬁ*¢r'¢ym_*B¢ym’

T

r m

r=l1

* * . . g,
where 7, and 7, are the first and second order inclusion probabilities over

the synthetic population U . In fact, 7, and 7z, coincide with the second and

*

fourth order inclusion probabilities over the population U: =, =7; and

z, = Ty for m=(ij) and r=(kl), where ;, and =, are assumed to be

i
strictly positive (see Subsection 2.1).
As the estimator of the variances V(T ) and V(T HT 4B, ) we take

res mes s s

r m

)7l - zz(l_ﬂfﬂfn]%—%.%—%,

where B HT 4.4, / HT q4}

The estimators of the variances V(f FS) and V(YA”H”) can be derived in a

similar way.
Alternatively, the replication methods, such as the jackknife, bootstrap and
balanced halfsamples (see e.g. Sarndal, Swensson and Wretman, 1992), can be

used for estimating the variances of the estimators T s > T s and T

lin *

3.2. Comparison of variances

Next, we will compare the variances of estimators by analyzing their
differences. Let us start from the difference AV(f DS )—V(f T ) Using equality

(18), it can be easily expressed as follows

AV (Ts -V (Ty )= B2V Py )-2BC(T, 1y Ty ).



STATISTICS IN TRANSITION-new series, October 2011 323

A

Thus, vt )< V(fHT), if

oy T oy )= %B\/V(f,,m YV (Er) as B>0, or
@1

oy Tr s )< %B\/V(f,,m Vv (Er ), as B<o0,

A

where p(T wr> Lur g, ) is the correlation coefficient between T, and T}, ,

A negative value of B=T , / Tq 42 Mmay occur if the range of the function

@(s,+) is R, e.g. when T is a covariance between two study variables.
In the case of simple random sampling without replacement, inequalities (21)

reduce to
p(¢y,¢x)2%B,/S¢fX/S2y as B> 0,
p(qﬁy,(ﬁx)S%B,/Sé/Si ,as B<0,

where p( y,¢x) is the correlation coefficient between the variables
P, :¢y1’¢y2""°¢yN* and @, :@,,0,,,.-,P ., defined on the population U’ The

notation S;_ , S ; is used to denote variances of the variables ¢ and ¢ _,

respectively.
Comparison of calibrated and penalized calibration estimators. Equality

(19) shows that the approximate variance of the penalized estimator T g 1s lower
than that of the calibrated estimator 7 s - Even more, according to the lines of

Farrell and Singh (2002), the approximate mean square of the estimator T g 1S

minimized when

0> = av(f,)/(r- 57, } . @)

and it equals

AMSE, (JA"FS)=1 L ar(d,)

+o°

One can easily verify this equality using the same expansion (20) of T ks IN A
Taylor series.

Comparison of the calibrated estimators 7 s and flm . First, we derive the

optimal values of coefficients & and £ which minimize the approximate
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variance of the estimator fhn under the condition AE (flm ): T' that indicates the
approximate unbiasedness of the estimator. Denote the optimal values of & and
P by a. . and ., respectively.
Let us define the Lagrange function

A = av(i, )- 2 (4E(T,, )-7).

lin

By solving the equations

ON oN

L0, S —0and 4E(T,, )=T,
oa op

we find

o AV (P )~ Ty = BTy Ty

BTy, ) ’
V(T )~ Ty =BTy Ty )
Bv(f,,, ) '

The second derivatives test for critical points shows that the values ¢, ;, and

(23)

ﬂmin -

B, satisfy the condition of the minimal approximate variance which is equal to

. ) av(t, W2, )-c(F,y - BTy, T, )

AV _|\T, ~
Vol )= Ve 8, - 2cli, BT, )
V(TDS )V(THT Xl_ ( HT _BTHT,@’]:HT ))
BT, ) ’

where p(f r — BT, HT . T HT) is the correlation coefficient between the

estimators 7, HT 4,89, T — BT, ur.g, and T T -
The difference

) AV(f“ ):_(AV(st)— C(fm —BTAHT,@,TAHT))2
BV (7, )

is negative or is equal to zero. It means that the approximate variance of the

av,, (f

lin

estimator 7, is not higher than that of the calibrated estimator T s -

lin



STATISTICS IN TRANSITION-new series, October 2011 325

Note that «,, + ., =1. Therefore, under such a setting of optimal
coefficients, the estimator 7 s 1s not included into the linear combination (14),
and, consequently, TA;m =a,. T wr + Buin T s -

Comparison of the calibrated estimators 7 s and f,in. The difference

A

between the approximate variances AV . (Tﬁn) and A4 V(f FS) can be expressed

AV (7 Var(f )= ATy W)
ol )-AV(E) Tl e

Ty )= 21T = BTy o 1+ 07

(aW(f,s )2l — BTy, T )
T e

as follows:

A

X PZ(fH _BTHT,@’Y:HTXI'HDz)2 +

Since

A A

AV (Pps J4 V(T py )~ 2C(F,y = BTy Ty )= BV (T, )

the inequality AV, (f,m )— A V(f o )S 0 is equivalent to that

S (o
p2<fHT _BfHT,céX’fHT)Z 1_( o V(THT%) 24

1+¢2)2V(fHT)
Under condition (24) the approximate variance of the estimator flm is not

higher than that of the penalized calibration estimator T, s -

In the case of simple random sampling without replacement, inequality (24)
reduces to

2 @2
B°S,

¢, - Bg.. ¢ )21-— B
P, Bo 2

4. Simulation study

4.1. Simulation setup

The simulation study is performed to observe the efficiency of the Horvitz-
Thompson type and calibrated estimators of the finite population variance and
covariance. For that purpose, we consider a subset (of size 300) of the real
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population from the Lithuanian Enterprise Survey. The study variables y and z

are the profit of an enterprise in a different time period, whereas the values of
auxiliary variables a and b are the numbers of employees of the enterprise at the
same periods. The correlation coefficients between the study and auxiliary

variables are p(y,a)=0.81, p(z,b)=0.90, p(1,b)=0.63
and p(z,a)=0.60. The relationship between the variables ¢, and ¢, is also

strong enough, because p(@,,4,)=0.64 (when the estimated parameter is a
finite population variance) and p(¢,,4,) =0.88 (in the case of estimation of a

finite population covariance).

The population is stratified into two strata by the size of the survey variable
¥ . The stratified simple random sample is used as a sample design. The sample
size n=100 is allocated to strata, using Neyman’s optimal allocation.
M =10000 samples were drawn and for each of them the estimators
372

T S és , S is and S2  of the finite population variance S f, and the estimators

lin
C T C Dss C & and C ., of the finite population covariance C(y,z) were
computed.

The uniform weights g, =1 were used for the calibrated estimators. A value
of the parameter @ was calculated using formula (22). The coefficients & and

[ that appear in the expression of T

lin >

were defined in the following way. We

give here an explanation in the general case, where the parameter 7 is any
quadratic function. First, we write

V(T )=V (2, )+ gV (T )+ (1= — BY V(T )+ 20BC(F, T )
+2a(-a-p)C(fy B )+ 280 = B)C(Fs Ty ) 25)
ET, =aET,, + ET,s +(1-a — B)ET.

lin

Then, by replacing in (25) true values of variances V(f T ), V(f s ), V(f s ),

expectations ET, wrs ETpg, E T s » and covariances between the estimators with

the empirical ones, we minimize the empirical mean square error
A A A 2 A
MSE,,, (Tlin )= Vemp (Tlin )+ (EempTlin -T ) subject to the constraint £, T, =T .

B..) is used in (14) for
calculating estimates. This choice of the coefficients & and [ often leads to a

~

The solution of this optimization problem (&

min °

little bit more accurate estimates of ]A“,m as compared to those which are computed

using «,. and ., defined by (23). Thus, using our data, we obtain
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~

&, =030, 5. =081 (7, =1-&, - =—0.11), if the parameter T

min min
is a population variance, and the values @ =0.09, B =0.69 (7. =0.22)
were used in the case of estimation of a finite population covariance.

4.2. Simulation results

The empirical relative bias ( RB), variance (V' ), mean square error ( MSE),
and the coefficient of variation (cv) have been calculated for each estimator (see

Tables 1 and 2). For any estimator 0 of the finite population parameter €, all
these characteristics of accuracy are defined by the following equations:

A 2
)= 3300 0 80130 .
i= 1 J=

-1

wse(6)=L 56, -oF. elo)- Var(é)-(%ﬁéj

i=1

-1
’

where éi is the estimate of parameter @, computed using data of the ith

simulated sample.

Table 1. The main estimated characteristics of accuracy for the estimators of the
finite population variance

Estimator RB Vx10™7  MSEx107" cv
Sz, -0.0039 5.27 5.40 0.0991
S 0.0070 4.11 4.13 0.0855
S2[p*=0.09]  -0.0053 3.95 3.96 0.0849
S? 0.0037 3.64 3.64 0.0808

Table 2. The main estimated characteristics of accuracy for the estimators of the
finite population covariance

Estimator RB Vx10"®  MSEx107™" cv
Cpr -0.0015 11.50 13.82 0.1752
C s 0.0115 3.61 3.67 0.0899
C.lp?=0.10]  -0.0066 3.32 3.34 0.0878

~

C 0.0010 3.27 3.27 0.0864

lin
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Due to quite a high correlation between the variables ¢, and ¢, the
calibrated estimators of population variance and covariance are much more
accurate compared to the Horvitz-Thompson estimators of the same parameters.
More significant differences between the characteristics of accuracy of the
calibrated and Horvitz-Thompson estimators are observed in the case of
estimation of the population covariance (see Table 2), where the coefficient of

A A

variation of the calibrated estimators C pss Crg» Cp, 15 approximately two times

lin
lower than that of the only design-based estimator C,,;. The variances and mean
square errors differ about four times.

The estimators S’ 2

i, and C 4w which are the linear combinations of the
estimators S’Izﬁ , Sf,s ) .SA';S and C s C DS » C s » respectively, outperform all the
estimators from the corresponding group. The empirical analogs of the terms
included into (24) do not satisfy this inequality. Thus, it seems that the
approximate variances of the estimators S . and C 4in are higher than that of the
corresponding penalized estimators S’;S and C s » although the behaviour of
empirical variances is contrary. The reason for that could be due to the
linearization when only the first order Taylor approximations of the estimators are
used for calculating approximate variances, and the remainder terms of a Taylor
expansion are neglected.

Comparing the penalized calibration estimators S ;5 and C rs to the
corresponding calibrated estimators S’;S and C ps» We note that not only the
variance, but also the mean square error of the penalized estimators is lower than
the variance of the calibrated estimators, as it is in the case of the approximate

variance and mean square error (see Section 3).

5. Conclusion

Some of the estimators of finite population parameters can be treated as they
are of quite a good quality in the sense of a small variance or small bias, but other
characteristics of accuracy (e.g. mean square error) may not satisfy the survey
statisticians and practitioners. In our case, the Horvitz-Thompson estimator T T
is unbiased, but its variance may be relatively large. The calibrated estimator T DS

is preferable because of its lower variance (especially if the variables ¢y and ¢
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are well correlated), although it is slightly biased. Of course, the small bias has a
minor impact on the results. The penalized calibration estimator T, =5 has to be
used carefully because an increase in the penalty (@ ) may have a negative impact
on the bias. The best properties of the estimators 7, T s T s and T s are reflected
by that of the estimator f,m . For some sets of coefficients &, £ and y, it is

unbiased and may have the lowest variance among the estimators discussed in this

paper.

REFERENCES

Deville, J.C. and Sirndal, C. E., 1992. Calibration estimators in survey sampling.
Journal of the American Statistical Association, 87, pp.376-382.

Farrell, P. and Singh, S., 2002. Penalized chi square distance function in survey

sampling. ASA Proceedings, pp.963—968.

Guggemos, F. and Tillé, Y., 2010. Penalized calibration in survey sampling:
Design-based estimation assisted by mixed models. Journal of Statistical
Planning and Inference, 140, pp.3199-3212.

Plikusas, A. and Pumputis, D., 2007. Calibrated estimators of the population
covariance. Acta Applicandae Mathematicae, 97, pp.177-187.

Plikusas, A. and Pumputis, D., 2010. Estimation of the finite population
covariance using calibration. Nonlinear Analysis: Modelling and Control,
15(3), pp-325-340.

Sarndal, C.E., 2007. The calibration approach in survey theory and practice.
Survey Methodology, 33(2), pp.99-119.

Sarndal, C.E. Swensson, B. and Wretman, J., 1992. Model Assisted Survey
Sampling. New York: Springer-Verlag.
Singh, S., 2003. On Farrell and Singh's penalized chi square distance functions in

survey sampling. SCC Proceedings, pp.173—-178.

Singh, S. Horn, S. Chowdhury, S. and Yu, F., 1999. Calibration of the estimators
of variance. Austral. & New Zealand J. Statist., 41(2), pp.199-212.



330 Dalius Pumputis, Andrius Ciginas: Estimation of quadratic ...

Sitter, R.R. and Wu, C., 2002. Efficient estimation of quadratic finite population
functions in the presence of auxiliary information. Journal of the American
Statistical Association, 97(458), pp.535-543.

Yates, F. and Grundy, P., 1953. Selection without replacement from within strata
with probability proportional to size. Journal of the Royal Statistical Society,
15(2), pp.253-261.





