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ESTIMATION OF QUADRATIC  
FINITE POPULATION FUNCTIONS  

USING CALIBRATION 

Dalius Pumputis1, Andrius Čiginas2 

ABSTRACT 

Since the quadratic finite population functions can be expressed as totals over a 
synthetic population consisting of some ordered pairs of elements of the initial 
population, the traditional and penalized calibration technique is used to derive 
some calibrated estimators of the quadratic finite population functions. A linear 
combination of estimators discussed is considered as well. A comparison of 
approximate variances of the calibrated estimators is also presented. A simulation 
study is performed to analyze the empirical properties of the calibrated estimators 
of the finite population variance and covariance which appear as special cases of 
the quadratic functions. It is shown also how the calibrated estimators of the 
population covariance (variance) can be applied in regression estimation of the 
finite population total.    

Key words: calibrated estimator; penalized calibration; auxiliary variables; 
approximate variance. 

1. Introduction 

In many statistical offices and official statistics, auxiliary information 
becomes more and more important at the estimation stage seeking to increase the 
accuracy of estimators of finite population parameters. To this end, the calibration 
approach is often used. The idea of the calibration technique for estimating the 
finite population totals is presented by Deville and Särndal (1992).   
 Since the population totals or means are the most popular parameters in survey 
practice, there exists a lot of scientific literature which deals with the estimation of these 
parameters using calibration methods. Some of them are discussed in the paper of 
Särndal (2007), where an overview of the calibration theory and its application in survey 
sampling are given. 
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The topic on the estimation of some quadratic finite population functions, 
such as the finite population variance, covariance or variance of the Horvitz-
Thompson estimator (see e.g. Särndal, Swensson and Wretman, 1992, p. 43), is 
not often met in the literature of survey statistics. Plikusas and Pumputis (2007) 
introduced the calibrated estimators of the population covariance (variance), 
which use one weighting system defined by various calibration equations and 
distance measures. In the paper (Plikusas and Pumputis, 2010), the estimation of 
population covariance (variance) is considered using several systems of calibrated 
weights. The estimators, derived here, are applied to improve the regression 
(GREG) estimators of the finite population total. A more detailed description 
about that application is given in the Subsection 2.4.  

Singh, Horn, Chowdhury and Yu (1999) proposed calibrated estimators of the 
variance of the Horvitz-Thompson estimator. Sitter and Wu (2002) extended the 
model calibration and pseudoempirical likelihood methods to obtain efficient 
estimators of quadratic finite population functions. Using a general expression of 
the new estimators, they also derived the corresponding model calibrated 
estimators of the population variance, the covariance and variance of the Horvitz-
Thompson estimator, and analyzed their properties.   

The structure of this paper is as follows. In the next section we derive some 
calibrated estimators of the quadratic population functions by employing Sitter 
and Wu’s (2002) idea to express the quadratic population functions as the 
population totals and by applying Deville and Särndal’s (1992) calibration 
method as well as the penalized calibration approach (Farrell and Singh, 2002). 
Subsection 2.3 provides a slightly different calibration which leads to a linear 
combination of the Horvitz-Thompson type estimator and calibrated estimators 
mentioned above. In Section 3 we first derive the approximate variances of the 
calibrated estimators and then we present a comparison of them. Some numerical 
results are presented in Section 4. Here we compare by simulation the calibrated 
estimators of the finite population variance and covariance which are both special 
cases of the quadratic functions. Section 5 is devoted to concluding remarks. 

2. Estimators of quadratic functions 

2.1. Deville and Särndal’s calibration 

Consider a finite population { }Nuuu ,,, 21 K=U  of N elements. Without loss 
of generality, we can assume { }N,,2,1 K=U . Let ,,...,,: )()(
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,,...,2,1 Jk =  be J study variables defined on the population U  and taking fixed 
real values. The values of all variables are known only for sampled population 
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under a probability sampling design (of fixed size) with strictly positive 
second and fourth order inclusion probabilities. Here ),( ••φ  is a symmetric 
function (a kernel of degree 2 for a U-statistic).  

Well known finite population parameters, such as the finite population 
variance of )(ky ,  
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the finite population covariance between two study variables )(ky  and )(ly , 
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)( , are as special cases of function T. Here iπ  and ijπ  are the 

first and second order inclusion probabilities, respectively; s , Us ⊂ , denotes the 
probability sample set drawn from the population U ; iid π1=  is the sample 
design weight of the element i , Ni ,...,2,1= . 

The presented alternative expressions of the finite population variance and 
covariance are useful in the context of our investigation. The variance ( ))(,

ˆ
kyHTtV  

of the Horvitz-Thompson estimator )(,
ˆ

kyHTt  is given in the Yates and Grundy 

(1953) form. 
Let us arrange all the pairs jiij <),( , of indexes of population elements in a 

sequence and number the elements of the sequence using *,...,2,1 Nm = , where 

2/)1(* −= NNN  (For more details on the procedure see Sitter and Wu (2002)).   
Then function T can be expressed in the following way:  
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where ),( jiym yyφφ =  for a pair of indices ).(ijm =  Now function T is 

viewed as a population total of the variable *,...,,: 21 yNyyy φφφφ , defined on a 

synthetic finite population { }** ,,2,1 NK=U  of size *N .  
Thus, some calibration methods can be easily employed to derive the 

estimators of function T. But first, some elements of the sampling design in the 
population *U  should be defined. The sampling design in the population *U  is 
defined so that the corresponding sample of pairs is { }ss ∈<== jijiijm ,,)(*  

and it is treated as if it were drawn from population *U ; the first order inclusion 
probabilities over the synthetic population *U  are coincident with the second 
order inclusion probabilities over the population U : ijm ππ =*  for )(ijm = , 

where ijπ  are assumed to be strictly positive. Then the sample design weights 

over the population *U  are equal to the inverse of second order inclusion 
probabilities: ijmmd ππ 11 ** ==  for )(ijm = . Denote *

mij dd = . 
When sample design weights are defined and there is no auxiliary 

information, the quadratic finite population function (1) can be estimated using 
the Horvitz-Thompson type estimator:         
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       (2) 
As it is known, estimator (2) is unbiased but its variance is often relatively 

large.  
The weights ijd  of the estimator HTT̂  can be modified using auxiliary 

variables and calibration methods to obtain estimators with a smaller variance. Let 
)(kx  serve as an auxiliary variable for the study variable )(ky , Jk ,...,2,1= . 

Denote ).,...,,( )()2()1( J
iiii xxx=x  Assume also that the values of all auxiliary 

variables are known only for sampled population elements and that the total 
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Remark 1. The simple summary statistics of the auxiliary variables (e.g. a 

total of )(kx ) are independent of the survey and may be taken from an outside 
source, such as national statistical institutes. The second-order summary statistics 

x
Tφ  are much more complicated and they are not often considered in real surveys. 
Thus, the direct access to such a type of auxiliary information is not very realistic. 
A situation when all the values 1x , 2x ,…, Nx  are known (referred to as complete 
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auxiliary information) is more realistic and useful in practice. The auxiliary 
variables may be taken from the previous complete surveys of the same 
population, various administrative registers and databases. Knowing these 
variables, one can easily calculate 

x
Tφ  and use it for the construction of the 

calibrated estimators.  
We consider here the calibrated estimators of the quadratic finite population 

functions of the following shape  
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where new (calibrated) weights )(cal
ijω  are defined under the following 

conditions: 
The weights )(cal

ijω  satisfy some calibration equation; 

The distance between the weights ijd  and )(cal
ijω  is minimal according to 

some distance measures. 
First, by applying Deville and Särndal's (1992) calibration technique, we 

define the calibrated estimator of quadratic function T: 
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Here jijiqij <∈ ,,, s , are free additional weights. The estimators can be 

modified by choosing .ijq    

Calibration equation (6) shows that the known quadratic function 
x

Tφ  is 

estimated by ∑∑
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, φωφ  without error. In the case of a quite 

high correlation between the variables yφ  and xφ  (where xφ  is defined similarly 
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as yφ ), it is natural to expect that the estimates of the function T  are more 

accurate when the new weights )(DS
ijω  are applied in (4).  

The weights )(DS
ijω  of estimator (4) are given by the following proposition 

that is actually a corollary which follows from the derivation of weights of a 
calibrated estimator of the finite population total (see Deville and Särndal, 1992).   
 

Proposition 1. The weights ,,,,)( jijiDS
ij <∈sω  which minimize the 

distance measure (5) and satisfy equation (6), are defined by the equations: 
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A number of other calibrated estimators may be derived using different 
distance measures and calibration equations. In the following part of this paper, 
we will analyze some cases.    

 
Remark 2. By replacing the values ),( ji yyφ  and ),( ji xxφ  in the 
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kyHTDS tV  reduces to that considered by Singh, Horn, Chowdhury 

and Yu (1999).       

2.2. Penalized calibration estimators 

Let us consider the estimator of quadratic finite population function T of the 
same form (3) and define the weights ,,,,)( jijiFS

ij <∈ sω  of it, using the same 
calibration equation (6), but a different distance measure 
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the analog of which is proposed in the papers of Farrell and Singh (2002) and 
Singh (2003), and called a penalized one. Minimization of this distance measure 
subject to calibration equation (6) leads to the estimator with interesting features 
that can be described by the words of Farrell and Singh (2002, p. 965): “…ϕ  is a 
positive quantity that reflects a penalty to be decided by the investigator based on 
prior knowledge, or the desire for certain levels of efficiency and bias…increasing 
ϕ  results in a decrease in the mean square error of the estimator; unfortunately 
has the side effect of increasing the bias”. 

Denote by FST̂  the new, just defined estimator. Since the function pL  is 

coincident with L  as 0=ϕ , the new group of estimators  
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includes the calibrated estimators DST̂ .   
 
Proposition 2. The weights ,,,,)( jijiFS
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distance measure (7) and satisfy the calibration equation (6), are defined by the 
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Proof. Let us take the distance measure (7) and calibration equation (6), and 
define the Lagrange function 
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Then, multiplying (9) by ),( ji xxφ , summing over the sample *s  elements 
and taking into account calibration equation (6), we get an expression for λ. 
Substituting this expression into (9), we get an equation for )(FS

ijω . 
One can note that penalized calibration is usually used to penalize the 

magnitude of the calibrated weights when a lot of calibration constraints are used 
and the sample is particularly unbalanced so that negative or very large weights 
occur after the calibration procedure (see Guggemos and Tillé, 2010). In this 
paper, we consider penalized calibration in the case of only one calibration 
equation, because we are seeking only to find out if the penalized distance 
measure may be more advantageous than function (5) when the resulting 
estimators are derived using the same calibration equation.   

As it is shown below (see Subsections 3.2 and 4.2), the penalized estimator 

FST̂  has the lower approximate and empirical variances as compared to that of the 

calibrated estimator DST̂ , but according to the results of Farrell and Singh (2002), 

the bias of FST̂  becomes relatively large when the parameter ϕ  is increasing. 
This is not a desirable property that could inspire for the development of an 
improved penalized estimator. 

2.3. Linear combination of estimators 

We consider here a slightly different calibration when the weights of 
estimator (3) are derived by calibrating the original design weights ijd , multiplied 
by some correction factor. The estimator under consideration is    
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and satisfy the new calibration equation 
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Note that the right side of the calibration equation (12) consists of two terms: 
the first one is the true value of 

x
Tφ  multiplied by α−1 , and the second one – the 

estimate of 
x

Tφ  multiplied by the coefficient α . 
 
Proposition 3. Minimization of the distance measure (11) subject to the 

calibration equation (12) leads to the calibrated weights given by  
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The proof is similar to that of Proposition 2. 
 

By inserting the weights (13) into (10), we get the estimator 
 

,1,ˆˆˆˆ =++++= γβαγβα FSDSHTlin TTTT            (14) 

which is a linear combination of HTT̂ , DST̂  and FST̂ .  
 
In expression (14) one can see that α  can be interpreted as a weight of the 

Horvitz-Thompson estimate which is included into the expression of linT̂ . 
Therefore, the absolute value of α  reflects the rate of an influence of the Horvitz-
Thompson estimator on the accuracy of the estimator linT̂ . A similar discussion 
can be provided about the coefficients β  and γ . As an example of a high 
influence of the Horvitz-Thompson estimator can be obtained by choosing a value 
close to one for α  and the values close to zero for the coefficients β  and γ   

( 1=++ γβα ). Then the estimator linT̂  is almost unbiased with a variance 

similar to that of the Horvitz-Thompson estimator. The variance of linT̂  can be 

reduced by choosing a value of α  close to zero, but then the estimator linT̂  may 
be more biased.  

Thus, the statistical properties of linT̂  can be controlled through the values of 
coefficients βα ,  and γ . Consequently, the (optimal) values of βα ,  and γ , 

which minimize the mean square error of the estimator linT̂  subject to an 
unbiasedness constraint, are more preferable than any set of βα ,  and γ .       
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2.4. Some aspects from a practical perspective  

The main purpose of this subsection is to present some possibilities for the 
practical applications of the calibrated estimators of some quadratic functions, 
such as the finite population variance and covariance.  

Note that according to the formulation of our problem, there is only one 
auxiliary variable available when the estimated parameter is a finite population 
variance and two auxiliaries are used in the case of estimation of the finite 
population covariance. Further, for simplicity, we denote the study and auxiliary 
variables, corresponding to the cases of estimation of variance and covariance, by 
y  and a , and by zy,  and ba, .         

By replacing the values ),( ji yyφ  and ),( ji xxφ  in the expressions of the 

estimators FSDSHT TTT ˆ,ˆ,ˆ  and linT̂  with 2)(
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FSDSHT CCC ˆ,ˆ,ˆ  and linĈ . 
The estimators derived can be useful in the following common situation. Let 

us say, we want to estimate a population total 
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In the case of only one known auxiliary variable, say a , one can take the 
simple regression estimator (see e.g. Särndal, Swensson and Wretman, 1992, p. 
272) 
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If the variables y  and a  are well correlated, then estimator (15) is much 
more accurate as compared to the Horvitz-Thompson estimator. For the sample 
designs for which NN =ˆ , regression estimator (15) reduces to 
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estimators of the population covariance ),( ayC  and variance 2
aS , respectively. 

As it is shown in (Plikusas and Pumputis, 2010), regression estimator (16) can be 
improved by replacing the standard estimators ),(ˆ ayC  and 2ˆ

aS  with more 

accurate ones. Thus the calibrated estimators FSDS CC ˆ,ˆ , linĈ  and 2ˆ
DSS , 2ˆ

FSS , 2ˆ
linS  

may be suitable for this purpose assuming that there are available two additional 
known variables yx  and ax  which serve as the auxiliaries for the variables y  
and a , respectively.  

Beside that application of the calibrated estimators of the finite population 
variance and covariance, they can be used also to improve the estimates of other 
finite population parameters, such as a finite population correlation coefficient 

( )zy SSzyСzy ⋅= ),(),(ρ  

which is a ratio of the covariance ),( zyC  and product of the standard 

deviations 2
yy SS =  and 2

zz SS = . The simplest way to estimate the 

correlation coefficient ),( zyρ  is to use the Horvitz–Thompson type estimators 
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,
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zHTS  for estimating covariance ),( zyC  and variances 2
yS , 2

zS , 
respectively, and to take the ratio 
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as the estimator of the correlation coefficient. More accurate estimates may be 
obtained using in (17) the calibrated estimators instead of the corresponding 
Horvitz-Thompson estimators of the covariance ),( zyC  and variances 2

yS  and 
2
zS .  

 



320                                      Dalius Pumputis, Andrius Čiginas: Estimation of quadratic … 

 

 

3. Comparison of estimators 

3.1. Approximate variances 

For practical and theoretical purposes, it is good to have expressions of the 
exact or approximate variances of estimators, or even more, to know which 
estimator has the lowest variance. Since the estimators FSDS TT ˆ,ˆ  and linT̂  are 
nonlinear functions of the Horvitz-Thompson estimators  

∑∑
∈ >

=
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,, yyxx φφφφ , 

 respectively, we will use the Taylor linearization technique to derive 
expressions of the approximate variances. 

 
According to the Result 6.6.1 of (Särndal, Swensson and Wretman, 1992, p. 

235), the approximate variance of DST̂  can be written as     

( ) ( )
xHTHTDS TBTVTAV φ,

ˆˆˆ −= ,              (18) 

where 
2
xyx qq TTB

φφφ=
. 

 
Proposition 4. The approximate variances of calibrated estimators FST̂  and 

linT̂  can be expressed as follows 

( )
( )

( ),ˆ
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22 DSFS TAVTAV
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Proof.  By substituting the weights )(FS
ijω  into (8), we obtain 

( ) ( )( )
( ).ˆ,ˆ,ˆ,ˆ

ˆˆ1ˆ1ˆˆ

,,,

,
1

,
2

,
2

2

2

yxxx

yxxxx

qHTqHTHTHT

qHTqHTHTHTFS

TTTTf

TTTTTT

φφφφ

φφφφφ ϕϕ

=

⋅⋅+−++= −

 

Thus, the estimator FST̂  can be viewed as a nonlinear function depending on 

the Horvitz-Thompson estimators 2,,
ˆ,ˆ,ˆ

xx qHTHTHT TTT
φφ  and 

yxqHTT φφ,
ˆ  that are 

unbiased, i.e.  

yxyxxxxx qqHTqqHTHTHT TTETTETTETTE φφφφφφφφ ==== ,,,
ˆ,ˆ,ˆ,ˆ

22 . 

 Using the Taylor linearization method, we derive a linear approximation of 
the function FST̂ .  
The expansion of this estimator in a Taylor series up to the first order terms at the 
point ( ) ( )

yxxxyxxx qqqHTqHTHTHT TTTTTTTT φφφφφφφφ ϕ ,,)1(,ˆ,ˆ,ˆ,ˆ
22

2
,,, +=  is 

( )[ ]
xx

TTBTT HTHT
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FS φφ ϕ
ϕ

)1(ˆˆ
1

1ˆ 2
,2

)( +−−
+

= .               (20) 

The approximate variance of the estimator FST̂  is equal to the exact variance 

of )(ˆ linear
FST :  

( ) ( ))(ˆˆ linear
FSFS TVTAV = . 

By calculating the variance ( ))(ˆ linear
FSTV  and taking into account equality (18), 

we get the expression of ( )FSTAV ˆ .     

The approximate variance of the estimator linT̂  is obtained similarly, using an 

expansion of linT̂  in a Taylor series at the point 
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
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Remark 3. The estimator of the variance of the estimator DST̂  can be defined 

as follows. First, we write 
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where 
xy BHTT φφ −,

ˆ  is the Horvitz-Thompson estimator of the total of the 

variable xy Bφφ −  defined on the population *U  and taking values ,11 xy Bφφ −  

**...,,22 xNyNxy BB φφφφ −− . Here ),( jiym yyφφ = , ),( jixm xxφφ =  for a pair 

of indices ).(ijm =  Then, using Result 2.8.1 from (Särndal, Swensson and 
Wretman, 1992, p. 43), we get the more convenient expression of the approximate 
variance  
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where *
mπ  and *

rmπ  are the first and second order inclusion probabilities over 

the synthetic population *U . In fact, *
mπ  and *

rmπ  coincide with the second and 

fourth order inclusion probabilities over the population U : ijm ππ =*  and 

ijklrm ππ =*  for )(ijm =  and )(klr = , where ijπ  and ijklπ  are assumed to be 
strictly positive (see Subsection 2.1).  

 As the estimator of the variances ( )DSTV ˆ  and ( )
xy BHTTV φφ −,

ˆ , we take 
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where 2,,
ˆˆˆ

xyx qHTqHT TTB
φφφ= . 

The estimators of the variances ( )FSTV ˆ  and ( )linTV ˆ  can be derived in a 
similar way. 

Alternatively, the replication methods, such as the jackknife, bootstrap and 
balanced halfsamples (see e.g. Särndal, Swensson and Wretman, 1992), can be 
used for estimating the variances of the estimators DST̂ , FST̂  and linT̂ . 

3.2. Comparison of variances 

Next, we will compare the variances of estimators by analyzing their 
differences. Let us start from the difference ( ) ( )HTDS TVTAV ˆˆ − . Using equality 
(18), it can be easily expressed as follows 

( ) ( ) ( ) ( )
xx HTHTHTHTDS TTBCTVBTVTAV φφ ,,

2 ˆ,ˆ2ˆˆˆ −=− . 



STATISTICS IN TRANSITION-new series, October 2011 

 

323 

Thus, ( ) ( )HTDS TVTAV ˆˆ ≤ , if 

( ) ( ) ( )
( ) ( ) ( ) ,0,ˆˆ

2
1ˆ,ˆ

,0,ˆˆ
2
1ˆ,ˆ

as

oras

,,

,,

<≤
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HTHTHTHT

HTHTHTHT

xx

xx

φφ

φφ

ρ

ρ
         (21) 

where ( )
xHTHT TT φρ ,

ˆ,ˆ  is the correlation coefficient between HTT̂  and 
xHTT φ,

ˆ .     

A negative value of 2
xyx qq TTB

φφφ=  may occur if the range of the function 

),( ••φ  is R, e.g. when T  is a covariance between two study variables.  
In the case of simple random sampling without replacement, inequalities (21) 

reduce to 
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2
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where ( )xy φφρ ,  is the correlation coefficient between the variables 

*,...,,: 21 yNyyy φφφφ  and *,...,,: 21 xNxxx φφφφ , defined on the population *U . The 

notation 2
y

Sφ , 2
x

Sφ  is used to denote variances of the variables yφ  and xφ , 

respectively.      
Comparison of calibrated and penalized calibration estimators. Equality 

(19) shows that the approximate variance of the penalized estimator FST̂  is lower 

than that of the calibrated estimator DST̂ . Even more, according to the lines of 

Farrell and Singh (2002), the approximate mean square of the estimator FST̂  is 
minimized when 

( ) ( )22 ˆ
x

BTTTAV DS φϕ −= ,             (22) 

and it equals  

( ) ( )DSFS TAVTAMSE ˆ
1

1ˆ
2min ϕ+

= . 

One can easily verify this equality using the same expansion (20) of FST̂  in a 
Taylor series.  

Comparison of the calibrated estimators DST̂  and linT̂ . First, we derive the 
optimal values of coefficients α  and β  which minimize the approximate 
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variance of the estimator linT̂  under the condition ( ) TTAE lin =ˆ  that indicates the 
approximate unbiasedness of the estimator. Denote the optimal values of α  and 
β   by minα  and minβ , respectively.  
Let us define the Lagrange function 

( ) ( )( )TTAETAV linlin −−=Λ ˆˆ ** λ . 

By solving the equations 

0
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, 0
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β
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we find  

( ) ( )
( )

( ) ( )
( ) .ˆ

ˆ,ˆˆˆ

,ˆ

ˆ,ˆˆˆ

,
2

,
min

,
2

,
min

x

x

x

x

HT

HTHTHTHT

HT

HTHTHTDS

TVB

TTBTCTV

TVB

TTBTCTAV

φ

φ

φ

φ

β

α

−−
=

−−
=

           (23) 

The second derivatives test for critical points shows that the values minα  and 

minβ  satisfy the condition of the minimal approximate variance which is equal to 
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where ( )HTHTHT TTBT
x

ˆ,ˆˆ
,φρ −  is the correlation coefficient between the 

estimators 
xxy HTHTBHT TBTT φφφ ,,

ˆˆˆ −=−  and HTT̂ .    
 The difference 

( ) ( ) ( ) ( )( )
( )

x

x
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HTHTHTDS
DSlin TVB
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φ

φ

,
2

2

,
min ˆ

ˆ,ˆˆˆ
ˆˆ −−

−=−  

is negative or is equal to zero. It means that the approximate variance of the 
estimator linT̂  is not higher than that of the calibrated estimator DST̂ .   
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Note that 1minmin =+ βα . Therefore, under such a setting of optimal 

coefficients, the estimator FST̂  is not included into the linear combination (14), 

and, consequently, DSHTlin TTT ˆˆˆ
minmin βα += .        

Comparison of the calibrated estimators FST̂  and linT̂ . The difference 

between the approximate variances ( )linTAV ˆ
min  and ( )FSTAV ˆ   can be expressed 

as follows: 
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the inequality ( ) ( ) 0ˆˆ
min ≤− FSlin TAVTAV  is equivalent to that  
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Under condition (24) the approximate variance of the estimator linT̂  is not 

higher than that of the penalized calibration estimator FST̂ .  
In the case of simple random sampling without replacement, inequality (24) 

reduces to 

( ) 222

22
2

)1(
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S
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φ
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4. Simulation study 

4.1. Simulation setup 

The simulation study is performed to observe the efficiency of the Horvitz-
Thompson type and calibrated estimators of the finite population variance and 
covariance. For that purpose, we consider a subset (of size 300) of the real 
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population from the Lithuanian Enterprise Survey. The study variables y  and z  
are the profit of an enterprise in a different time period, whereas the values of 
auxiliary variables a  and b  are the numbers of employees of the enterprise at the 
same periods. The correlation coefficients between the study and auxiliary 
variables are 81.0),( =ayρ , 90.0),( =bzρ , 63.0),( =byρ  
and 60.0),( =azρ . The relationship between the variables yφ  and xφ  is also 

strong enough, because 64.0),( =xy φφρ  (when the estimated parameter is a 

finite population variance) and 88.0),( =xy φφρ  (in the case of estimation of a 
finite population covariance).  

The population is stratified into two strata by the size of the survey variable 
y . The stratified simple random sample is used as a sample design. The sample 

size 100=n  is allocated to strata, using Neyman’s optimal allocation. 
00010=M  samples were drawn and for each of them the estimators 

222 ˆ,ˆ,ˆ
FSDSHT SSS  and 2ˆ

linS   of the finite population variance 2
yS , and the estimators 

FSDSHT CCC ˆ,ˆ,ˆ  and linĈ  of the finite population covariance ),( zyC  were 
computed.  

The uniform weights 1=ijq  were used for the calibrated estimators. A value 
of the parameter ϕ  was calculated using formula (22). The coefficients α  and 

β  that appear in the expression of linT̂ , were defined in the following way.  We 
give here an explanation in the general case, where the parameter T  is any 
quadratic function. First, we write 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) .ˆ1ˆˆˆ
,ˆ,ˆ12ˆ,ˆ12

ˆ,ˆ2ˆ1ˆˆˆ 222
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TETETETE

TTCTTC

TTCTVTVTVTV

βαβα

βαββαα

αββαβα

−−++=

−−+−−+

+−−++=

        (25) 

Then, by replacing in (25) true values of variances ( )HTTV ˆ , ( )DSTV ˆ , ( )FSTV ˆ , 

expectations HTTE ˆ , DSTE ˆ , FSTE ˆ , and covariances between the estimators with 
the empirical ones, we minimize the empirical mean square error 

( ) ( ) ( )2ˆˆˆ TTETVTMSE linemplinemplinemp −+=  subject to the constraint TTE linemp =ˆ . 

The solution of this optimization problem ( min
~α , min

~β ) is used in (14) for 
calculating estimates. This choice of the coefficients α  and β  often leads to a 

little bit more accurate estimates of linT̂  as compared to those which are computed 

using minα  and minβ , defined by (23). Thus, using our data, we obtain 
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30.0~
min =α , 81.0~

min =β  ( 11.0~~1~
minminmin −=−−= βαγ ), if the parameter T  

is a population variance, and the values 09.0~
min =α , 69.0~

min =β  ( 22.0~
min =γ ) 

were used in the case of estimation of a finite population covariance.       

4.2. Simulation results 

The empirical relative bias ( RB ), variance (V ), mean square error ( MSE ), 
and the coefficient of variation ( cv ) have been calculated for each estimator (see 
Tables 1 and 2). For any estimator θ̂  of the finite population parameter θ , all 
these characteristics of accuracy are defined by the following equations: 
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where iθ̂  is the estimate of parameter θ , computed using data of the i th 
simulated sample.  

Table 1. The main estimated characteristics of accuracy for the estimators of the 
finite population variance   

Estimator RB  1710−×V  1710−×MSE  cv  
2ˆ
HTS  -0.0039 5.27 5.40 0.0991 
2ˆ
DSS  0.0070 4.11 4.13 0.0855 

]09.0[ˆ 22 =ϕFSS  -0.0053 3.95 3.96 0.0849 
2ˆ
linS  0.0037 3.64 3.64 0.0808 

 

Table 2. The main estimated characteristics of accuracy for the estimators of the 
finite population covariance 

Estimator RB  1310−×V  1310−×MSE  cv  

HTĈ  -0.0015 11.50 13.82 0.1752 

DSĈ  0.0115 3.61 3.67 0.0899 

]10.0[ˆ 2 =ϕFSC  -0.0066 3.32 3.34 0.0878 

linĈ  0.0010 3.27 3.27 0.0864 
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Due to quite a high correlation between the variables yφ  and xφ , the 
calibrated estimators of population variance and covariance are much more 
accurate compared to the Horvitz-Thompson estimators of the same parameters. 
More significant differences between the characteristics of accuracy of the 
calibrated and Horvitz-Thompson estimators are observed in the case of 
estimation of the population covariance (see Table 2), where the coefficient of 
variation of the calibrated estimators DSĈ , FSĈ , linĈ   is approximately two times 
lower than that of the only design-based estimator HTĈ . The variances and mean 
square errors differ about four times. 

The estimators 2ˆ
linS  and linĈ   which are the linear combinations of the 

estimators 2ˆ
HTS , 2ˆ

DSS , 2ˆ
FSS  and HTĈ , DSĈ , FSĈ , respectively, outperform all the 

estimators from the corresponding group. The empirical analogs of the terms 
included into (24) do not satisfy this inequality. Thus, it seems that the 
approximate variances of the estimators 2ˆ

linS  and linĈ  are higher than that of the 
corresponding penalized estimators 2ˆ

FSS  and FSĈ , although the behaviour of 
empirical variances is contrary. The reason for that could be due to the 
linearization when only the first order Taylor approximations of the estimators are 
used for calculating approximate variances, and the remainder terms of a Taylor 
expansion are neglected.    

Comparing the penalized calibration estimators 2ˆ
FSS  and FSĈ  to the 

corresponding calibrated estimators 2ˆ
DSS  and DSĈ , we note that not only the 

variance, but also the mean square error of the penalized estimators is lower than 
the variance of the calibrated estimators, as it is in the case of the approximate 
variance and mean square error (see Section 3).    

5. Conclusion 

Some of the estimators of finite population parameters can be treated as they 
are of quite a good quality in the sense of a small variance or small bias, but other 
characteristics of accuracy (e.g. mean square error) may not satisfy the survey 
statisticians and practitioners. In our case, the Horvitz-Thompson estimator HTT̂  
is unbiased, but its variance may be relatively large. The calibrated estimator DST̂  
is preferable because of its lower variance (especially if the variables yφ  and xφ  
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are well correlated), although it is slightly biased. Of course, the small bias has a 
minor impact on the results. The penalized calibration estimator FST̂  has to be 
used carefully because an increase in the penalty (ϕ ) may have a negative impact 
on the bias. The best properties of the estimators HTT̂ , DST̂  and FST̂  are reflected 
by that of the estimator linT̂ . For some sets of coefficients α , β  and γ , it is 
unbiased and may have the lowest variance among the estimators discussed in this 
paper.   
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