Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


System messages
  • Session was invalidated!
  • Session was invalidated!
2011 | 12 | 1 | 139-156

Article title

Remarks About The Generalizations of The Fisher Index

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
In Fisher’s index theory the crossing of formulas and weights was regarded as the most pertinent method to derive an “ideal” index formula. The well known Fisher index is a geometric mean of Laspeyres and Paasche indexes and it satisfies most of the postulates coming from the axiomatic index theory. In this paper we consider the generalized Fisher index. The purpose of the study is to propose and discuss some more general class of indexes including the generalized Fisher index.

Year

Volume

12

Issue

1

Pages

139-156

Physical description

Contributors

author
  • University of Lodz

References

  • BALK M. (1995). Axiomatic Price Index Theory: A Survey, International Statistical Review 63, 69-95.
  • BIAŁEK J. (2010). The generalized formula for aggregative price indexes, Statistics in Transiotion – new series, vol. 11, 145-154, GUS, Warszawa.
  • BIAŁEK J. (2011). Proposition of the general formula for price indices, Communications in Statistics: Theory and Methods (in press).
  • DIEWERT W. (1978). Superlative Index Numbers and Consistency in Aggregation, „Econometrica” 46, 883-900.
  • DOMAŃSKI CZ. (2001). Metody statystyczne. Teoria i zadania, Wydawnictwo Uniwersytetu Łódzkiego, Lodz, Poland.
  • DUMAGAN J. (2002). Comparing the superlative Törnqvist and Fisher ideal indexes, Economic Letters 76, 251-258.
  • EICHHORN W., VOELLER J. (1976). Theory of the Price Index. Fisher’s Test Approach and Generalizations, Berlin, Heidelberg, New York: Springer-Verlag.
  • FISHER I. (1922). The Making of Index Numbers, Boston: Houghton Mifflin.
  • FISHER F.M. (1972). The Economic Theory of Price Indices, Academic Press, New York.
  • MARTINI M. (1992). A General Function of Axiomatic Index Numbers, Journal of the Italian Statistics Society, 1 (3), 359-376.
  • KÖVES P. (1983). Index Theory and Economic Reality, Budapest: Akad. Kiad.
  • OLT B. (1996). Axiom und Struktur in der statistischen Preisindextheorie, Frankfurt, Peter Lang.
  • MOUTLON B., SESKIN E. (1999). A preview of the 1999 comprehensive revision of the national income an product accounts , Survey of Current Business No. 79.
  • SHELL K. (1998). Economics Analysis of Production Price Indexes, Cambridge University Press, UK.
  • TÖRNQVIST L. (1936). The Bank of Finland’s consumption price index, Bank of Finland Monthly Bulletin 10, 1-8.
  • VON DER LIPPE P. (2007). Index Theory and Price Statistics, Peter Lang, Frankfurt, Germany.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.desklight-9125ae52-3edb-4146-916b-2da1daa03c80
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.