Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Journal

2018 | 4 | 10 | 3006-3012

Article title

Characteristics of TiO2 Compact Layer prepared for DSSC application

Content

Title variants

Languages of publication

EN

Abstracts

EN
Dye-sensitized solar cells (DSSCs) offer an economically reliable and suitable alternative in moderating the challenges presented by the existing convectional photovoltaic cells. However, the efficiency of dye-sensitized solar cells has remained relatively low. For this reason, this research was aimed at studying the characteristics of TiO2 compact layer that can be applied in DSSCs as a way of improving efficiency. To achieve this, TiO2 compact layer was deposited on a conductive glass substrate by using Holmarc’s Spray Pyrolysis system, using Ultrasonic Spray Head and spraying in the vertical geometry. X-ray Diffraction studies revealed that TiO2 compact layer was of anatase phase and had tetragonal crystalline structure. Raman spectroscopy showed that the most intense peak appeared at 142 cm-1 due to the external vibration of the anatase structure. Hall Effect studies revealed that TiO2 compact layer has a high density of charge carriers’ value of 1.25 × 1019 cm-3 hence it can be used in DSSC applications.

Journal

Year

Volume

4

Issue

10

Pages

3006-3012

Physical description

Dates

published
2018-10-31

Contributors

  • Kenyatta University
author
  • Kenyatta University
author
  • University of Nairobi
author
  • Kenyatta University
  • Kenyatta University
  • Kenyatta University

References

  • Panchal, H., Shah, K. & Padharia, M., (2015). Dye Sensitized Solar Cells - An Alternative to Silicon Based Photovoltaic Technology. Retrieved from https://bit.ly/2NeLy3H
  • Lewis, N. S., & Nocera, D. G. (2006). Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences, 103(43), 15729–15735. doi: 10.1073/pnas.0603395103
  • Omata, K., Kuwahara, S., Katayama, K., Qing, S., Toyoda, T., Lee, K.-M., & Wu, C.-G. (2015). The cause for the low efficiency of dye sensitized solar cells with a combination of ruthenium dyes and cobalt redox. Physical Chemistry Chemical Physics, 17(15), 10170–10175. doi: 10.1039/c4cp05981f
  • Sengupta, D., Das, P., Mondal, B., & Mukherjee, K. (2016). Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application – A review. Renewable and Sustainable Energy Reviews, 60, 356–376. doi: 10.1016/j.rser.2016.01.104
  • Kaur, R., Kim, K.-H., Paul, A. K., & Deep, A. (2016). Recent advances in the photovoltaic applications of coordination polymers and metal organic frameworks. Journal of Materials Chemistry A, 4(11), 3991–4002. doi: 10.1039/c5ta09668e
  • Antić, Ž., Krsmanović, R. M., Nikolić, M. G., Marinović-Cincović, M., Mitrić, M., Polizzi, S., & Dramićanin, M. D. (2012). Multisite luminescence of rare earth doped TiO2 anatase nanoparticles. Materials Chemistry and Physics, 135(2-3), 1064–1069. doi: 10.1016/j.matchemphys.2012.06.016
  • Weirich, T. ., Winterer, M., Seifried, S., Hahn, H., & Fuess, H. (2000). Rietveld analysis of electron powder diffraction data from nanocrystalline anatase, TiO2. Ultramicroscopy, 81(3-4), 263–270. doi: 10.1016/s0304-3991(99)00189-8
  • Thirugnanasambandan, T., & Marimuthu, A. (2013). Titanium dioxide (TiO2) Nanoparticles - XRD Analyses – An Insight. Retrieved from https://www.researchgate.net/publication/244990066_Titanium_dioxide_TiO2_Nanoparticles_XRD_Analyses_An_Insight
  • Wolfrom, R. (2012). Specifics on surface area. Retrieved from https://www.particletechlabs.com/images/articles/specifics_on_surface_area.pdf
  • Gupta, S. K., Desai, R., Jha, P. K., Sahoo, S., & Kirin, D. (2009, September 15). Titanium dioxide synthesized using titanium chloride: size effect study using Raman spectroscopy and photoluminescence. Journal of Raman Spectroscopy. doi: 10.1002/jrs.2427
  • Nguu, J., Aduda, B., Nyongesa, F., Musembi, R., Njogu, S., & Mwathe, P. (2015). Electrical Characterization of Nano-TiO2/Nb2O5 Composite Thin Films Deposited Using Electrophoretic Deposition Technique. International Journal of Innovative Research in Advanced Engineering, 2, 192–198.
  • Nowotny, M. K., Sheppard, L. R., Bak, T., & Nowotny, J. (2008). Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts. The Journal of Physical Chemistry C, 112(14), 5275–5300. doi: 10.1021/jp077275m
  • Tang, H., Levy, F. (1995). Electronic properties of anatase TiO2 investigated by electrical and optical measurements on single crystals and thin films. Retrieved from https://infoscience.epfl.ch/record/31789
  • Daniyan, A. A., Umoru, L. E., Fasasi, A. Y., Borode, J. O., Oluwasegun, K. M., & Olusunle, S. O. O. (2014). Electrical Properties of Nano-TiO2 Thin Film Using Spin Coating Method. Journal of Minerals and Materials Characterization and Engineering, 02(01), 15–20. doi: 10.4236/jmmce.2014.21003

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.desklight-b10c215b-380f-4243-aafd-f3b2ce621d2c
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.