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Abstract: Classification models enable optimal actions to be taken at every stage of the customer’s 
lifecycle. A circumstance affecting both the model building process and the assessment of their 
discriminatory power is the unbalanced distribution of the dichotomous dependent variable. The article 
focuses on the question of reliable assessment of the goodness of fit. The first part of the article reviews 
the measures of predictive power and then assesses the impact of the distribution of the dependent 
variable on the selected measures of goodness of fit. As a result, the high sensitivity of a number of 
measures such as lift, accuracy (ACC), or F-Score was observed. The sensitivity of MCC and Kappa 
Cohen’s measurements was also observed. Sensitivity (SENS) and specificity (SPEC), Youden’s index 
and measures based on ROC curves showed no such sensitivity. The conclusions obtained may allow the 
avoidance of misjudging the predictive power of models built for both learning and business practice.

Keywords: classification models, goodness of fit, unbalanced datasets, customer churn analysis.

1. Introduction

Classification models are analytical tools commonly used in customer relationship 
management. They are used, among others, to optimize sales campaigns and support 
retention actions (churn models). The customer database, which is the foundation 
for building churn models, regardless of the industry, has a significant advantage 
of loyal customers. This circumstance may cause problems in the construction 
and evaluation of the model, especially if the measure used to assess its quality is 
improperly selected. This paper reviews the goodness of fit measures of classification 
models and analyses the sensitivity of selected measures to unequal proportions of 
loyal and disloyal persons presented in the analysed dataset.
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The assessment of the predictive power of a model (validation) is one of the 
most important stages in the lifecycle of a classification model. Validation is carried 
out directly after the model construction process is completed, either on the basis of 
a test sample or using more advanced techniques based on multiple (re)sampling1. 
The assessment at this stage of the model lifecycle is called ex-ante validation.  
Its main tasks include:
• comparing competing models built using different methods or using a different 

set of hyperparameters2 and choosing the model that best meets business criteria 
(not necessarily with the highest fit),

• confirmation that the best model is of adequate quality and can be implemented 
in an IT environment.
The second moment of the model lifecycle, when the validation becomes 

necessary, is the period after the implementation of the model. It is performed 
regularly on the basis of the current customer dataset. The assessment at this stage 
of the model life cycle is called ex-post validation. Its main objective is to prove 
that the implemented model has not lost its predictive power and can still be used. 
Contradictory conclusions may lead to the decision to rebuild the existing model, 
which in fact closes the model lifecycle. A comprehensive selection of the goodness 
of fit measures (performance measures) is presented below. They can be used for 
both ex-ante and ex-post validation. 

Choosing the right performance measure is a key aspect of the validation phase. 
Understanding the nature of such measures and their sensitivity to unbalanced 
proportions of the classes of dependent variables may be the key factor which would 
enable fitting useful churn models.

2. Classification of the goodness of fit measures

After the learning process is completed, the churn models enable the assessment of 
customers’ willingness to move away. This inclination is expressed as a numerical 
value between 0 and 1 and can be treated as an assessment of the probability 
(a posteriori) of the customer’s leaving when:
• the distribution of classes of the dependent variable in the learning set was 

consistent with the observed percentage of disloyal persons (a priori probability);
• the model was built using a method that preserves the a priori probability of the 

event being modelled (e.g. logistic regression, naive Bayesian method).

1 Such as bootstrap or v-fold cross validation.
2 Hyperparameters are algorithm settings that affect how a method works. They are set by the 

researcher, unlike the parameters set by the algorithm during the learning process. For neural networks, 
examples of hyperparameters are: the number of network layers, the type of activation function, or the 
number of neurons in a given layer. For classification and regression trees these will be the maximum 
depth of the tree or the misclassification costs.
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Most of the measures of predictive power, however, treat the obtained assessment 
of the tendency to leave as a rank3 variable. The model’s answer is then subjected 
to discretization. For the received results a cut-off point is introduced, which allows 
to obtain a binary response of the model which gives information regarding the 
classification of a given customer into the ‘loyal’ or ‘disloyal’ class.

The above distinction allows the division of the predictive power measures into 
three groups [Ferri et al. 2009; Berrar 2019]:
• based on the misclassification matrix (basic and complex),
• assuming that the model’s responses rank with a tendency to leave,
• based on a probabilistic interpretation of the model’s response.

In the case of churn models, the measures belonging to the first two groups are 
most often used. Measures based on the probabilistic interpretation of the model 
response are less frequently used in the context of churn models and will not be 
subject to evaluation in this study.

3. Measures calculated on the basis of misclassification matrices

Popular and simple measures allowing the assessment of the quality of the classifier 
are measures based on the misclassification matrix (confusion matrix). This matrix 
compares the actual state with the forecast obtained on the basis of the model. In this 
study, a convention was adopted with the value ‘1’ symbolizing the event occurrence 
assigned to disloyal clients, while ‘0’ (non-event) was assigned to loyal clients.

Table 1. Misclassification matrix

Observed 1  
(disloyal)

Observed 0  
(loyal) Total

Expected 1 
(disloyal) TP FP PP

Expected 0
(loyal) FN TN PN

Total RP RN N

Source: own study.

The individual fields in the table indicate accordingly:
• TP (True Positives) – the number of truly positive cases4, i.e. disloyal customers 

who were correctly identified by the model as disloyal;

3 The resulting values can be calibrated to give a probabilistic interpretation. For details, see 
[Kuhn, Johnson 2013].

4 The word ‘positive’ used in this context does not necessarily mean the condition desired by the 
researcher. For example, a positive test for the disease is not associated with the outcome desired by 
the patient.
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• FN (False Negatives) – the number of disloyal customers mistakenly classified 
as loyal customers;

• FP (False Positives) – the number of loyal customers who were incorrectly 
classified by the model as disloyal;

• TN (True Negatives) – the number of loyal customers who have been correctly 
classified by the model as loyal.

The marginal values can be interpreted as:
• RP (Real Positives) – the number of disloyal clients,
• RN (Real Negatives) – the number of loyal customers,
• PP (Predicted Positives) – persons indicated by the model as disloyal,
• PN (Predicted Negatives) – persons indicated by the model as loyal,
• N – the number of all clients.

Table 1 is the basis for defining many quality measures of the classifier. Table 2 
presents an overview of the measures used in the model evaluation process.

Table 2. Overview of model performance measures for misclassifications matrices

Name Formula Interpretation

1 2 3

Accuracy (ACC) 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇

Percentage of cases correctly classified by 
the model.

Error rate (ER)
𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇

𝑇𝑇
Percentage of cases misclassified by the 
model.

Sensitivity (SENS, Recall, 
TPR, True Positive Rate)

𝑇𝑇𝑇𝑇
𝑅𝑅𝑇𝑇

Percentage of positive cases correctly 
classified by the model.

Specificity (SPEC, TNR, 
True Negative Rate)

𝑇𝑇𝑇𝑇
𝑅𝑅𝑇𝑇

Percentage of negative cases correctly 
classified by the model.

Balanced accuracy 
(BACC)

𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆 + 𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆
2

Arithmetic mean of sensitivity and 
specificity.

Positive predictive value 
(PPV, Precision)

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇

Percentage of positive cases in the group 
considered positive by the model. 

Negative predictive value 
(NPV)

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇

Percentage of negative cases in the group 
considered negative by the model.

False positive rate (FPR, 
Fallout)

𝐹𝐹𝑇𝑇
𝑅𝑅𝑇𝑇

Percentage of positive cases misclassified 
by the model (Type I error).

False negative rate (FNR)
𝐹𝐹𝑇𝑇
𝑅𝑅𝑇𝑇

Percentage of negative cases misclassified 
by the model (Type II error).

+Likelihood ratio (LR (+)) 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆
1 − 𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆 =

𝑇𝑇𝑇𝑇𝑅𝑅
𝐹𝐹𝑇𝑇𝑅𝑅

How much the chance of a real positive 
state increases, when the model predicts 
a positive state.
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1 2 3

-Likelihood ratio (LR (-))
1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

=
𝐹𝐹𝑆𝑆𝐹𝐹
𝑇𝑇𝑆𝑆𝐹𝐹

How much the chance of a real positive 
state decreases, when the model 
predicts a negative state.

Youden's J index 
(Informedness) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 1

Synthetic measure of classification 
quality. The value 0 indicates that there 
is no predictive power of the classifier, 
1 indicates ideal classification.

F- score (F-measure) 2 ∗
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝑆𝑆𝑆𝑆𝑃𝑃
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑆𝑆𝑃𝑃

Synthetic measure of classification 
quality. The value 0 indicates that there 
is no predictive power of the classifier, 
1 indicates ideal classification. 
Harmonic mean of the SENS and PPV 
indices*.

G-mean (Fowlkes-
-Mallows index) √𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝑆𝑆𝑆𝑆𝑃𝑃

Geometric mean of SENS and PPV.

Lift

𝑆𝑆𝑆𝑆𝑃𝑃
𝐹𝐹𝑆𝑆
𝑆𝑆

or

𝑆𝑆𝑆𝑆𝑃𝑃
𝐹𝐹𝑆𝑆
𝑆𝑆

Information about the improvement of 
the classification quality in relation to 
the random selection of cases. It is the 
quotient of the percentage of positive 
cases in the group considered positive 
by the model (PPV) by the positive 
(disloyal) percentage in the whole data 
set. It can also be calculated for the 
negative class (second formula).

Matthews correlation 
coefficient (MCC)

𝑇𝑇𝑆𝑆 ∗ 𝑇𝑇𝑆𝑆 − 𝐹𝐹𝑆𝑆 ∗ 𝐹𝐹𝑆𝑆
√𝑆𝑆𝑆𝑆 ∗ 𝐹𝐹𝑆𝑆 ∗ 𝐹𝐹𝑆𝑆 ∗ 𝑆𝑆𝑆𝑆

It takes into account all of the 
components of the misclassification 
matrix. Value 0 indicates that there is 
no predictive power, value 1 indicates 
ideal classification.

Markedness (MK) 𝑆𝑆𝑆𝑆𝑃𝑃 + 𝑆𝑆𝑆𝑆𝑃𝑃 − 1

Synthetic measure of classification 
quality. Value 1 indicates the ideal 
classification. Sensitive to an 
unbalanced distribution of positive and 
negative cases.

Jaccard's index
𝑇𝑇𝑆𝑆

𝑇𝑇𝑆𝑆 + 𝐹𝐹𝑆𝑆 + 𝐹𝐹𝑆𝑆

Ignores true negative (TN) cases. 
Sensitive to the occurrence of an 
unbalanced distribution of positive and 
negative cases.

*  In the presented form, the formula assumes the contribution of SENS and PPV indicators in 
equal proportions.

Source: own study based on [Berrar 2019; Kuhn, Johnson 2013; Łapczyński 2016; Powers 2011;  
Tharwat 2018].
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4. Quality measures and a posteriori probability

It should be noted that the calculation of the above measures for the classification 
model is possible only if the researcher determines the cut-off point5 of the model 
outcome (a posteriori probability). In many analytical programs (Statistica,  
IBM SPSS, Rapid Miner), this point is automatically set at 0.5, which is not necessarily 
the optimal value from the point of view of the modelling goal. Depending on the 
proposed cut-off point, the values of individual measures will change. For each of 
the above measures, it is possible to create a graph of their values depending on the 
a posteriori probability value of the analysed model.

Apart from the cut-off point, another factor that may affect the assessment of the 
predictive power value of the model is the distribution of the dependent variable in 
the analysed dataset. The impact of both of the above factors was illustrated on the 
example of a company6 offering its services on the market of services addressed to 
the retail client and small enterprises. The company dataset available for analysis 
contained about 30% of cases of disloyal customers. The data set contained several 
dozen predictors describing both the demographic characteristics of customers, the 
characteristics of their activity (the frequency and range of purchases made) as well 
as complaints and contacts with the hotline. The dependent variable was determined 
on the basis of the time elapsed since the last purchase. The model was built for 
the segment of individual customers. Before building the model, the dataset was 
divided into a learning set containing 70% of observations and a test set containing 
the remaining cases. The model was built on the basis of a learning set using logistic 
regression due to its relatively low sensitivity to the unequal proportions of the 
dependent variable classes. The issue of feature extraction, feature selection and 
determining the optimal values of hyperparameters is beyond the scope of this study.

After the model was built, five additional datasets were prepared on the basis 
of the test set. Those datasets were prepared by increasing the size of one of the 
analysed classes (oversampling). The prepared datasets contained, respectively:
• 5% of disloyal cases,
• 25% of disloyal cases,
• 50% of disloyal cases,
• 75% of disloyal cases,
• 95% of disloyal cases.

The next part of the paper presents illustrations of selected goodness of fit 
measures (assuming that the model responses should be treated as a ranked variable) 
in the cross-section of model outcomes for all five prepared sets.

5 Finding an optimal cut-off point is a separate issue which will not be the subject of this paper.
6 For reasons of confidentiality, more detailed information cannot be disclosed. The actual per-

centage of disloyal people was changed using down-sampling techniques.
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4.1. Accuracy (ACC) and Cohen’s Kappa coefficient

Accuracy is one of the most intuitive measures of model quality. It presents the 
percentage of correctly classified cases in relation to all cases. In the case of churn 
models this is a low informative measure because of its sensitivity to unequal 
proportions of loyal and disloyal cases in the dataset. This circumstance is a common 
phenomenon in models of this type. Below are the graphs of accuracy for the same 
model for the five versions of the test sample described above.

Fig. 1. Accuracy (ACC) in relation to the a posteriori probability of a positive class

Source: own calculations.

Based on the graph (Figure 1), it can be seen that for a cut-off point of 0.3, 
representing the proportion of disloyal customers in the learning set, the ACC value 
is approximately 0.68 for all datasets. For a balanced set, the highest level of the 
ACC – 0.71 model reaches for the cut-off point around 0.26. If the cut-off point 
were set to 0 (with the assumption that all customers are loyal), then the ACC value 
would still be 0.5, although the model would be useless in practice. In the case of 
extremely unbalanced models, the ACC value reaches its maximum of 0.95 and has 
no predictive power simultaneously. Therefore the ACC measure may be used by the 
investigator to select the best model (the best model is the one with the highest ACC 
value), but it does not allow it to assess whether a given model is of good quality 
(0.95 may mean both an almost perfect model and a useless model). To reduce the 
undesirable properties of the ACC measure, it can be compared with a threshold 
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value equal to the percentage of cases of the more frequent class of the dependent 
variable. Only ACC models above this threshold are considered potentially valuable.

An alternative is to use a measure that in its construction takes into account the 
distribution of dependent variable classes in the analysed sample. An example of 
such a measure is Cohen’s Kappa coefficient, originally designed to assess inter-rate 
reliability.

Fig. 2. Cohen’s Kappa in relation to the a posteriori probability of a positive class

Source: own calculations.

This measure takes into account the level of accuracy that could be obtained 
by chance. Cohen’s Kappa is calculated according to the following formula [Kuhn, 
Johnson 2013, p. 255]:

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 = 𝑂𝑂−𝐸𝐸
1−𝐸𝐸

, 

where O is the observed ACC value and E is the expected ACC value for the naive 
model calculated on the basis of the marginal sum of the confusion matrix. This 
statistic takes values from -1 to 1. Value 1 gives information about the ideal model 
(ideal compliance of predictions with reality), and value 0 gives information about 
the random model. Negative values indicate a result worse than the random model. As 
shown in Figure 2, despite an adjustment by the expected value of E, Cohen’s Kappa 
is a measure sensitive to the unequal proportions of the classes of the dependent 
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variable, which affect both the value of this coefficient and the optimal cut-off point. 
It should be noted that unlike ACC, Cohen’s Kappa takes higher values in sets with 
balanced proportions of classes of the dependent variable.

4.2. Sensitivity (SENS), specificity (SPEC) and ROC curve

The next measures are sensitivity (SENS) and specificity (SPEC). SENS indicates 
the percentage of disloyal customers correctly indicated by the model. It takes values 
from 0 to 1, where 0 means the lack of ability and 1 means the perfect ability to 
identify disloyal customers. 

Fig. 3. Sensitivity (SENS) in relation to the a posteriori probability of a positive class

Source: own calculations.

An important feature of SENS is the fact that it does not depend on the proportion 
of the positive class in the analysed dataset (Figure 3). The differences in the graphs 
are caused by sampling disturbances.

A complementary measure to SENS is SPEC. It gives information regarding 
what percentage of loyal customers was correctly indicated by the model. SPEC 
takes values from 0 to 1, where 0 indicates that the model does not have the ability to 
correctly classify loyal customers, and 1 indicates that the model has the ideal ability 
to distinguish them. SPEC does not depend on the proportion of the positive class in 
the analysed dataset.
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Fig. 4. Specificity (SPEC) in relation to the a posteriori probability of a positive class

Source: own calculations.

SENS and SPEC evaluate different aspects of the model fit. Assessing the 
overall goodness of fit, therefore, requires a combined assessment of SENS and 
SPEC, which leads directly to the construction of the ROC (Receiver Operating 
Characteristic) curve. The ROC curve is created by showing the percentage of true 
positives (SENS) and the percentage of false positives (1-SPEC) in a single graph. 
Figure 5 shows the ROC curves for all analysed datasets. 

The most popular indicator associated with the ROC curve is AUC (Area Under 
Curve). AUC is a synthetic measure of the predictive power of the model. In the case 
of a model perfectly separating loyal from disloyal customers, the AUC is 1, while in 
the case of a random model, the AUC equals 0.57. The AUC value does not depend 
on the proportion of classes of the dependent variable, which allows a normative 
assessment of the predictive power of the model. This measure shows what is 
the average level of truly positive cases for all possible false positive indicators 
[Krzanowski, Hand 2009]. The AUC can also be interpreted as the probability that 
a randomly chosen disloyal customer will have a greater tendency to leave (according 
to the model) than a randomly chosen person from the loyal group.

7 Theoretically there could be a classifier for which the AUC would be below 0.5 but it would have 
to work worse than a random selection.
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Fig. 5. ROC curves

Source: own calculations.

Closely related to the ROC curve and the AUC is the Gini index (GINI)8. It can 
be calculated on the basis of the following formula [Krzanowski, Hand 2009]:

GINI = 2 × AUC – 1.

The Gini index ranges from 0 to 1, where 0 corresponds to a random model and 
1 to a perfect model. In practice, these measures are used interchangeably to evaluate 
models. Below is an interpretation of the predictive power of the model based on the 
value of GINI [Migut et al. 2013]:
• Less than 0.2 – model to be rejected,
• 0.2-0.4 – weak predictive power,
• 0.4-0.6 – acceptable predictive power,
• 0.6-0.95 – high predictive power,
• Above 0.95 – excessively high predictive power (too good to be true).

The AUC/GINI/Somers D measure is often used by researchers to compare the 
predictive power of models and is the basis for choosing the best one. This approach, 
although popular, should not be used in isolation from the analysis of the shape of the 
ROC curve. As noted above, the AUC represents the average percentage level of true 
positives for the entire range of model outcomes and therefore does not refer to any 

8 GINI is also used in concentration analysis. It corresponds to Somers D statistic.
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particular cut-off point. Choosing the ‘best’ model based on the AUC without taking 
into account the business aspect can lead to suboptimal choices.

4.3. Youden’s J index

Youden’s J index is a synthetic measure of the predictive power of a model. It 
assumes values from 0 (unless the model works no worse than a random model) to 
1. Value 1 indicates an ideal model for which there are neither cases of FP nor FN 
[Youden 1950]. This measure does not depend on the fraction of the positive class in 
the analysed dataset, which is shown in Figure 6.

Fig. 6. Youden’s J index in relation to the a posteriori probability of a positive class

Source: own calculations.

The J index is a measure associated with the ROC curve. Based on the ROC 
curve, for a given a posteriori probability, Youden’s J index value can be determined 
as the length of the vertical line connecting the random model line with the ROC 
curve9. 

The measure derived from a different tradition of assessing models, popular 
especially in credit risk models, is KS Statistics. In fact, it is the same as the maximum 
value of Youden’s index. The KS statistics take values in the range [0;1]. The higher 
the value of this measure, the higher the model’s ability to separate ‘loyal’ and 

9 The predicted a posteriori probability of a positive class for which Youden’s J index reaches its 
maximum can be considered as a potential cut-off point of the model.
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‘disloyal’ customers. The KS statistics do not depend on the proportion of disloyal 
customers in the sample10. KS statistics do not evaluate the entire distribution of 
possible model responses11, but only one specific point at which the model has the 
greatest predictive power. If this point lies (e.g. for business reasons) outside the 
range of possible cut-off points, then KS becomes an unreliable measure. 

4.4. Precision (PPV), Sensitivity (SENS, Recall), F-Score

PPV and SENS are another pair of measures that, when analysed together, allow 
one to assess the predictive power of the model. PPV gives information about the 
percentage of positive cases in the group that is considered positive by the model. 
This measure depends on the percentage of disloyal people in the dataset. A naive 
classifier indicating that all persons are disloyal will equal PPV to the fraction of 
disloyal persons in the analysed dataset (see Figure 7).

Fig. 7. Precision in relation to the a posteriori probability of a positive class

Source: own calculations.

10 The KS values can be interpreted as follows [Migut et al. 2013]: 
• Less than 0.2 – model to be rejected, 
• 0.2-0.4 – weak predictive power, 
• 0.4-0.5 – acceptable predictive power, 
• 0.5-0.6 – high predictive power, 
• 0.6-0.75 – very high predictive power, 
• Above 0.75 – excessively high predictive power (too good to be true).

11 Unlike, for example, the ROC curve.
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It is worth noting that the above measures of model quality are antagonistic 
to each other. An increase in PPV results in a decrease in SENS and vice versa. 
Together these measures are presented in the PR curve (Precision/Recall Curve), 
which shows all possible trade-offs between PPV and SENS (Figure 8). The PR 
curve can be used when positive class cases are a small fraction of the dataset, or 
when it is more important for the researcher to avoid FP cases than FN cases. In the 
opposite situation, the ROC curve is recommended [Geron 2017]. The PR curve 
depends on the percentage of disloyal people in the dataset (a property inherited 
from the PPV measure).

Fig. 8. PR (Precision/Recall) Curves

Source: own calculations.

F-Score is a synthetic measure of the model predictive power combining SENS 
and PPV, bringing out their harmonic mean. It is a very popular measure, especially 
useful when the goal is to compare models [Géron 2017]. This measure is sensitive 
to unbalanced samples, as well as precision (PPV). Its value depends on both the 
predictive power of the model and the fraction of disloyal customers in the dataset. 
This results in an underestimation of its value in a situation where the class of disloyal 
cases is less frequently represented in the data set – see details in Figure 912.

Another property of F Score is that it favours classifiers with a similar level of 
SENS and PPV. In case of a difference in SENS and PPV values, the lower of these 
two values has a greater impact on the final result. 

12 G-mean charts show similar results.
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In order to allow the investigator to subjectively determine the validity of both 
measures, it is possible to modify the formula by adding a β-ingredient. The higher 
the β value, the greater the significance of the PPV measurement. 

𝐹𝐹𝛽𝛽 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
1

𝛽𝛽 × 1
𝑃𝑃𝑃𝑃𝑃𝑃 + (1 − 𝛽𝛽) × 1

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 .
 

In most cases, models have a lower SENS value than PPV. Giving them different 
weights may therefore result from the desire to balance the influence of both measures 
on the final result. Finding an optimal β value is troublesome and can be considered 
controversial. According to Powers, there is no real justification for using β other 
than 0.5, which gives them equal weight [Powers 2011].

Fig. 9. F-Score in relation to the a posteriori probability of a positive class

Source: own calculations.

It should be noted that regardless of the version of the formula, the F-Score 
measure does not take into account the TN cell from the error matrix. This can be 
a source of bias for this measure. 

4.5. Lift and CAP curve (Gains chart)

The lift indicates the extent to which the use of a classifier is better than the random 
selection of cases. It is the ratio of the percentage of disloyal customers in the group 
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indicated by the model as disloyal to the percentage of disloyal customers in the 
entire dataset.

The lift value depends on the fraction of disloyal customers in the data set. The 
smaller the percentage, the higher the value of the lift can be. 

Fig. 10. Lift curves

Source: own calculations.

Lift measure is very sensitive to the imbalance of the dependent variable in the 
data set, which is visible in Figure 10. The reference line (lift equal to 1) represents 
a random model. Percentiles of the response distribution of the model are presented 
on the X-axis. Despite the sensitivity of this measure it is a very popular tool for 
assessing the predictive power of the model due to its intuitive interpretation, 
especially when compared to the ROC curves. 

Based on the graph (Figure 10), it can be stated that for a dataset with a 5% 
fraction of disloyal customers, an indication of 10% of persons with the highest 
tendency to leave allows it to achieve a lift level of 4. This means that the PPV 
indicator in the selected group is four times higher than the corresponding value 
obtained in a randomly selected group.

In conjunction with the lift, the CAP (Cumulative Accuracy Profiles) curve is 
usually presented13. This curve represents the SENS of the model (Y axis) in relation 
to all customers, sorted by their tendency to leave. Its appearance is similar to the 

13 This curve is also called the gains chart.
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ROC curve. The shape of the curve depends both on the predictive power of the 
model and the percentage of disloyal customers in the dataset.

Fig. 11. CAP curves

Source: own calculations.

Based on Figure 11 it can be concluded that for a dataset containing 5% of disloyal 
customers, selecting half of them requires contact with 14% of the customers with 
the highest tendency to leave. For a dataset containing 25% of disloyal customers, 
a similar effect would be achieved after contacting about 22% of the database 
customers.

4.6. Matthews correlation coefficient MCC 
(Matthews correlation coefficient)

The measure takes into account all of the components of the confusion matrix. It 
is insensitive to the occurrence of unbalanced proportions of modelled classes in 
the data set [Boughorbel 2017]. It is the geometric mean of Youden’s index and 
markedness (MK), and the equivalent of the Pearson correlation coefficient for 
nominal data [Powers 2012]. It takes values from –1 to 1. Value 1 indicates the 
ideal classifier, 0, a classifier with no predictive power [Matthews 1975]14. Figure 12 
shows the MCC charts for the analysed datasets. The analysis of the obtained results

14 Value –1 indicates the ideal incompatibility between prediction and the actual state.



68 Grzegorz Migut

Fig. 12. MCC in relation to the a posteriori probability of a positive class

Source: own calculations.

does not confirm the total lack of sensitivity to unbalanced proportions of classes 
of dependent variables. The shapes of the MCC curves are very similar to Cohen’s 
Kappa (Figure 2).

5. Conclusion

The selection of the appropriate measure of predictive power has a key impact on 
the entire process of building classification models. In the case of an unbalanced 
distribution of the dependent variable, only a few of them allow one to assess the 
model properly. Knowledge of such properties of popular measures can help improve 
the process of building and assessing models. This is particularly important for the 
customer migration models where an unbalanced number of classes of the dependent 
variable is almost always observed. It is worth noting that for migration models, lift 
is one of the most frequently used goodness of fit measures. Below are the main 
conclusions of the study.
• It is confirmed that ACC, F-Score and Lift are very sensitive in the imbalanced 

distribution of the classes of the dependent variable.
• Contrary to the information available in literature, a significant sensitivity of 

Cohen’s Kappa coefficient and the MCC was shown. These measures have 
a limited ability to assess the predictive power of classification models built on 
imbalanced datasets.
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• For datasets with a balanced proportion of loyal and disloyal customers, Cohen’s 
Kappa, Youden’s J Index and the ACC measures are consistent.

• SENS, SPEC and the measures derived from them (ROC, AUC, GINI, Youden’s 
J Index) are insensitive to the imbalanced distribution of the classes of the 
dependent variable.

• The experiment was conducted on one dataset. This fact, despite the simulation 
nature of the experiment, may limit the generality of the presented conclusions. 
In the future, it is worth to consider performing analogous study on other datasets, 
also taking into account a greater number of measures of predictive power.
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OCENA WPŁYWU ROZKŁADU ZMIENNEJ ZALEŻNEJ 
NA WYBRANE MIARY OCENY SIŁY DYSKRYMINACYJNEJ  
NA PRZYKŁADZIE MODELI MIGRACJI KLIENTÓW

Streszczenie: Modele klasyfikacyjne umożliwiają podejmowanie optymalnych działań na każdym eta-
pie cyklu życia klienta. Okolicznością wpływającą zarówno na proces budowy modeli, jak i na ocenę 
ich siły dyskryminacyjnej jest niezbalansowany rozkład dwustanowej zmiennej zależnej. W artykule 
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skoncentrowano się na kwestii wiarygodnej oceny dobroci dopasowania. W pierwszej części artykułu 
dokonano przeglądu miar siły dyskryminacyjnej, następnie przeprowadzono ocenę wpływu rozkładu 
zmiennej zależnej na wybrane miary dobroci dopasowania. W wyniku badań zaobserwowano wysoką 
wrażliwość szeregu miar, takich jak lift, accuracy (ACC) czy F-Score. Zaobserwowano wrażliwość 
miar MCC oraz Kappa Cohena. Czułość (SENS) oraz specyficzność (SPEC), jak również pochodne 
miary oparte na krzywej ROC, a także indeks Youdena wykazały brak takiej wrażliwości. Uzyskane 
wnioski mogą pozwolić na uniknięcie błędnej oceny zdolności predykcyjnej modeli zarówno budowa-
nych na potrzeby nauki, jak i wykorzystywanych w praktyce biznesowej.

Słowa kluczowe: modele klasyfikacyjne, dobroć dopasowania, zbiory niezbalansowane, analiza mi-
gracji klientów.
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