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1. Introduction

In the lectures of calculus the direct proof of the theorem that the series

Znia is convergent for 1< « is rarely introduced. The knowledge about
n=1

the convergence of this series is used in exercises but the proof of the con-
vergence of this series is presented on the whole by the integral criterion. In
standard textbooks of calculus it is difficult to find a direct proof of conver-
gence of the series. This paper presents a direct proof of convergence of the
series. This text is a supplement for numerous books of calculus.

Theorem. The series
y 1
 n”
is divergence where 0 < « <1 and convergence where 1< « .
For the proof of the theorem it is necessary to show a lot of lemmata.

Lemma 1. The harmonic series zi is divergent.
n=1
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Proof. The harmonic series is equal such that:

-1 1 1 1 1 1 1
—Es Aottt ———
mn 1 2 3 4 5 8 2" +1 2

It is possible to group the terms of harmonic series:

a —1+i—E a -1 +i—l+1
0 2t 2"t 2ty1 22 3 4
1 1 1 1 1 1 11
a, =5+ +— tg = ottt
2941 2°42 2°43 2 5 6 7 8
a, = +..+ 1 .
2" +1 2
The harmonic series is equal
OCl 0
>o=Ya,
n:1n n=0
It is obvious that 1+£>1, and 1+£>£+£:1, and
2 2 3 4 4 4 2
1 1 1 1 1 1 1 | 1
4. 4+=>=4+.+===, and +..+ >2" - ——=~=. From
5 8 8 8 2 2" +1 2" 42" 22
here the result below is true:
1 1 1
D>+,
~n 2 2

. . T 1
i.e. the harmonic series Z— is divergent.
n=1 n

. 1 . .
Proof of the theorem: the series Z—a is divergence for 0 < o <1.
n=1 n
If « is a number such that 0 <« <1 then for natural numbers the ine-

quality n“ < n holds, hence the unequal £<ia holds too, i.e. the harmo-
n n

o0

. . =1 . . . 1
nic series Z— is a minorant of series Z—a for 0 <a <1. Hence the
n=1 n n=1
minorant is a divergence series the series (1) is divergence for 0 <  <1.
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Lemma 2. For each natural number n the expression is true:

1 1 1 n
e =—.
1.2 2.3 n-(n+1) n+1

Proof by induction.
For n=1 the left side is equal % and the right side is equal % too.

Suppose that for some n the expression above holds. It is necessary to prove
that
1 1 1 1 n+1

+ — .+ - = :
1.2 2.3 n-n+1) (n+1)n+2) n+2
The left side of the equality above by the induction assumption is equal

n 1 n-(n+2)+1  n*+2n+1  (n+1)°

N+l (n+1{n+2) (n+1)n+2) (h+1{n+2) (n+1)n+2)’

it is obvious that

(n+1>  n+1
(n+1{n+2) n+2’
so the proof of the lemma is complete.

Corollary. The series Z# is convergent, the sum is equal to 1.

~n-(n+1)

Proof. Because iﬁzlim(iﬁ):limlzl, the

el n- n—ow =1 n-

thesis of the corollary is true.

Lemma 3. The series Ziz is convergent and the sum of this is less
n=1

than or equal to 2.
1 1 1 1 1 1

z%= + + +o Sl ——+—+—+..
an 2-2 33 4.4 1.2 2-3 3.4
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Proof. By this expression the conclusion below holds:

Z—<1+

el = n- n +1
The lemma is true.

Lemma 4. The series zia is convergent for o = 1+% :
n=1

Proof. It is necessary to see the expressions:

i1:1+1+1+1+1+...+i+
Snn 141 242 343 42 5.5 7 88
+1+ L +..+ ! + 1 + ! +...+#+...+
9-3 10-410 15.415 16-4 17.417 2424
1 1
+k2-k+(k2+1)~\/m+m+(k2+2k)~\/k2+2k+m
i.e.
) 1 ) 2k 1
;n'ﬁ_;(g(k2+j)w/kz+j]'
It is possible to write some obvious inequalities
1 1 1 1 l 1 ﬁ _3
1[ 2\/_ 3\/_ 1171 1 ’
and
1,1 1 1.1 1 22415
4.2 5.45 8.48 42 4.2 4.2 28 8’
and

11 1 111 2341 7

9-3 10-410  15-415 9-3 9-3 T 9.3 3 27
and

1 1 o1 111 2441 9
16-4 17.417 ~ 24.4/24 " 16-4 16-4 T 16-4 4° 64
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and generally

1 1 1
ok (k2 +1)- k2 +1 T (k2 + 2k )k + 2k

1 1 1 2k +1
+ = .

< + ot =
k*-k  k*-k k? -k k®
By this the inequality

2| 1 22k +1
< = =
;[g(k%j)- k%j} ; k*

holds i.e. the evaluation

o1 =2k +1
> io<32

n=1 N-
is true. For every natural number k the expression
2k +1 3k 3
KK
holds, so the series Z ziz is a majorant of the series z !
n-1 N n-1 N n=t N- \/ﬁ
i.e.

=1 = 1
<3.3 =
nZ:;‘n~\/ﬁ gnz

o0

. 1 . .
Because the series Z—Z is convergent, by lemma 3, so the series
n

n=1
Z L Is convergent too. The sum of the series is less than or equal to 6.
n=1 N \/H
Lemma 5. If the series Zi is convergent for a = 1+2i where s is
~=n

- 1
some natural number, then it is convergent for « = 1+F too.
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Proof. Let for se N to be f(s)= 2—15 It is necessary to show that the

00

series is convergent if the series Z— is convergent. The

~n.n/t) ~n.nt)
series i# is equal to i; I.e
“~n-n/t Snnfo

i 1 B 1 N 1 N 1 N
~n- nﬁ(“l) B 1. ,/1ﬂ(5) 2. ,lzﬁ(S) 3. ‘/3ﬂ(5)

The inequalities below obviously hold:

1 1 1 111 2141
1,@ 2.\/2/3(5) 3.\/3ﬁ(5) 1 1 1 1
and
1 )
4279 g J5ﬁ_ Jgﬁ_ 4.2
and
1 1 7
9-3 10 1070 15, m 8-3/F
and
1 1 1 9
16-470 17 7 " a0 Jare - 16470
and generally
1 1 1 < 2k +1

RO Ol 56) k2 .kA0)
' (k? +1)-y/(k? +1) (k2 + 2k )-y/(k? + 2k) '
The equality below is certain:
2k +1 < 3k 3
k2. kA6 T k2. kA T k. kAE) !
by this it is obvious that

= 1 = 1
2 e <3

n1 N~ nﬁ n=1
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by the comparison test for convergence of infinite series the series

o0

2.

Is convergent if the series Z—
~n.n?

al Is convergent. The sum
n-
n=1

(s+1)

1 . .
of the series Z—ﬂ) is less than or equal to 2-3°". By mathematical
n-n

induction there is the finish of lemma 5.

Proof of the theorem: the series Z— IS convergence where 1< «.
—1

] 1 ]
If 1<a that there is a natural number s such that l+§<a ie.

1+ B[s]< & so for each natural n itis n*”*) < n* and consequently
1 1

e < RO

by this the series Z 56 is a majorant of the series Zi and conse-
n1 N~ n=t N

quently the series Z— is convergent. The proof of the theorem is finished.
n l

Usually the proof of the theorem is shown by the integral test for
convergence:

On the interval [m, oo) where me N the function f(x) is positive and

decreasing then the series Z f( and the integral j dx are both at the

same time convergent or divergent.
Proof of the theorem with use the integral test for convergence.

The integral J.idx is divergence because lim f(t)=co. For a#1 the
X —>0

indefinite integral is equal: Iia = % x'™* . The value of the antideriva-
X -«

tive at the point x =1 is equal L the limit limx*“ is equal to zero for

o — X—0
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1< anditis infinity for 0 < a <1. So Iiadx equals Ll for 1<« and
1 X a-—

infinity for 0 < a <1. This conclusion finishes the proof of the theorem.

The direct proof of the convergence of the series Zia for 1< in
n=1 N

another way is presented in [Fihtenholz 1978, vol. 2, p. 227], the proof of
the divergence is presented in the same way as in this paper.
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