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1. Introduction

A function f: 1 >R, I <R is an interval, said to be a convex func-
tionon | if

f(tx+(1-t)y)<tf (x)+(1-t) f(y) (1.1)

holds for all x,y el and te[0,1]. If the reversed inequality in (1.1) holds,
then f is concave.

Many important inequalities have been established for the class of con-
vex functions, but the most famous is Hermite-Hadamard’s inequality. This
double inequality is stated as:

f(a;bjgbiagf(x)dxsw (1.2)

where f: [a,b] >R, is a convex function. The above inequalities are in
reversed order if f is a concave function.
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In 1978, Breckner introduced the s-convex function as a generalization
of the convex function (Breckner 1978). Such a function is defined in the
following way: a function f: [0,00]—> R is said to be s-convex in the

second sense if
f(tx+(1-t)y)<tf(x)+(1-t) f(y) (1.3)

holds for all x,y €[0,x], t €[0,1] and for fixed s €[0,1].

In (Dragomir, Fitzpatrick 1999) Dragomir and Fitzpatrick proved the
following variant of Hermite-Hadamard’s inequality which holds for
s-convex functions in the second sense.

251¢ (‘%b]sé [1 (x)dxsw. (1.4)

In the paper (Varosanec 2007) a large class of non-negative functions,
the so-called h-convex functions, is considered. This class contains several
well-known classes of functions such as non-negative convex functions and
s-convex in the second sense. This class is defined in the following way:
a non-negative function f:1 >R, I R isan interval, called h-convex if

f(tx+(1—t)y) <h(t) f (x) +h@d-t)f (y) (1.5)

holds for all x,yel, te(0,1), where h:J — R is a non-negative function,
h =0 and J isaninterval, (0,1)cJ.

In (Sarikaya, Saglam, Yildirim 2008) the authors proved that for
h-convex function the following variant of Hadamard inequality is fulfilled

skt orpon o

2
In 1988, Weir and Mond (1998) introduced the preinvex function. Such
a function is defined in the following way: a function f on the invex set X

is said to be preinvex with respect to 7, if

f(U+tr(v,u)) < (L—t)  (U) +tf (v) (1.7)

for each u,ve X and te[0,1], where 7: XxX —> R.
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Noor in (Noor 2009) proved the Hermite-Hadamard inequality for the
preinvex functions:

1 1 e f(a)+ f (b)
f(a+§n(b,a)]sm j f(x)dxsf. (1.8)

Matloka introduced in (Mattoka 2013) the h-preinvex function in the
following way: The non-negative function f on the invex set X is said to

be h-preinvex with respect to 7, if
f (u+tr(v,u))<h@-t) f (u)+h(t) f (V) (1.9)

foreach u,ve X and t[0,1].

In the same paper Mattoka proved the Hermite-Hadamard inequality for
the h-preinvex functions:

a+n(ba)

f(a+in(b,a))< f (x)dx

() woa |

N

1 (1.10)
<[f(a)+ f(b)] [h(t)dt .

Toader (1985) defined m-convexity in the following way: the function
f: [0,b] >R, b>0, is said to be m-convex, where me[0,1], if

f(x+m(1-t)y)<tf (x)+m(1-t) f(y) (1.11)

forall x,y €[0,b] and t<[0,1].
In (Dragomir, Toader 1993) the authors proved the following Hadamard
type inequality for m-convex functions:

10 [ f@+mf(f) fb)+mif(2)
m:|;f(x)dx3m|n{ > , 5 . (112

In this paper we introduce the concept of the (h, m)-convex function.
The main purpose of this paper is to establish new inequalities of the class
of (h, m)-convex functions.
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2. Inequalities for (h, m)-convex functions

Definition 2.1. Let h: [0,1]] > R be a nonnegative function, h#0.
The non-negative function f:[0,b]—>R, b>0, is said to be (h, m)-
convex, where me[0,1], if we have

f (tx+m(1-t)y)<h®)f (x)+mh(1-t) f(y)
forall x,y €[0,b] and t<[0,1].

If the above inequality is reversed, then f is said to be (h, m)-preconcave.
Note that if h(t) =t then the f above definition reduces to the definition
of m-convex function.

Definition 2.2. The function f:[0,b] >R, b>0, is said to be (h, m)-
-logarithmic convex, where m [0,1], if

log f (tx+m(1-t)y) <h(t)log f (x)+mh(1-t)log f (y)

forall x,y €[0,b], te[0,1], where f()>0.

If the above inequality is reversed, then f is said to be (h, m)-logarithmic
concave.

From now on we suppose that all the integrals of function h considered
below exist.

Theorem 2.1. Let f: [0,0] >R be a (h, m)-convex function with
me(01]. If 0<sa<mb<oo and f eL'([a,mb]), heL*([0,1]) then

mbl_a’];bf (x)dxg[f (a)+mf (b)]ih(t)dt' 2.1)

Proof. From the (h, m)-convexity of f we have

f (ta+m(1-t)b)<h(t)f (a)+mh(1-t) f (b).
Thus by integrating over [0,1] we obtain

O ey

f (ta+m(1-t)b)dt < f(a)Jl.h (t)dt +mf (b).l[h (1-t)at.
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Since,
_(l[f (ta+m(1-t)b)dt= mbl—an-ff (x)dx
then
mbl_a r].bf (x)dx g[f (a)+mf (b)]ih (t)dt

which completes the proof.

Remark 2.1.

— ifm=21and h(t) =t then inequality (2.1) reduces to the right hand
of the Hermite-Hadamard inequality for convex function.

— if m=1 and h(t) =t, s € [0, 1] then we obtain the right hand of
a variant of the Hadamard inequality (1.4) for s-convex function in the
second sense.

— if m=1 then inequality (2.1) reduces to the right hand of the
Hadamard inequality (1.6) for h-convex function (see Sarikaya et. al. 2008).

In an analogous way we can prove the following inequality for
(h, m)-logarithmic convex function

1
mb-a

rTlog f (x)dx <[log f (a)+mlog f (b)]-jh (t)dt.  (2.2)

Theorem 2.2. Let f be a (hy, m)-convex and g a (h,, m)-convex func-
tions such that f-geL([a,b]) and h, -h, € L'([0,1]). Then the following
inequality holds:

. [ 109900k <[ f@g(a) +m’f ©)®)]: IuOn, et
) (2.3)
+m[f(a)g(b) + f(b)g(@)]- [h (O, (1-t)dt.

Proof. Using the fact that f and g are (h;, m)-convex and (h,, m)-convex
respectively we have
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(f-g)(ta+m(1-t)b)
<[hy(t) f (a) +mhy(1-t) f (b) ]-[ h,(t)g(a) + mhy(1-t) g(b) ]
=h,(h,(t) f (@)g(a) +m?h, (1-t)h, (1-t) f (b)g(b)
+mh,(t)h, (1-t) f (@)g(b) + mh, (1-t)h,(t) f (b)g(a).

Thus, by integrating with respect to t over [0,1], we obtain

O ey

(f-g)(ta+m(1-t)b)dt<[ f(a)g(a)+m’f (b)g(b)].lfhl(t)hz(t)dt

+m[ f(a)g(b) + f (b)g(a)]_[hl(t)hz(l—t)dt.

Since

j(f -g)(ta+m(1-t)b)dt = mbl—a

0

rrj.bf (x)g(x)dx

then we obtain the inequality (2.3).

Theorem 2.3. Let f be a (hy, my)-convex and g a (hy, my)-convex
functions such that f-gel'([a,mb]) and h-h,eL([0,1]). Then the
following inequality holds:

1 mb
p— !f(x)g(x)dx

< min{Ml -.l[hl(t)hz(t)dt + szl.hl(t)hz(l—t)dtMs (2.4)

- [h,(Oh, @)t + Mjhl(t)hz(l—t)dt},

where

M, = f (a)g(a) + mm, f [ﬂjg[i],
m ) m,
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M, =m, f(a)g[mi}ml f [mijg(a),

2 1

M, =mm, f [ijg[ij+ f (b)g(b),
m m

1 2

M4:mlf(mijg(b)+m2f (b)g[ij.

1 m2

Proof. Using the fact that f i g are (h1, m1)-convex and (h,, m,)-convex

respectively we have

f (ta+(1—t)b)' g(ta+(1—t)b)= f (ta+m1(l—t)m£J

1

g (ta+ mz(l—t)m%j < {hl (t)f(a)+mh, (1-1)f (m%ﬂ

.{hz (t)g(a)+mh, (1-t)g (Lﬂ

m,

=h () f (@)h,(t)g(a) +mm,h, (1-t)h, (1-t) f (ijg [ij

m, m,

+m,h, (t) f (a)h, (1-t)g {miJ-i- mh, (1-t) f (mij h,(t)g(a).

2 1

Integrating both sides of the above inequality over [0,1] we obtain

O ey

f (ta+(1-t)b)g(ta+(1-t)b)dt = r:jf (x)g(x)dx

< { f(a)g(a)+mm,f [EJ g (iﬂjhl(t) h,(t)dt
m m,

T[] |

%jg(a)}ihl(t)hz (1-t)ct.
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Analogously we obtain

1 Fr 9900 < {mlmzf (ij g (ij .1 (b)g(b)ﬁm(t) h,(t)dt
b-a a m m, 0

[m f( Jg(b)+m f(b)g[ zﬂjhl(t)h (1-t)dt

which completes the proof.

Let us note that from the inequality (2.2) it follows the following ine-
quality for (h;, m)-log-convex function f and (h,, m)-log-convex function g:

)dx

<[log f(a) +mlog f (b)].lfhl(t)dt

+[log g(a) +mlogg(h)] Jl.hz(t)dt.

Moreover, if fis (hy, m)-log-convex and g is (h,, m)-log-concave then
from the some inequality it follows that

— ajlog gé ;dx<[logf(a)+mlogf(b) jh(t)dt

—[log g(a) +mlog g(b)]- [h,(t)ct.

Using the technique and ideas of Bakula, Ozdemir and Peéari¢ (2008,
Theorem 2.1), one can prove the following theorem.

Theorem 2.4. Let | be an open real interval such that [0,0] < I . Let
f 1 I = R be a differentiable function on | suchthat f'e Ll([a,b]),where
O<a<b<oo If [f] is (h, m)-convex on [a,b] for some fixed m € (0, 1]
and g e[L,%], then
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[f@+fb) 1
2 b-a

.Tf (x)dx

b_ 1 1
sTa- .l[h(l—t)(Zt—l)dt+!h(t)(2t—1)dt

1 1
a4 \q a\q
{ (o) ] | ( (@) 4]r(2) J |
m m m
Proof. First let us note that for a differentiable mapping f such that
f’e L*([a,b]) the following equation holds

q
+

f'(@)|" +m

f(@+f(h) 1
2 b-a

Tf (X)dx = b-aj (1-2t) f'(ta+(1-t)b)dt.

0

First let us suppose that g = 1. Then from the above equation we have

f@+fb) 1
2 b-a

2 a2

0

<

jb‘f (x)dx

f'(ta+(1-t)b)[dt.

Since |’

is (h, m)-convex on [a,b] we know that

f’(ta+m(1—t)%j

‘f'(ta+(1—t)b)‘=

<h(t)|f'(2)|+mh(1-t)

f’(“')‘,
hence

[f@+fb) 1
2 b-a

if(x)dx

(&

< t’_Taj|1—2t|.[h(t)| f'(a)|+mh(1-t)
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b—a

Il
Ct— |

(1- 2t){h(t) f'(a)|+ mh(1—t)-‘ f [%judt

(2o

f (%)H ih (1-t)(2t-1)dt+ ih(t)(Zt ~-1)dt |,

+

f'(a)|+mh(1-t)

N | b ey

(2t—1){h(t)

:b‘Ta[ f'(a)|+m

where we have used the fact that

N

O t— |

(1-2t)h(1-t)dt= jh(t)(Zt —1)dt

and

O N |

(1-2t)h(t)dt = jh (1-t)(2t-1)dt.

2
Analogously we obtain

f@+f) 1 ¢
. _b_aif(x)dx
bT{m f(%jmf(b)@- Jha-t)(2t-1)dt+ no (2t -)at |

which completes the proof for g=1.
Suppose now that g>1. Since |f'[" is (h, m)-convex on [a,b]

{2

q

|£(ta+(1-t)b)]" <h(t)| f'(b)[ + mh(1-1)-
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hence using the well-known Hélder inequality we obtain

f@+f) 1 ¢
. _aif(x)dx

q-1 1

:b—Ta(-Zﬂl_zthjq.(:[ - f’(ta+m(1—t)%j

j h(1-t)(2t- 1dt+jh(t) (2t—1)dt {|f(a)| +m

2 2
and analogously

f@+f) 1 ¢
. _aif(x)dx

b—a
ST jhl t)(2t- 1dt+jh(t) (2t-1)dt -{m

a q
f’(—) +
m

2 2
which completes the proof.
Using the identity

f (%m)—éjf (x)dx :éIS(x)f’(x)dx

where

[ a+b}
X—a, Xela ——
2

S(x) = o
X—D, Xe[a% b}

(see (Pearce, Pecari¢ 2000, Theorem 2)) we can prove the following theorem.
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Theorem 2.5. Let | be an open real interval such that [0,0] < I . Let
f 1 | > R be a differentiable function on | suchthat f'e Ll([a,b]),where

0O<a<b<oo.If |fis (h, m)-convex on [a,b] for some fixed m €[0,1], then
b
‘f (a—”’j—i f (x)dx
2 b-a<
1

2
th(t)dt + j (1-t)dt mm{|f'(a)|+m
0

)

(b~

’(b)l}-

o=

Proof.

asb

l 2
b a I (x—a)

a a+b

IA

—x)| f(x)|dx

f'(ta+(1-t)b)dt

=(b-a)

O —ro |

t|f'(ta+(1-t)b)

2

a)|+ mh(l—t)‘ f (%)Ddt
f(%}Ddt
f[%JD }th(t)dt +

|
QD
N—
o':.m\»—\
7\

—+

(1—t)(h(t)|f'(a)|

N | I e

+Mm

o'._.m\._.

th(1-t)dt

=(b—a)( '
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and analogously

1 1

+mlf'(b ] jth(t)dt+ith1t

s(b—a)(m

%)
m

which completes the proof.
Now, let us note that it can be easy to prove the following two lemmas.

Lemma2.1. Let f: 1 —>R, | =R, be a differentiable mapping on I°,
and a,bel, me[0,1] and a<mb. If f'eL*([a,mb]), then

mb—a

f(@+f(mb) 1 ”‘f’f(x)dxz :

2 mb-a ¢

(1-2t) f'(ta+m(1-t)b)dt.

O ey

Lemma 2.2. Let f: 1 >R, | «R, be a differentiable mapping on 1°,
and a,bel, me[01] and a<mb. If f eL([a,mb]), then

(a+2mbj

(t-1) f'(ta+m(1-t)b)dt |.

1
=(mb-a j ta+m(1- tb)dt+
0

N | e

Theorem 2.6. Let f: 1 —R, be a differentiable function on I° that
f'e '([a,mb]), where a,bel, me[0,1] and a<mb. If |f] is (h, m)-
-convex function, then we have

!

[f@+fmb) 1 7
> _aJa.f(x)dx
b—
gmz 2| #@)]+m| £ (o) jhl t)(2t— 1dt+jh(t) (2t—1)dt

2 2
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Proof. Using Lemma 2.1 and the (h, m)-convexity of | f’| we have

f@+f(mb) 1 77
> mb_aif(x)dx

<2 {12t (0 @]+ w10 (]

mba

{ j (11— 2t|h(t)| f(a)|+ mh(L—t) (| f (b)) )dt

+

N | 1 Sy 1

(2t-1)(h(t)| f (@) + mh(L-t)| f ’(b)|)dt}

|
| =

_ mb- a@f’(a)”z' (1-2t)h(t)dt +m|f (b)|J2‘ 1-2t)h

+|£/@)| [ (2t —1)h(t)dt +m| £ ()|

N | ——
N | e

(2t1)h(1t)dt]

" aLf(a)lIhl )(2t- 1)dt+m|f(b)|fh(t) (2t=2)at

2 2

|1 (a)

N\._\-_,._\

h(t )(2t1)dt+m\f'(b)\jh(1t)(2t1)0%

2

_mb- a[|f(a)|+m|f’(b)|]ﬁh1 t)(2t- 1dt+jh(t) (2t- 1)d],

2

N |

which completes the proof.
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Theorem 2.7. Let f: 1 > R, be a differentiable function on I°, with
abel, me[0,] and a<mb. If |f' is (h, m)-convex, then we have

(a+mbj

1

1
2 2

: jth(t)dt+jth(1—t dt
0 0

=(mb—-a)[|f'

Proof. Using Lemma 2.2 and the (h, m)-convexity of | f'|, it follows that
( a+ mbj
2

f'(ta+m(1—t)b)\dt+i|t—1|\f'(ta+m(1—t)b)\dt .
1

<(mb-a)

O t— |

2
1

<(mb-a) .[|t|

Jat

+fe-1(

Jot

,\,\._\!—.H

l

=(mb-a)||f (a)|jth(t)dt +m|f(b)| [t

St=m

h(1-t)dt

l

N |

1

=(mb—a)[|f'(a)]+m|f'(b)[]- fth(t)dnfth(l—t dt

which completes the proof.
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