ESTIMATION OF POPULATION MEAN USING TWO AUXILIARY SOURCES IN SAMPLE SURVEYS

Diwakar Shukla ${ }^{1}$, Sharad Pathak ${ }^{1}$ and Narendra Singh Thakur ${ }^{2}$

Abstract

This paper proposes families for estimation of population mean of the main variable under study using the information on two different auxiliary variables under simple random sampling without replacement (SRSWOR) scheme. Three different classes of estimators are constructed, examined with a complete study with other existing estimators. The expression for bias and mean squared error of the proposed families are obtained up to first order of approximation. Usual ratio estimator, product estimator, dual to ratio estimator, ratio-cum-product type estimator and many more estimators are identified as particular members of the suggested family. Expressions of optimization are derived and theoretical results are supported by numerical examples.

Key words: Family of estimators, SRSWOR, Bias and Mean squared error.
AMS Subject Classification: 94A20, 62D05

1. Introduction

To improve the exactitude in sample surveys theory the use of two auxiliary variables for estimation of population mean of a variable under study has played an influential role. A number of estimators are accessible in the literature of sample surveys where supporting information is the contributor to improve the methodology. Out of all ratio and product estimators are good examples as evidence to state this. The ratio estimation method is practical when the correlation coefficient between the study and auxiliary variable is positive [Cochran (1940, 42)]. If the correlation coefficient between the study and auxiliary variable is negative then the use of product estimation will make the study valuable [Robson (1957) and Murthy (1964)].

[^0]There are so many situations in survey sampling where the record of more auxiliary variable is available for the investigators (at least for two variables). There are so many researchers who used the information of more than two auxiliary variables to contribute in the field. Dalabehara and Sahoo (1994) presented a class of estimators in stratified sampling with two auxiliary variables for estimation of mean. In another contribution Dalabehara and Sahoo (2000) proposed an unbiased estimator in two-phase sampling using two auxiliary variables.

Abu-Dayyeh et al. (2003) used auxiliary variables to show estimators of finite population mean. Sahoo and Sahoo (1993) suggested a class of estimators in two-phase sampling using two auxiliary variables. In another work Sahoo and Sahoo (2001) discussed about predictive estimation of finite population mean in two-phase sampling using two auxiliary variables. Singh and Shukla (1987) have a discussion on one parameter family of factor type ratio estimator. In a study Shukla et al. (1991) transformed factor type estimator to make the estimation more effective. Shukla (2002) Studied F-T estimator and sampling procedure undertaken was two-phase sampling. In this sequence Singh and Singh (1991) provided Chain type estimator with two auxiliary variables under double sampling scheme. In another study Singh et al. (1994) suggested a class of chainratio estimator with two auxiliary variables and the study completed under double sampling scheme. Kadilar and Cingi (2004) took two auxiliary variables in simple random sampling to find population mean. Moreover, Kadilar and Cingi (2005) derived a new estimator using two auxiliary variables. Perri (2007) analysed the work of Singh $(1965,1967$ b) and suggested a new improved work on ratio-cumproduct type estimators with the application of Srivenkataramana, T. (1980) estimator on pervious proposed work of Singh (1967b).

Many authors including Srivastava (1971), Srivastava and Jhajj (1983), Ray and Sahai (1980), Khare and Srivastava (1981), Hansen et al.(1953) and Desraj (1965) used more than one supporting information to make the study more impressive. Some other useful contributions over applications of auxiliary information are due to Mukhopadhyay (2000), Cochran (2005), Murthy (1976), Sukhatme et al. (1984), Naik and Gupta (1991), Singh and Shukla (1993) and Shukla et al (2009) etc.

2. Notations and Assumptions

Notations for the study are:
\bar{Y}, \bar{X}_{1}, and $\bar{X}_{2} \quad$: Population Parameters
\bar{y}, \bar{x}_{1} and $\bar{x}_{2} \quad$: Mean per unit estimates for a simple random sample of size n.

n	$:$ Sample size
f	$:$ Sampling friction $(f=n / N)$
N	$:$ Population size

$\rho_{01} \quad:$ Correlation between variable Y and X_{1}
$\rho_{02} \quad:$ Correlation between variable Y and X_{2}
$\rho_{12} \quad$: Correlation between variable X_{1} and X_{2}
$C_{Y}=S_{Y} / \bar{Y} \quad:$ Coefficient of variation for variable $Y\left(C_{0}\right)$
$C_{X_{1}}=S_{X_{1}} / \bar{X}_{1} \quad$: Coefficient of variation for variable $X_{1}\left(C_{1}\right)$
$C_{X_{2}}=S_{X_{2}} / \bar{X}_{2} \quad:$ Coefficient of variation for variable $X_{2}\left(C_{2}\right)$

3. Some Estimators

In the literature of survey sampling so many estimators and estimation procedures exist. This literature is the basic motivation to work in this direction and contribution in this area. Let Y is the main variable and X_{1}, X_{2} are two auxiliary variable then some well known estimators are as follows.

3.1. Ratio estimator

$$
\begin{equation*}
\bar{y}_{R}=\bar{y}\left(\frac{\bar{x}}{\bar{x}}\right) \tag{3.1a}
\end{equation*}
$$

$\operatorname{Bias}\left(\bar{y}_{R}\right)=E\left(\bar{y}_{R}-\bar{Y}\right)=\bar{Y} M_{1}\left[C_{X}^{2}-\rho C_{Y} C_{X}\right]$
$\operatorname{MSE}\left(\bar{y}_{R}\right)=\bar{Y}^{2} M_{1}\left[C_{Y}^{2}+C_{X}^{2}-2 \rho C_{Y} C_{X}\right] ; M_{1}=\left(\frac{1}{n}-\frac{1}{N}\right)$

3.2. Product estimator

$$
\begin{align*}
& \bar{y}_{P}=\bar{y}\left(\frac{\bar{x}}{\bar{X}}\right) \tag{3.2a}\\
& \operatorname{Bias}\left(\bar{y}_{P}\right)=E\left(\bar{y}_{P}-\bar{Y}\right)=\bar{Y} M_{1} \rho C_{Y} C_{X} \tag{3.2b}\\
& \operatorname{MSE}\left(\bar{y}_{R}\right)=\bar{Y}^{2} M_{1}\left[C_{Y}^{2}+C_{X}^{2}+2 \rho C_{Y} C_{X}\right] ; M_{1}=\left(\frac{1}{n}-\frac{1}{N}\right) \tag{3.2c}
\end{align*}
$$

3.3. Dual to ratio estimator [By Srivenkataramana, T. (1980)]

$\bar{y}_{V R}=\bar{y} \frac{N \bar{X}-n \bar{x}}{(N-n) \bar{X}}$

$$
\begin{align*}
& \operatorname{Bias}\left(\bar{y}_{V R}\right)=E\left(\bar{y}_{V R}-\bar{Y}\right)=-\frac{\bar{Y}}{N} \rho C_{Y} C_{X} \tag{3.3b}\\
& \operatorname{MSE}\left(\bar{y}_{V R}\right)=\bar{Y}^{2} M_{1}\left[C_{Y}^{2}+\alpha^{2} C_{X}^{2}-2 \alpha \rho C_{Y} C_{X}\right] ; M_{1}=\left(\frac{1}{n}-\frac{1}{N}\right), \alpha=n /(N-n) \tag{3.3c}
\end{align*}
$$

3.4. Ratio-cum-product type estimator

Singh (1965, 1967b) proposed some ratio-cum-product type estimators as $\bar{y}_{R 1}=\bar{y} \frac{\bar{X}_{1}}{\bar{x}_{1}} \frac{\bar{x}_{2}}{\bar{X}_{2}}$
$\operatorname{Bias}\left(\bar{y}_{R 1}\right)=E\left(\bar{y}_{R}-\bar{Y}\right)=\bar{Y} M_{1}\left[C_{1}^{2}+\rho_{02} C_{0} C_{2}-\rho_{01} C_{0} C_{1}-\rho_{12} C_{1} C_{2}\right]$
$\operatorname{MSE}\left(\bar{y}_{R 1}\right)=\bar{Y}^{2} M_{1}\left[C_{0}^{2}+C_{1}^{2}+C_{2}^{2}-2 \rho_{01} C_{0} C_{1}+2 \rho_{02} C_{0} C_{2}-2 \rho_{12} C_{1} C_{2}\right]$
$\bar{y}_{R 2}=\bar{y} \frac{\bar{X}_{1}}{\bar{x}_{1}} \frac{\bar{X}_{2}}{\bar{x}_{2}}$
$\operatorname{Bias}\left(\bar{y}_{R 2}\right)=E\left(\bar{y}_{R 2}-\bar{Y}\right)=\bar{Y} M_{1}\left[C_{1}^{2}+C_{2}^{2}-\rho_{02} C_{0} C_{2}-\rho_{01} C_{0} C_{1}+\rho_{12} C_{1} C_{2}\right]$
$\operatorname{MSE}\left(\bar{y}_{R 2}\right)=\bar{Y}^{2} M_{1}\left[C_{0}^{2}+C_{1}^{2}+C_{2}^{2}-2 \rho_{01} C_{0} C_{1}-2 \rho_{02} C_{0} C_{2}+2 \rho_{12} C_{1} C_{2}\right]$
$\bar{y}_{P 1}=\bar{y} \frac{\bar{x}_{1}}{\bar{X}_{1}} \frac{\bar{x}_{2}}{\bar{X}_{2}}$
$\operatorname{Bias}\left(\bar{y}_{P 1}\right)=E\left(\bar{y}_{P 1}-\bar{Y}\right)=\bar{Y} M_{1}\left[\rho_{01} C_{0} C_{1}+\rho_{02} C_{0} C_{2}+\rho_{12} C_{1} C_{2}\right]$
$\operatorname{MSE}\left(\bar{y}_{P 1}\right)=\bar{Y}^{2} M_{1}\left[C_{0}^{2}+C_{1}^{2}+C_{2}^{2}+2 \rho_{01} C_{0} C_{1}+2 \rho_{02} C_{0} C_{2}+2 \rho_{12} C_{1} C_{2}\right]$
$\bar{y}_{P 2}=\bar{y} \frac{\bar{x}_{1}}{\bar{X}_{1}} \frac{\bar{X}_{2}}{\bar{x}_{2}}$
$\operatorname{Bias}\left(\bar{y}_{P 2}\right)=E\left(\bar{y}_{P 2}-\bar{Y}\right)=\bar{Y} M_{1}\left[C_{2}^{2}+\rho_{01} C_{0} C_{1}-\rho_{02} C_{0} C_{2}-\rho_{12} C_{1} C_{2}\right]$
$\operatorname{MSE}\left(\bar{y}_{P 2}\right)=\bar{Y}^{2} M_{1}\left[C_{0}^{2}+C_{1}^{2}+C_{2}^{2}+2 \rho_{01} C_{0} C_{1}-2 \rho_{02} C_{0} C_{2}-2 \rho_{12} C_{1} C_{2}\right]$
where $M_{1}=\left(\frac{1}{n}-\frac{1}{N}\right)$

4. Proposed Estimator(s)

Singh and Shukla (1987) discussed a family of factor-type ($F-T$) ratio estimator for estimating population mean. In another contribution Singh and Shukla (1993) derived efficient factor-type estimator for estimating the same population parameter. Deriving motivation from both some proposed estimators are given below.

$$
\begin{align*}
& \left(\bar{y}_{F-T}\right)_{1}=\bar{y} T_{1} T_{2} \\
& \left(\bar{y}_{F-T}\right)_{2}=\bar{y} \frac{T_{1}}{T_{2}} \tag{4.1}\\
& \left(\bar{y}_{F-T}\right)_{3}=\bar{y} \frac{T_{2}}{T_{1}}
\end{align*}
$$

Where $T_{i}=\frac{\left(A_{i}+C_{i}\right) \bar{X}_{i}+f B \bar{x}_{i}}{\left(A_{i}+f B_{i}\right) \bar{X}_{i}+C_{i} \bar{x}_{i}}$

$$
\begin{equation*}
A_{i}=\left(K_{i}-1\right)\left(K_{i}-2\right) ; B_{i}=\left(K_{i}-1\right)\left(K_{i}-4\right) ; C_{i}=\left(K_{i}-2\right)\left(K_{i}-3\right)\left(K_{i}-4\right) \tag{4.2}
\end{equation*}
$$

Remark 4.1 Here we have a combination of K_{i} where $i=(1,2)$. Some of the factors are shown in the following table where $\left(K_{1}=K_{2}\right)$. As above concerned K_{i} where $i=(1,2)$ is constant to choose suitably so that the resulting mean squared error of proposed estimators may become least. For example let $K_{i}=1$ then the values of T_{1} and T_{2} will be $\frac{\bar{X}_{1}}{\bar{x}_{1}}$ and $\frac{\bar{X}_{2}}{\bar{x}_{2}}$ respectively and so on.

Remark 4.2 By proposed estimator we can obtain so many different estimators. For each combination of $\left(K_{1}, K_{2}\right)$ an estimator exists.

Table 4.1. Some Members of the proposed estimation.

$t_{1}=\bar{y} \frac{\bar{X}_{1}}{\bar{x}_{1}} \frac{\bar{X}_{2}}{\bar{x}_{2}}$ (At $\left.K_{1}=K_{2}=1\right)$	$t_{2}=\bar{y} \frac{\bar{X}_{1}}{\bar{x}_{1}} \frac{\bar{x}_{2}}{\bar{X}_{2}}$	$t_{3}=\bar{y} \frac{\bar{X}_{1}}{\bar{x}_{1}} \frac{N \bar{X}_{2}-n \bar{x}_{2}}{(N-n) \bar{X}_{2}}$	$t_{4}=\bar{y} \frac{\bar{X}_{1}}{\bar{x}_{1}}$
$t_{5}=\bar{y} \frac{\bar{x}_{1}}{\bar{X}_{1}} \frac{\bar{X}_{2}}{\bar{x}_{2}}$	$t_{6}=\bar{y} \frac{\bar{x}_{1}}{\bar{X}_{1}} \frac{\bar{x}_{2}}{\bar{X}_{2}}$	$t_{7}=\bar{y} \frac{\bar{x}_{1}}{\bar{X}_{1}} \frac{N \bar{X}_{2}-n \bar{x}_{2}}{(N-n) \bar{X}_{2}}$	$t_{8}=\bar{y} \frac{\bar{x}_{1}}{\bar{X}_{1}}$
(At $K_{1}=2, K_{2}=1$	(At $\left.K_{1}=K_{2}=2\right)$	(At $\left.K_{1}=2, K_{2}=3\right)$	(At $\left.K_{1}=2, K_{2}=4\right)$

Table 4.1. Some Members of the proposed estimation (cont.).

t_{9}	t_{10}	t_{11}	t_{12}
$=\bar{y} \frac{N \bar{X}_{1}-n \bar{x}_{1}}{(N-n) \bar{X}_{1}} \frac{\bar{X}_{2}}{\bar{x}_{2}}$	$=\bar{y} \frac{N \bar{X}_{1}-n \bar{x}_{1}}{(N-n) \bar{X}_{1}} \frac{\bar{x}_{2}}{\bar{X}_{2}}$	$=\bar{y} \frac{N \bar{X}_{1}-n \bar{x}_{1}}{(N-n) \bar{X}_{1}} \frac{N \bar{X}_{2}-n \bar{x}_{2}}{(N-n) \bar{X}_{2}}$	$=\bar{y} \frac{N \bar{X}_{1}-n \bar{x}_{1}}{(N-n) \bar{X}_{1}}$
(At $K_{1}=3, K_{2}=1$)	At $K_{1}=3, K_{2}=2$	(At $K_{1}=K_{2}=3$)	(At $K_{1}=3, K_{2}=4$)
$\begin{gathered} t_{13}=\bar{y} \frac{\bar{X}_{2}}{\bar{x}_{2}} \\ \left(\text { At } K_{1}=4, K_{2}=1\right) \end{gathered}$	$\begin{gathered} t_{14}=\bar{y} \frac{\bar{x}_{2}}{\bar{X}_{2}} \\ \text { (At } K_{1}=4, K_{2}=2 \text {) } \end{gathered}$	$\begin{aligned} & t_{15}=\bar{y} \frac{N \bar{X}_{2}-n \bar{x}_{2}}{(N-n) \bar{X}_{2}} \\ & \left(\text { At } K_{1}=4, K_{2}=3\right) \end{aligned}$	$\begin{gathered} \bar{y} \\ \left(\text { At } K_{1}=K_{2}=4\right) \end{gathered}$

5. Properties of Proposed Estimator

For large sample approximation we assume that

$$
\begin{aligned}
& \bar{y}=\bar{Y}\left(1+e_{0}\right) ; \bar{x}_{1}=\bar{X}_{1}\left(1+e_{1}\right) ; \bar{x}_{2}=\bar{X}_{2}\left(1+e_{2}\right) ; \alpha_{i}=\frac{f B_{i}}{A_{i}+f B_{i}+C_{i}} ; \\
& \beta_{i}=\frac{C_{i}}{A_{i}+f B_{i}+C_{i}} \\
& E\left(e_{0}\right)=E\left(e_{1}\right)=E\left(e_{2}\right)=0 ; E\left(e_{0}^{2}\right)=M_{1} C_{0}^{2} ; E\left(e_{1}^{2}\right)=M_{1} C_{1}^{2} ; \\
& E\left(e_{2}^{2}\right)=M_{1} C_{2}^{2} ; \delta_{1 i}=\alpha_{i}-\beta_{i} \\
& E\left(e_{0} e_{1}\right)=M_{1} \rho_{01} C_{0} C_{1} ; E\left(e_{0} e_{2}\right)=M_{1} \rho_{02} C_{0} C_{2} ; E\left(e_{1} e_{2}\right)=M_{1} \rho_{12} C_{1} C_{2} \\
& M_{1}=\left(\frac{1}{n}-\frac{1}{N}\right)
\end{aligned}
$$

THEOREM 5.1:

[1]: The estimator $\left(\bar{y}_{F-T}\right)_{1}$ in terms of e_{0}, e_{1} and e_{2} up to first order of approximation could be expressed as:

$$
\begin{equation*}
\left(\bar{y}_{F-T}\right)_{1}=\bar{Y}\left[1+e_{0}+\delta_{1}\left(e_{1}+e_{0} e_{1}-\beta_{1} e_{1}^{2}\right)+\delta_{2}\left(e_{2}+e_{0} e_{2}-\beta_{2} e_{2}^{2}\right)+\delta_{1} \delta_{2} e_{1} e_{2}\right] \tag{5.1}
\end{equation*}
$$

[2]: Bias of $\left(\bar{y}_{F-T}\right)_{1}$ up to first order approximation is:
$B\left(\bar{y}_{F-T}\right)_{1}=\bar{Y} M_{1}\left[\delta_{1}\left(\rho_{01} C_{0} C_{1}-\beta_{1} C_{1}{ }^{2}\right)+\delta_{2}\left(\rho_{02} C_{0} C_{2}-\beta_{2} C_{2}{ }^{2}\right)+\delta_{1} \delta_{2} \rho_{12} C_{1} C_{2}\right]$
[3]: Mean squared error of $\left(\bar{y}_{F-T}\right)_{1}$ up to first order approximation is:
$M\left(\bar{y}_{F-T}\right)_{1}=\bar{Y}^{2} M_{1}\left[C_{0}{ }^{2}+\delta_{1}{ }^{2} C_{1}{ }^{2}+\delta_{2}{ }^{2} C_{2}{ }^{2}+2 \delta_{1} \rho_{01} C_{0} C_{1}+2 \delta_{2} \rho_{02} C_{0} C_{2}+2 \delta_{1} \delta_{2} \rho_{12} C_{1} C_{2}\right]$

Proof 5.1:

[1]:
$\left(\bar{y}_{F-T}\right)_{1}=\bar{y} \frac{\left(A_{1}+C_{1}\right) \bar{X}_{1}+f B_{1} \bar{x}_{1}}{\left(A_{1}+f B_{1}\right) \bar{X}_{1}+C_{1} \bar{x}_{1}} \frac{\left(A_{2}+C_{2}\right) \bar{X}_{2}+f B_{2} \bar{x}_{2}}{\left(A_{2}+f B_{2}\right) \bar{X}_{2}+C_{2} \bar{x}_{2}}$
$\left(\bar{y}_{F-T}\right)_{1}=\bar{Y}\left(1+e_{0}\right)\left(1+\alpha_{1} e_{1}\right)\left(1+\alpha_{2} e_{2}\right)\left(1+\beta_{1} e_{1}\right)^{-1}\left(1+\beta_{2} e_{2}\right)^{-1}$
$\left(\bar{y}_{F-T}\right)_{1}=\bar{Y}\left[1+e_{0}+\delta_{1}\left(e_{1}+e_{0} e_{1}-\beta_{1} e_{1}{ }^{2}\right)+\delta_{2}\left(e_{2}+e_{0} e_{2}-\beta_{2} e_{2}{ }^{2}\right)+\delta_{1} \delta_{2} e_{1} e_{2}\right]$
[2]:
$E\left[\left(\bar{y}_{F-T}\right)_{1}-\bar{Y}\right]=E\left[\bar{Y}\left\{e_{0}+\delta_{1}\left(e_{1}+e_{0} e_{1}-\beta_{1} e_{1}^{2}\right)+\delta_{2}\left(e_{2}+e_{0} e_{2}-\beta_{2} e_{2}^{2}\right)+\delta_{1} \delta_{2} e_{1} e_{2}\right\}\right]$
$B\left(\bar{y}_{F-T}\right)_{1}=\bar{Y} M_{1}\left[\delta_{1}\left(\rho_{01} C_{0} C_{1}-\beta_{1} C_{1}{ }^{2}\right)+\delta_{2}\left(\rho_{02} C_{0} C_{2}-\beta_{2} C_{2}{ }^{2}\right)+\delta_{1} \delta_{2} \rho_{12} C_{1} C_{2}\right]$
[3]:
$\left[\left(\bar{y}_{F-T}\right)_{1}-\bar{Y}\right]^{2}=\bar{Y}\left[e_{0}+\delta_{1}\left(e_{1}+e_{0} e_{1}-\beta_{1} e_{1}{ }^{2}\right)+\delta_{2}\left(e_{2}+e_{0} e_{2}-\beta_{2} e_{2}{ }^{2}\right)+\delta_{1} \delta_{2} e_{1} e_{2}\right]^{2}$
$M\left(\bar{y}_{F-T}\right)_{1}=\bar{Y}^{2} M_{1}\left[C_{0}{ }^{2}+\delta_{1}^{2} C_{1}^{2}+\delta_{2}^{2} C_{2}^{2}+2 \delta_{1} \rho_{01} C_{0} C_{1}+2 \delta_{2} \rho_{02} C_{0} C_{2}+2 \delta_{1} \delta_{2} \rho_{12} C_{1} C_{2}\right]$

THEOREM 5.2:

[4](%5B): The estimator $\left(\bar{y}_{F-T}\right)_{2}$ in terms of e_{0}, e_{1} and e_{2} up to first order of approximation could be expressed as:

$$
\begin{equation*}
\left(\bar{y}_{F-T}\right)_{2}=\bar{Y}\left[1+e_{0}+\delta_{1}\left(e_{1}+e_{0} e_{1}-\beta_{1} e_{1}^{2}\right)-\delta_{2}\left(e_{2}+e_{0} e_{2}-\alpha_{2} e_{2}^{2}\right)-\delta_{1} \delta_{2} e_{1} e_{2}\right] \tag{5.4}
\end{equation*}
$$

[5]: Bias of $\left(\bar{y}_{F-T}\right)_{2}$ up to first order approximation is:

$$
\begin{equation*}
B\left(\bar{y}_{F-T}\right)_{2}=\bar{Y} M_{1}\left[\delta_{1} C_{1}\left(\rho_{01} C_{0}-\beta_{1} C_{1}\right)+\delta_{2} C_{2}\left(\alpha_{2} C_{2}-\rho_{02} C_{0}\right)-\delta_{1} \delta_{2} \rho_{12} C_{1} C_{2}\right] \tag{5.5}
\end{equation*}
$$

[6]((M%5Cleft(%5Cbar%7By%7D_%7BF-T%7D%5Cright)_%7B2%7D=E%5Cleft%5B%5Cleft(%5Cbar%7By%7D_%7BF-T%7D%5Cright)_%7B2%7D-%5Cbar%7BY%7D%5Cright%5D%5E%7B2%7D)): Mean squared error of $\left(\bar{y}_{F-T}\right)_{2}$ up to first order approximation is:
$M\left(\bar{y}_{F-T}\right)_{2}=\bar{Y}^{2} M_{1}\left[C_{0}^{2}+\delta_{1}^{2} C_{1}^{2}+\delta_{2}^{2} C_{2}^{2}+2 \delta_{1} \rho_{01} C_{0} C_{1}-2 \delta_{2} \rho_{02} C_{0} C_{2}-2 \delta_{1} \delta_{2} \rho_{12} C_{1} C_{2}\right]$

Proof 5.2:

$$
\begin{aligned}
& \left(\bar{y}_{F-T}\right)_{2}=\bar{y} \frac{\left(A_{1}+C_{1}\right) \bar{X}_{1}+f B_{1} \bar{x}_{1}}{\left(A_{1}+f B_{1}\right) \bar{X}_{1}+C_{1} \bar{x}_{1}} \frac{\left(A_{2}+f B_{2}\right) \bar{X}_{2}+C_{2} \bar{x}_{2}}{\left(A_{2}+C_{2}\right) \bar{X}_{2}+f B_{2} \bar{x}_{2}} \\
& \left(\bar{y}_{F-T}\right)_{2}=\bar{Y}\left(1+e_{0}\right)\left(1+\alpha_{1} e_{1}\right)\left(1+\beta_{2} e_{2}\right)\left(1+\beta_{1} e_{1}\right)^{-1}\left(1+\alpha_{2} e_{2}\right)^{-1} \\
& \left(\bar{y}_{F-T}\right)_{2}=\bar{Y}\left[1+e_{0}+\delta_{1}\left(e_{1}+e_{0} e_{1}-\beta_{1} e_{1}^{2}\right)-\delta_{2}\left(e_{2}+e_{0} e_{2}-\alpha_{2} e_{2}^{2}\right)-\delta_{1} \delta_{2} e_{1} e_{2}\right]
\end{aligned}
$$
\]

[5]:

$$
\begin{aligned}
& E\left[\left(\bar{y}_{F-T}\right)_{2}-\bar{Y}\right]=\bar{Y} E\left[e_{0}+\delta_{1}\left(e_{1}+e_{0} e_{1}-\beta_{1} e_{1}^{2}\right)-\delta_{2}\left(e_{2}+e_{0} e_{2}-\alpha_{2} e_{2}{ }^{2}\right)-\delta_{1} \delta_{2} e_{1} e_{2}\right] \\
& B\left(\bar{y}_{F-T}\right)_{2}=\bar{Y} M_{1}\left[\delta_{1} C_{1}\left(\rho_{01} C_{0}-\beta_{1} C_{1}\right)+\delta_{2} C_{2}\left(\alpha_{2} C_{2}-\rho_{02} C_{0}\right)-\delta_{1} \delta_{2} \rho_{12} C_{1} C_{2}\right]
\end{aligned}
$$

$M\left(\bar{y}_{F-T}\right)_{2}=\bar{Y}^{2} M_{1}\left[C_{0}^{2}+\delta_{1}^{2} C_{1}^{2}+\delta_{2}^{2} C_{2}^{2}+2 \delta_{1} \rho_{01} C_{0} C_{1}-2 \delta_{2} \rho_{02} C_{0} C_{2}-2 \delta_{1} \delta_{2} \rho_{12} C_{1} C_{2}\right]$

THEOREM 5.3:

[7](%5B): The estimator $\left(\bar{y}_{F-T}\right)_{3}$ in terms of e_{0}, e_{1} and e_{2} up to first order of approximation could be expressed as:

$$
\begin{equation*}
\left(\bar{y}_{F-T}\right)_{3}=\bar{Y}\left[1+e_{0}+\delta_{1}\left(\alpha_{1} e_{1}^{2}-e_{1}-e_{0} e_{1}\right)+\delta_{2}\left(e_{2}-\beta_{2} e_{2}^{2}+e_{0} e_{2}\right)-\delta_{1} \delta_{2} e_{1} e_{2}\right] \tag{5.7}
\end{equation*}
$$

[8]: Bias of $\left(\bar{y}_{F-T}\right)_{3}$ up to first order approximation is:
$B\left(\bar{y}_{F-T}\right)_{3}=\bar{Y} M_{1}\left[\delta_{1}\left(\alpha_{1} C_{1}^{2}-\rho_{01} C_{0} C_{1}\right)+\delta_{2}\left(\rho_{02} C_{0} C_{2}-\beta_{2} C_{2}^{2}\right)-\delta_{1} \delta_{2} \rho_{12} C_{1} C_{2}\right]$
[9]: Mean squared error of $\left(\bar{y}_{F-T}\right)_{3}$ up to first order approximation is:
$M\left(\bar{y}_{F-T}\right)_{3}=\bar{Y}^{2} M_{1}\left[C_{0}^{2}+\delta_{1}^{2} C_{1}^{2}+\delta_{2}^{2} C_{2}^{2}-2 \rho_{01} C_{0} C_{1} \delta_{1}+2 \rho_{02} C_{0} C_{2} \delta_{2}-2 \delta_{1} \delta_{2} \rho_{12} C_{1} C_{2}\right]$

Proof 5.3:

$$
\begin{aligned}
& \left(\bar{y}_{F-T}\right)_{3}=\bar{y} \frac{\left(A_{2}+C_{2}\right) \bar{X}_{2}+f B_{2} \bar{x}_{2}}{\left(A_{2}+f B_{2}\right) \bar{X}_{2}+C_{2} \bar{x}_{2}} \frac{\left(A_{1}+f B_{1}\right) \bar{X}_{1}+C_{1} \bar{x}_{1}}{\left(A_{1}+C_{1}\right) \bar{X}_{1}+f B_{1} \bar{x}_{1}} \\
& \left(\bar{y}_{F-T}\right)_{3}=\bar{Y}\left(1+e_{0}\right)\left(1+\alpha_{2} e_{2}\right)\left(1+\beta_{1} e_{1}\right)\left(1+\beta_{2} e_{2}\right)^{-1}\left(1+\alpha_{1} e_{1}\right)^{-1} \\
& \left(\bar{y}_{F-T}\right)_{3}=\bar{Y}\left[1+e_{0}+\delta_{1}\left(\alpha_{1} e_{1}^{2}-e_{1}-e_{0} e_{1}\right)+\delta_{2}\left(e_{2}-\beta_{2} e_{2}^{2}+e_{0} e_{2}\right)-\delta_{1} \delta_{2} e_{1} e_{2}\right]
\end{aligned}
$$
\]

[8]:
$\left(\bar{y}_{F-T}\right)_{3}=\bar{Y}\left[1+e_{0}+\delta_{1}\left(\alpha_{1} e_{1}^{2}-e_{1}-e_{0} e_{1}\right)+\delta_{2}\left(e_{2}-\beta_{2} e_{2}^{2}+e_{0} e_{2}\right)-\delta_{1} \delta_{2} e_{1} e_{2}\right]$
$B\left(\bar{y}_{F-T}\right)_{3}=\bar{Y} M_{1}\left[\delta_{1}\left(\alpha_{1} C_{1}^{2}-\rho_{01} C_{0} C_{1}\right)+\delta_{2}\left(\rho_{02} C_{0} C_{2}-\beta_{2} C_{2}^{2}\right)-\delta_{1} \delta_{2} \rho_{12} C_{1} C_{2}\right]$
[9]:
$E\left[\left(\bar{y}_{F-T}\right)_{3}-\bar{Y}\right]^{2}=E\left[\bar{Y}\left\{e_{0}+\delta_{1}\left(\alpha_{1} e_{1}^{2}-e_{1}-e_{0} e_{1}\right)+\delta_{2}\left(e_{2}-\beta_{2} e_{2}^{2}+e_{0} e_{2}\right)-\delta_{1} \delta_{2} e_{1} e_{2}\right\}\right]^{2}$
$M\left(\bar{y}_{F-T}\right)_{3}=\bar{Y}^{2} M_{1}\left[C_{0}^{2}+\delta_{1}^{2} C_{1}^{2}+\delta_{2}^{2} C_{2}^{2}-2 \rho_{01} C_{0} C_{1} \delta_{1}+2 \rho_{02} C_{0} C_{2} \delta_{2}-2 \delta_{1} \delta_{2} \rho_{12} C_{1} C_{2}\right]$

6. Minimum Mean Squared Error \& Optimal Choices for Proposed Estimator(s)

In this proposed estimator we have multiple choices of the combination $K_{i} ; i=(1,2)$ and optimal conditions obtained by mean squared error of all proposed designs.

For minimum mean squared error by $\left(\bar{y}_{F-T}\right)_{1}$ differentiating (5.3) with respect to δ_{1} and δ_{2} respectively and equating to zero.

$$
\left.\begin{array}{l}
C_{1}^{2} \delta_{1}+C_{1} C_{2} \rho_{12} \delta_{2}+\rho_{01} C_{0} C_{1}=0 \tag{6.1}\\
\rho_{12} C_{1} C_{2} \delta_{1}+C_{2}^{2} \delta_{2}+\rho_{02} C_{0} C_{2}=0
\end{array}\right\}
$$

By solving these simultaneous equations, we have

$$
\begin{equation*}
\delta_{1}=\frac{C_{0}}{C_{1}} \frac{\rho_{02} \rho_{12}-\rho_{01}}{\left(1-\rho_{12}^{2}\right)}=\hat{\delta}_{11} \text { and } \delta_{2}=\frac{C_{0}}{C_{2}} \frac{\rho_{01} \rho_{12}-\rho_{02}}{\left(1-\rho_{12}^{2}\right)}=\hat{\delta}_{12} \tag{6.2}
\end{equation*}
$$

At these values of $\hat{\delta}_{11}$ and $\hat{\delta}_{12}$ the minimum mean square error of the proposed estimator is

$$
\begin{equation*}
\left.\operatorname{MSE}\left(\bar{y}_{F-T}\right)_{1}\right|_{\operatorname{Min}}=\bar{Y}^{2} C_{0}^{2} M_{1}\left[1+V\left(V+2 \rho_{01}\right)+U\left(U+2 \rho_{02}\right)+2 U V \rho_{12}\right] \tag{6.3}
\end{equation*}
$$

where $U=\frac{\rho_{01} \rho_{12}-\rho_{02}}{\left(1-\rho_{12}^{2}\right)}$ and $V=\frac{\rho_{02} \rho_{12}-\rho_{01}}{\left(1-\rho_{12}^{2}\right)}$
By adopting the same procedure we can obtain the minimum mean squared error corresponding to $\left(\bar{y}_{F-T}\right)_{2}$ and $\left(\bar{y}_{F-T}\right)_{3}$ by (5.6) and (5.9).

The information of optimization regarding $\left(\bar{y}_{F-T}\right)_{2}$ and $\left(\bar{y}_{F-T}\right)_{3}$ is

$$
\begin{equation*}
\hat{\delta}_{21}=\hat{\delta}_{11} ; \hat{\delta}_{22}=-\hat{\delta}_{12} ; \hat{\delta}_{21}=\hat{\delta}_{11} \text { and } \hat{\delta}_{22}=-\hat{\delta}_{12} \tag{6.4}
\end{equation*}
$$

Rewriting (6.2), as

$$
\left.\begin{array}{l}
\hat{\delta}_{11}=\frac{C_{0}}{C_{1}} \frac{\rho_{02} \rho_{12}-\rho_{01}}{\left(1-\rho_{12}^{2}\right)}=\Delta_{1}(\text { say }) \tag{6.5}\\
\hat{\delta}_{12}=\frac{C_{0}}{C_{2}} \frac{\rho_{01} \rho_{12}-\rho_{02}}{\left(1-\rho_{12}^{2}\right)}=\Delta_{2} \text { (say) }
\end{array}\right]
$$

From (6.5) we can obtain the relation in the form of characterizing scalar as follows

$$
\left.\begin{array}{rl}
\left(\Delta_{1}+1\right) K_{1}^{3}+\left(f \Delta_{1}-f-8 \Delta_{1}-9\right) K_{1}^{2}+\left(23 \Delta_{1}-5 f \Delta_{1}+5 f+26\right) K_{1} \\
& +\left(4 f \Delta_{1}-22 \Delta_{1}-4 f-24\right)=0 \\
\left(\Delta_{2}+1\right) K_{2}^{3}+\left(f \Delta_{2}-f-8 \Delta_{2}-9\right) K_{2}^{2}+\left(23 \Delta_{2}\right. & \left.-5 f \Delta_{2}+5 f+26\right) K_{2} \\
& +\left(4 f \Delta_{2}-22 \Delta_{2}-4 f-24\right)=0 \tag{6.6}
\end{array}\right]
$$

Above polynomial (6.6) provides three choices of K_{1} and K_{2} for the minimum mean squared errors of proposed estimators.

In the similar way $\hat{\delta}_{21}=\Delta_{1} ; \hat{\delta}_{22}=-\Delta_{2} ; \hat{\delta}_{21}=-\Delta_{1}$ and $\hat{\delta}_{22}=\Delta_{2}$ will also provide the polynomials of degree three i.e. in each case we have three different choices of constant $K_{i} ; i=1,2$ to improve the estimator.

7. Empirical study

The target in this section is to evaluate the gain in efficiencies (in terms of mse) obtained by the proposed estimators. To see the performance of the various estimators discussed here, we are considering two different population data used earlier by other researchers. The empirical analysis is discussed below.

Population-1 [sources: Anderson (1958)]

$y:$ Head length of second son
$x_{1}:$ Head length of first son
$x_{2}:$ Head breadth of first son

The required information is given in Table 7.1.
Table 7.1. Population - 1 Parameters.

Parameter	Value	Parameter	Value	Parameter	Value	Parameter	Value
\bar{Y}	183.84	n	7	C_{0}	0.0546	ρ_{01}	0.7108
\bar{X}_{1}	185.72	N	25	C_{1}	0.0526	ρ_{02}	0.6932
\bar{X}_{2}	151.12	f	0.28	C_{2}	0.0488	ρ_{12}	0.7346

Table 7.2. Percent Relative Efficiency of various estimators with respect to mean per unit estimator for Population - 1 .

Estimator(s)	$\operatorname{PRE}(\bullet)$ with respect to \bar{y}		
	$\left(\bar{y}_{F-T}\right)_{1}$	$\left(\bar{y}_{F-T}\right)_{2}$	$\left(\bar{y}_{F-T}\right)_{3}$
\bar{y}	100	100	100
t_{1}	72.29	75.1	62.8
t_{2}	75.10	72.29	15.15
t_{3}	145.04	149.41	40.9
t_{4}	179.03	179.03	30.32
t_{5}	62.8	15.15	72.29
t_{6}	15.15	62.8	75.1
t_{7}	40.9	22.76	145.04
t_{8}	30.32	30.32	179.03
t_{9}	151.64	46.43	135.00
t_{10}	46.43	151.64	23.79
t_{11}	211.67	98.12	89.24
t_{12}	164.53	164.53	59.77
t_{13}	178.66	32.91	178.66
t_{14}	32.91	178.66	32.91
t_{15}	156.51	62.39	156.51
$\left(\bar{y}_{F-T}\right)_{1}^{*}$	231.90468	101.6880601	83.46525626
$\left(\bar{y}_{F-T}\right)_{2}^{*}$	101.68806	231.9046782	36.9499305
$\left(\bar{y}_{F-T}\right)_{3}^{*}$	83.465256	36.9499305	231.9046782

Population-2 [sources: Steel and Torrie (1960, p.282)]
y : Log of leaf burn in sec
x_{1} : Potassium percentage
x_{2} : Chlorine percentage
The information regarding population -2 is given in Table 7.3.
Table 7.3. Population - 2 Parameters.

Parameter	Value	Parameter	Value	Parameter	Value	Parameter	Value
\bar{Y}	0.6860	n	6	C_{0}	0.4803	ρ_{01}	0.1794
\bar{X}_{1}	4.6537	N	30	C_{1}	0.2295	ρ_{02}	-0.4996
\bar{X}_{2}	0.8077	f	0.20	C_{2}	0.7493	ρ_{12}	0.4074

Table 7.4. Percent Relative Efficiency of various estimators with respect to mean per unit estimator for Population -1 .

Estimator(s)	\%RE (•) with respect to \bar{y}		
	$\left(\bar{y}_{F-T}\right)_{1}$	$\left(\bar{y}_{F-T}\right)_{2}$	$\left(\bar{y}_{F-T}\right)_{3}$
\bar{y}	100	100	100
t_{1}	17.67	75.5	20.89
t_{2}	75.50	17.67	34.69
t_{3}	57.125	149.82	55.87
t_{4}	94.61	94.61	71.44
t_{5}	20.89	34.69	17.67
t_{6}	34.69	20.89	75.50
t_{7}	55.87	76.10	57.12
t_{8}	71.44	71.44	94.61
t_{9}	19.54	59.01	20.41
t_{10}	59.01	19.54	47.98
t_{11}	64.46	143.70	64.06
t_{12}	102.94	102.94	94.59
t_{13}	20.02	53.33	20.02
t_{14}	53.33	20.02	53.33
t_{15}	64.858	131.16	64.85
$\left(\bar{y}_{F-T}\right)_{1}^{*}$	$\mathbf{1 7 4 . 0 4}$	40.64	70.53
$\left(\bar{y}_{F-T}\right)_{2}^{*}$	40.64	$\mathbf{1 7 4 . 0 4}$	43.93
$\left(\bar{y}_{F-T}\right)_{3}^{*}$	70.53	43.93	$\mathbf{1 7 4 . 0 4}$

8. Discussion \& Conclusion

For population-1 the choices to optimization of mean squared error of $\left(\bar{y}_{F-T}\right)_{1}$ can be derived from (6.5) which give a polynomial of degree three (6.6). On solution we have
$\left[K_{1}\right]_{1}=6.0098 ;\left[K_{1}\right]_{2}=2.9586 ;\left[K_{1}\right]_{3}=1.6115 ;\left[K_{2}\right]_{1}=5.7733 ;\left[K_{2}\right]_{2}=2.9825$ and $\left[K_{2}\right]_{3}=1.634$. For $\left(\bar{y}_{F-T}\right)_{2}$ the values are $\left[K_{1}\right]_{4}=\left[K_{1}\right]_{1}, \quad\left[K_{1}\right]_{5}=\left[K_{1}\right]_{2}$; $\left[K_{1}\right]_{6}=\left[K_{1}\right]_{3}$ and $\left[K_{2}\right]_{4}=1.9132$. Similarly for $\quad\left(\bar{y}_{F-T}\right)_{3}$ values are $\left[K_{1}\right]_{7}=1.9206 ;\left[K_{2}\right]_{7}=\left[K_{2}\right]_{1} ; \quad\left[K_{2}\right]_{8}=\left[K_{2}\right]_{2}$ and $\quad\left[K_{2}\right]_{9}=\left[K_{2}\right]_{3} \quad$ whereas other roots are imaginary.

For population-2 the choices of the constant scalar K_{i} to reduce the mean squared error of $\left(\bar{y}_{F-T}\right)_{1}$ are
$\left[K_{1}\right]_{1}=39.9225 ;\left[K_{1}\right]_{2}=2.5859 ;\left[K_{1}\right]_{3}=1.0972 \quad$ and $\quad\left[K_{2}\right]_{1}=1.939$. For $\left(\bar{y}_{F-T}\right)_{2}$ the values are $\left[K_{1}\right]_{4}=\left[K_{1}\right]_{1},\left[K_{1}\right]_{5}=\left[K_{1}\right]_{2} ;\left[K_{1}\right]_{6}=\left[K_{1}\right]_{3}$; $\left[K_{2}\right]_{4}=5.7698 ; \quad\left[K_{2}\right]_{5}=2.8515$ and $\left[K_{2}\right]_{6}=1.6794$. Similarly for $\left(\bar{y}_{F-T}\right)_{3}$ values are $\left[K_{1}\right]_{7}=1.9968$ and $\left[K_{2}\right]_{7}=\left[K_{2}\right]_{1}$. The remaining roots are imaginary. $\left(\bar{y}_{F-T}\right)_{1}^{*},\left(\bar{y}_{F-T}\right)_{2}^{*}$ and $\left(\bar{y}_{F-T}\right)_{3}^{*}$ denotes the optimal efficiency gain with respect to mean per unit estimator in the above mentioned tables.

From these results it is certain that the proposed estimators submit a wide ground for the optimization by multiple choices of the characterizing scalar K_{i}. Since the generation of the estimators by the proposed classes is easy, a number of estimators can be able to achieve for more study. The proposed estimator proposed a wide choice for the characterizing scalar, which is the beauty of the proposed analysis.

By the compilation of the percentage relative efficiencies corresponding to population- 1 and 2 shown in table-7.2 and table-7.4 it is clear that the proposed estimators are more efficient than the other existing estimators as ratio estimator, product estimator, dual to ratio estimator, mean per unit estimator, ratio-cumproduct type estimator, etc., and many more chain type estimators which are discussed above, with considerable gain in terms of mean square error. Thus, the proposed estimators are recommended for use in practice.

REFERENCES

ABU-DAYYEH, W.A., AHMED, R.A. and MUTTLAK, H.A. (2003): Some estimators of finite population mean using auxiliary information, Applied Mathematics and Computation, 139, 287-298.

ANDERSON, T.W. (1958): An introduction to multivariate statistical analysis, John Wiley and Sons, Inc., New York.

COCHRAN, W.G. (2005): Sampling Techniques. John Wiley and Sons, New York.

COCHRAN, W.G. (1940): The estimation of the yields of cereal experiments by sampling for the ratio gain to total produce, Journal of Agricultural Society, 30, 262-275.

COCHRAN, W.G. (1942): Sampling theory when the sampling units are of unequal sizes, Journal of American Statistical Association, 37, 119-132.

DALABEHARA, M. and SAHOO, L.N. (1994): A class of estimators in stratified sampling with two auxiliary variables, Jour. Ind. Soc. Ag. Stat., 50, 2, 144 149.

DALABEHARA, M. and SAHOO, L.N. (2000): An unbiased estimator in two phase sampling using two auxiliary variables, Jour. Ind. Soc. Ag. Stat., 53, 2, 134-140.

DESRAJ (1965): On a method of using multi-auxiliary information in sample surveys, Journal of American Statistical Association, 60, 270-277.

HANSEN, M.H., HURWITZ, W.N. and MADOW, W.G. (1953): Sample survey methods and theory, John Wiley and Sons, New York.

KADILAR, C. and CINGI, H. (2004): Estimator of a population mean using two auxiliary variables in simple random sampling, International Mathematical Journal, 5, 357-360.

KADILAR, C. and CINGI, H. (2005): A new estimator using two auxiliary variables, Applied Mathematics and Computation, 162, 901-908.

KHARE, B.B. and SRIVASTAVA, S.R. (1981): A generalized regression ratio estimator for the population mean using two auxiliary variables, The Aligarh Journal of Statistics, 1 (1), 43-51.

MUKHOPADHYAY, P. (2000): Theory and methods of survey sampling, Prentice Hall of India Pvt. Ltd., New Delhi.

MURTHY, M.N. (1964): Product method of estimation, Sankhya, 26, A, 294307.

MURTHY, M.N. (1976): Sampling Theory and Methods, Statistical Publishing Society, Calcutta.

NAIK, V.D. and GUPTA, P.C. (1991): A general class of estimators for estimating population mean using auxiliary information, Metrika, 38, 11-17.

PERRI, P.F. (2007): Improved Ratio-cum-product type estimator, Statistics in Transition, 8, 1, 51-69.

RAY, S.K. and SAHAI, A. (1980): Efficient families of ratio and product type estimators, Biometrika, 67, 215-217.

SAHOO, J. and SAHOO, L.N. (1993): A class of estimators in two-phase sampling using two auxiliary variables, Jour. Ind. Soc. Ag. Stat., 31, 107-114.

SAHOO, L.N., SAHOO, R.K. (2001): Predictive estimation of finite population mean in two phase sampling using two auxiliary variables, Jour. Ind. Soc. Ag. Stat., 54, 4, 258-264.

SHUKLA, D. (2002): F-T estimator under two-phase sampling, Metron, 59, 1-2, 253-263.

SHUKLA, D., SINGH, V.K. and SINGH, G.N. (1991): On the use of transformation in factor type estimator, Metron, 49, 1-4, 359-361.

SHUKLA, D., THAKUR, N.S., PATHAK SHARAD and RAJPUT, D.S. (2009): Estimation of mean under imputation of missing data using factor-type estimator in two-phase sampling, Statistics in Transition, 10, 3, 397-414.

SINGH, M.P. (1965): On the estimation of ratio and product of the population parameters, Sankhya B, 27, 321-328.

SINGH, M.P. (1965): Ratio cum product method of estimation, Metrika, 12, 3442.

SINGH, V.K. AND SHUKLA, D. (1987): One parameter family of factor-type ratio estimator. Metron, 45, 1-2, 273-283.

SINGH, V.K. AND SHUKLA, D. (1993): An efficient one parameter family of factor-type estimator in sample survey. Metron. 51, 1-2, 139-159.

SINGH, V.K. AND SHUKLA, D. (1987): One parameter family of factor type ratio estimator, Metron. 45, 1-2, 273-283.

SINGH, V.K. AND SINGH, G.N. (1991): Chain type estimator with two auxiliary variables under double sampling scheme, Metron, 49, 279-289.

SINGH, V.K., SINGH, G.N. AND SHUKLA, D. (1994): A class of chain ratio estimator with two auxiliary variables under double sampling scheme, Sankhya, Ser. B., 46, 2, 209-221.

SRIVASTAVA, S.K. (1971): A generalized estimator for the mean of a finite population using multi-auxiliary information, Journal of American Statistical Association, 66, 404-407.

SRIVASTAVA, S.K. and JHAJJ, H.S. (1983): A class of estimators of the population mean using multi-auxiliary information, Calcutta Statistical Association Bulletin, 32, 47-56.
SRIVENKATARAMANA, T. (1980): A dual to ratio estimator in sample survey, Biometrika, 67, 199-204.

STEEL, R.G.D and TORRIE J.H.(1960): Principles and procedures of statistics, Mc Graw Hill Book Co.

SUKHATME, P.V., SUKHATME, B.V., SUKHATME, S. and ASHOK, C. (1984): Sampling Theory of Surveys with Applications, Iowa State University Press, I. S. A. S. Publication, New Delhi.

[^0]: ${ }^{1}$ Department of Mathematics and Statistics. Dr. Hari Singh Gour Central University, Sagar, M.P., India - 470003. E-mail: sharadpathakstats@yahoo.com, diwakarshukla@rediffmail.com.
 2 Center for Mathematical Sciences, Banasthali University, Rajasthan, India.

