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ABSTRACT. In this paper an estimator o f the finite population mean in the unit 
nonresponse situation is proposed. It is constructed as a combination o f the well-known 
regression estimator derived from the linear model and a reweighting-type estimator 
based on a logistic regression model. Combination weights depend on goodness of fit of 
respective models. Hence, the estimator for which the corresponding model better 
describes observed sample data dominates in the combination. Some Monte Carlo 
simulation results revealing its properties are presented.
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I. INTRODUCTION

Consider a finite and fixed population U of size N. A mean value 

7 - N " L . „ y .  ° f some characteristic Y taking values y\ .....уц, is to be

estimated. A sample s o f size n is drawn from U according to the sampling 
design p(s) determining the inclusion probabilities o f the first order denoted by 
Л| for i ,je U . Assume stochastic nonresponse that does not depend on the 

sample. Hence, an individual response probability P| may be associated with 
each unit and the sample s is randomly divided into subsets: Si and s2, containing 
responding and non-responding units respectively. Under nonresponse, the well- 
known Horvitz-Thompson estimator o f the population mean is biased, when 
computed solely on the basis of responding units. Bethlehem (1988) considers 
the following modification o f this estimator:
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and shows that its bias is aproximately equal to: B (y MHT) = С и ( у (, р ; ) / р ,

where P =  N ' ' ] T ieUp, and С и ( у , ,р () =  N ’^ ^ í y ,  -  Y ) ( p j - p )  . Hence,

the lower the covariance between yt and pi, the lower the bias. This estimator 
will be denoted by the symbol MHT.

Consider the superpopulation model ę, stating that values yi,...,yN are 
realizations o f independent random variables Уь ...,Ум> satisfying:

p W )  =  ßx,

l W )  = a2 (2)

for i=l,..,N. The vector ß = [ß |v .,,ß k] and scalar a ’ are model parameters, 

while X| = [ x x denotes vector of auxiliary characteristics Х|,...,Хц 

associated with i-th unit. Denoting X = [x ,, . . . ,x N] and у =  [ у , y N] and 
applying ordinary least squares we obtain the best linear unbiased (with respect 
to £) estimator of ß :

b = (X 'X )-1X 'y. (3)

The quantity b may be estimated from the sample by the statistic:

b =
(  Л ' 1X X

z
V(6i| 71 i )

ŕ

V«i 71 ‘ J
(4)

Consider the regression estimator of the population mean 

У REG =  У MHT ^ ( Х нт— Х мнт)

where x MT= N - | ^ . es(x i / n i ) and x MHT = (x i /7 ti ) / Z i6, , ( 1/7ti)- U is

more accurate than y MHX when (2) accurately reflects reality. It will be denoted 
further by the symbol REG.

Another approach to construct nonresponse-corrected population mean 
estimator relies on assumed dependencies between auxiliary variables and 
response probabilities. These relations are represented by parametric models,



such as logistic model (see Rizzo ct al. 1996, Ekholm and Laaksonen 1991), 
stating that units respond independently with probabilities:

Pi=! ^  (6> 

tor ieU , where X . .Д н ] is a parameter vector. Its maximum likelihood
»  A A

estimate к  = [A.| ] may be obtained using iterative methods considered 
e.g. by Minka (2001). Consequently, by replacing unknown pi’s with estimates

p, = ( l  + e ')  we obtain the following weighting-adjustment mean value 
estimator:

Утю = 7ľX! ■ (7)
N  i«, *iPi

This estimator should be more acurate than y Min. when the model (6)
accurately describes the behavior of pi’s. In the following study it will be 
denoted by the symbol RHO.

II. COMPOSITE ESTIMATOR

I he attractiveness of both regression and reweighting-type estimator 
depends on the ability o f underlying models to describe the behavior of yi or p;. 
One may attempt to measure this ability. The goodness o f fit o f the regression 
model (2) may be measured by means o f the respondent subset determination 
coefficient given by formula:

R =
*i i

Z (b-x,--LS b V | / (8)

Moreover, the goodness o f fit of the logistic model may be measured by the 
log-likelihood function In L = L „  In Pj + ^ . es In (1 - p j  or by the 

standarized quantity:



Rl = 2( /̂ľn~Tľ — 0.5) (9)

that shall take values from the <0,1 > interval. Let us now consider a composite 
estimator:

У COM = ®  REG У  REG ®  RHO У RIIO (Ю )

where a REC = R /(R  + RL) and a RII0 = RL /(R + R, ) arc weights proportional
to the goodness of fit of respective model. The composite estimator should 
behave like regression estimator when auxiliary information is more suitable for 
linear model, and behave like weighting adjustment estimator when available 
auxiliary information is more appropriate for logistic model. Hence the 
composite estimator should inherit the virtues of both. In the following 
paragraphs it will be denoted by the symbol COM.

III. SIMULATION RESULTS

A simulation study was carried out to examine the properties of four 
estimators: MHT, REG, RHO and COM. Experiments were executed using 
pseudo-random number generator of multivariate Gaussian distribution. Four 
variables: Y, X b X2, X3 were generated for 10000 population units with Y being 
variable under study, X| being auxiliary variable for regression estimator, X2 
being auxiliary variable for logistic model and X3 being unknown to sampler, 
determining individual response probabilities according to univariate logistic 
model: p ( = (1 + e x' . Simple samples were repeatedly drawn without 
replacement from the population. Survey behavior o f each unit was 
independently simulated assuming the response probability equal to pj. All 
estimators were computed using resulting incomplete data and their empirical 
distributions were examined. Three simulation experiments were carried out for 
correlation matrices between variables respectively equal to:

1 0.7 0.75 0.75 '  1 0 0.9 0.9

0.7 1 0.7 0.7 0 1 0 0
R l = Ri =1 0.75 0.7 1 0.75 * 1 0.9 0 1 0.9

0.75 0.7 0.75 1 0.9 0 0.9 1



1 0.9 0 0.9
0.9 1 0 0.9

0 0 1 0

0.9 0.9 0 1

All standard deviations were set to one. Mean value vector was always equal 
to ц = [10,10,10,0]. Matrix Ri represents the situation when auxiliary data is 
suitable for both REG and RHO estimators. With R2 it is suitable only for RHO. 
With R3 it is suitable only for REG. All simulations were carried out for n = 50, 
100, ..., 1000. Efficiency of estimators relative to the MHT estimator is shown 
on graphs 1-3. In all three experiments it is computed for any estimator T as 
rM SE(T) = M SE(T) / M S E (yMHT).
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Pic. 1. The relative efficiency as a function of sample size n for correlation matrix R|
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Pic. 2. The relative efficiency as a function of sample size n for correlation matrix R2

For all estimators the relative efficiency diminishes with growing sample 
size and then stabilizes for large values of n, with notable exception of REG 
estimator and R2 where it is approximately constant. Estimators REG and RHO 
are more accurate than MHT when their respective models fit well to the data. 
The estimator COM is more accurate than MHT when at least one of these 
models fits well to the data. One may say that this estimator is more robust with 
respect to model misspecification than REG and RHO. Moreover for large 
sample sizes it has usually the lowest MSE, although the advantage over REG 
and RHO is modest.

n

Pic. 3. The relative efficiency as a function o f sample size n for correlation matrix R3
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Pic. 4. The bias as a function o f sample size n for correlation matrix R|

The bias of all estimators is shown on graphs 4-6. All of them are biased 
negatively. The bias is constant or slowly diminishes with growing sample size n to 
stabilize when n is large enough. In absolute terms, the bias of MHT estimator was 
the highest in most cases. The estimators REG and RHO provide substantial bias 
reduction when auxiliary information is suitable and respective models fit well to the 
data. Otherwise, their bias is very close to the one of MHT estimator. The bias of the 
COM estimator is contained between the biases of REG, RATIO and MHT. Usually 
it does not differ much from the lowest observed bias. In all experiments it is 
significantly lower than the bias of MHT so the composite estimator provides 
substantial bias reduction when at least one model fits the data well.
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Pic. 5. The bias as a function of sample size n for correlation matrix R:
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Pic. 6. The bias as a function of sample size n for correlation matrix R3

CONCLUSIONS

All simulations were carried out assuming strong dependency between the 
variable under study and response probabilities, which is highly unwelcome 
from the estimation viewpoint. Both regression and weighting-adjustment 
estimators allow to reduce bias and improve accuracy provided that respective 
model fits the data well. The proposed composite estimator reduces the bias and 
improves accuracy when any of these two models fits well.
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W ojciech G am rot

O PEWNYM ESTYMATORZE ZŁOŻONYM ŚREDNIEJ W POPULACJI

W artykule zaproponowno estymator złożony średniej w  populacji skończonej przy 
brakach odpow iedzi. Jest on kombinacją estymatora regresyjnego opartego na modelu  
liniow ym  i estymatora wykorzystującego w ażenie danych opartego na modelu  
logistycznym . W agi kombinacji uzależniono od miar dobroci dopasowania tych modeli 
do danych. Przedstawiono wyniki sym ulacji wykonanych dla zbadania jeg o  w łasności.


