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T E ST S O F  M U L T IV A R IA T E  N O R M A L IT Y  U SIN G  
SH A P E  M E A S U R E S O F TH E D IST R IB U T IO N

A B ST R A C T . Karl Pearson, in 1990, proposed two numerical characteristics o f  the 
distribution o f  random variables i.e. asymmetry (skew ness) and kurtosis (flatness). Their 
sample approximations a llow  to describe partially the empirical distribution, to find out 
if  it differs from a sym metric distribution and if  it is exceedingly flat or high.

The measures o f  shape for distributions with known first four central mom ents are 
uniquely defined, in particular, for the univariate normal distribution they are equal to 
0  and 3 . It allow s to compare distributions with known measures of shape with the nor
mal distribution. Such comparisons in univariate case is done by means o f  standardized 
tests based on the third and fourth sample central mom ents. An overview  o f  such tests 
may be found in the work by D ’A gostino and Pearson (1973).

The translation o f  shape measures to multivariate case was done by Mardia (1970). 
These measures significantly enriched the statistical description o f  empirical distribu
tions and allow ed to introduce many tests o f  multivariate normality. The distributions o f  
these tests’ statistics using sam ple multivariate asymmetry and kurtosis are usually de
rived through central limit theorems.

In the work an overview  o f  multivariate normality tests based on the sam ple m eas
ures o f  asym m etry and kurtosis is given. The statistical properties o f  these measures are 
discussed as w ell as the usefulness o f  these tests with respect to pow er and sam ple size.

K ey words: multivariate normality, statistical tests, shape measures.

I. DEFINITION OF MULTIVARIATE RANDOM V ECTO R’S 
ASYMMETRY AND KURTOSIS

L et X  b e  /» -d im en sio n a l random  vec to r  w ith  a d istr ib u tion  g iv e n  b y  the c u 

m u la tiv e  fu n ctio n  F p ( x , p , 'L )  = F p , w h ere  x e R p, p  is  a p -d im e n s io n a l vector  

o f  ex p ected  v a lu es and L, b y  assum ption , is  a p  x p -d im en sio n a l covar ian ce
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matrix positive definite. When the distribution considered is multivariate normal 
its cumulative distribution function is denoted by N p [x,/J,ľ.) = N p .

Multivariate asymmetry and kurtosis denoted with Д р, ß 2p as random vec

tor’s X  measures of shape, are Pearson’s numerical characteristics J ß  and ß 2 
of univariate case, generalized to p-dimensional case. The numerical character
istics ß lp, ß 2p are defined with a form

(a) bilinear

P„=e [ [ ( x - ^ z - ' ( J r . - x ) ] ’ }

for independent /7-dimensional random vectors X , X . identically distributed,

(b) quadratic

Plr= Ą [ ( x - r t r ' ( x . - M)] J

for /»-dimensional random vector X, where S '1 is the inverse matrix of I . In 
particular, for p  = 1 , we have /?,, = Д  and ß 2l = ß 2.

The properties of P\p , ß 2p when X  ~ N p are given by two lemmas. 

Lemma 1. If X  ~ N p then ß lp = 0 .

Proof. Let Y  =  £ “|/2(ЛТ ~ / j )-Then Y  ~  N p{0 ,l) ,  w h e re /is  a unit ma

trix and ß Xp = is j (Y' Y. )3 ]=  0, because ordinary moments o f odd order o f the 

standard normal distribution are equal to zero and each component of two-linear 
form Y' Y, contains at least one variable in odd power.

Lemma 2. If X  ~  N p then ß lp = p ( p  + 2) = g  ■

Proof. Let us make use o f the formulae for the expectation and variance of 
the quadratic form

E ( X 'A X )  = E ( X ' ) A E ( X )  + t r ( lA ) ,

D \ X ' A X )  = 4 E ( X ')A I A Z E (X )  + 2 t r \ ^ Ĺ Á f 1\[ ,



where //•(•) stands for matrix trace. After substitutions X  —> ( X  -  / / )  and 
A - » I ' 1, we get

P 2p =  e [ [ ( ^ - ^ ) ' i - , ( x . - / / ) ] 2} =  d í ( [ ( ^ - ^ ) - z - ' ( ^ - ^ ) ] 2) + 

+ { е [ ( Х - И) " £ Г ' ( Х . - И)] }2 = 2p  + p 1 = /?(/?+ 2).

When p  = 2,  i.e. for twovariate distributions, we have

ßa  = ( 1 - P 2)"3 {у]о + /оз + 3(1 + 2 р г )(у]г + r l ) -  2Л3змз +

+b p{yi0( p y n - Г2 \ )  +  Г<а(р/21 - Г п ) - ( 2 + Р 2)УпГ,г]}>

ßll = [^40 + /о4 +  2 у22 ■*" (^22 — У|3 — У з | ) ] ^ ~  Z7 ) 1 

where

X  = ( X ]tX 2j ,  р  = {м„рг), o f  = D 2( X {), er] = D(X2),

p  = Corr(X ,,X 2),

r„  = / ^ / « 20 ,  д ,  = E{(X,-A)r(X2- ^ ) ‘}

In particular, when p  = 0 , i.e. when the coordinates of the two dimensional 
random vector are independent, then

ß \2  =  ľ lo  +  /0 3  +  3 ( r .2  +  Гг2. )  a n d  ß l 2  =  ^40 +  Г<)4 +  2 Г22 •

Now we will prove lemmas 1 and 2 in the case of p  = 2 , i.e. for the two 
dimensional normal distribution.

Lemma 3. Д 2 = O and/?22 =  8 if ( X ltX 2) '~  N 2.
Proof: We apply the well known formulae for distribution’s moments (see 

e.g. Kendall and Stuart 1963 p. 91): yn =  y2\ =  /30  =  0 from which imme
diately follows that ß n = 0. To prove ß 22 we apply other known formulae 

У4o = r,M = 3, y3l = yl3 = 3 and y22 = 1 + 2 p 2 , from where we have

ß 22 = {3 + 3 + 2(1 + 2/>2) + 4/>2[1 + 2/>2 - 3 -3 ]} /(1 - /> 2)2 =

= {8-16 p 2 + 8 p *} /(1 -  p 1 )2 = 8(1 -  2/?2 + p 4} /(1 -  /72 )2 = 8.



The formulae for ß n and ß n  for some two dimensional distributions are 
given in the form of (Mardia 1974, Mardia et al. 1979, Davis 1980):

a) the mixture of two dimensional normal distributions

h ( x )  = 0 , 8 f ( x ,  0 , 1) +  0 ,2 f (x ,0 , cr21 ) , where / ( • )  is the density function

and ß n = 0, ß n = 8
(er2 + 4 )2

b) two dimensional gamma distribution

for (x ,,x 2) ' 6 R 2 = (0 ,о о )д г(0 ,о о )-Д 2 =0,
36

ß n  = 11>

c) two dimensional exponential distribution

P ( X { > x{, X 2 > х г) -  exp[-x, - x 2 -  max(x,, x2)],

(дг,х2) е Л 2; ß n =
З/з4 + 9 p ł +15/92 +12p + 4

2 \32(1 -  p )
5 + p -  p 1 - 3 p 3

ßn  4(1- p 2) ’
d) twodimensional Morgenstern distribution

/*(*) = 1 + 3/0(1 - 2x,)(1 - 2x2), X6 (0,1) x (0,1), ß n =0, 

ß n  = 4(7 - 1 Ъ р 1) /(5(1 - p 1) 2.

II. M ULTIVARIATE SAMPLE ASYMMETRY AND KURTOSIS

The estimators blp and b2p of ß lp and ß lp based onp-dimensional sam

ple U  = { X x, X 2, . . . , X n) are expressed through the powers of bilinear and
quadratic form (Mardia 1970, 1974, 1977) in the following way:

a) sample multivariate asymmetry (skewness)



b) sample multivariate kurtosis (flatness)

b2p = - t s 2^
n j . I

where g tj, = ( X j S~l ( X ľ ~ X )  and X  and S are the mean vector and 

covariance matrix based on sample U. The forms gj .  and g M may also be 

expressed through scaled residual vectors Yj = S~U2( X j  - X ) ,  then 

g ir = Y'j  Yj, and gjj = Y  j'Yj . In this notation 11 stands for the inverse 

matrix S ' 12, so that S '12 (S '12)’ = S.

The random variables bip and b2p have distributions implied the distribu

tion of the random vector X  whose independent realizations are expressed by 
matrix U. For these variables the distribution characteristics in the case o f the 
multivariate nonnal distribution are the following (Mardia 1970, 1974, 1977, 
Mardia and Kazanawa 1983, Mardia and Foster 1983):

a) g((n + l)(p + l) 6^ g  = p(p + 2),
(л + 1)(и + 3)

b) D 2(bip) = ]2('P + ^ P + 21,

c)

d)

E(blp) = g ( n - l )

и + 1 ’

D \ b lp) = 8g(n -  3)(n -  p  -  l)(w - p  + 1) 
(л + 1)2(и + 3)(и + 5)

e) n
2g (9p4 + \ 2 p i - \ 9 2 p 2 — 328/? + 256



П (h 4 -  64g(P  + 8)O /̂ 3 > 2 p) 2 *

(и + 1)2(« + 3)(« + 5)
(л -  3)(/i -  p  -  l)(n -  p  +1)

h) Cov(bt ,Ьг ) = 12p h / n 2, h -  8p2 -13/? + 23,

i) Corr(bip,b2p) = 3/i

i ,  r .

k) o ' ( » 6 / ~ l2v’ ( / ) .

[6я(р + 1)(р + 2)2]|/2 ’ 

'/> + 2ч
ŕ f  + i

v 3 ,
, 4 0 =  ■ , 

r

1) CoV(s[b^p ,b2p) = - ^ L
nyjnf

m) Д Ц / 5 >
>/2v (/)(1  -  2 /  + 4v2 ( / ) )

2 /  r \ \ 3 / 2

n) Corr(Jb~b2p) =

yj6ph

n j ň f

8 g ( 6 / - 1 2 v 29 / )
1/2



The above given formulea for the moments of random variables bXp and 

b2 are correct for big n, and their approximations were given up to the order of

III. TESTS OF MULTIVARIATE NORMALITY BASED
ON bXp AND b2p

For the distribution N p we have ß \ p = ®< anc* ß i p = P(P + 2) = g. In

vestigating the /»-dimensional empirical distribution Pp by means of independ

ent observable random vectors X itX 2, . . . ,X n we ask if they come from a mul
tivariate population with ß ip = 0 or A , - *  or, simoultaneously, ß lp = 0 and 

ß 2p -  g. This leads to define the null hypothesis as H 0 : Pp e  N p against the 

alternative hypothesis determined by one of the distribution classes:

Ą - f l t p *0 ,  ß 2p=gl  A1 - ß {p=o, ß l p * g ; A i - ß lp* o ,  ß 2p* g .

There are many tests of multivariate normality to verify the hypothesis for
mulated which are based on sample statistics blp and b2p. We will differentiate

between the omnibus and directed tests.
Definition 1. Statistical tests for a determined class of alternative distribu

tions will be called directed tests.
Definition 2. Statistical tests most powerful in the class o f possible alterna

tive distributions will be called omnibus tests.
To verify the null hypothesis against # , :  Pp e  A, or / / , : Pp e  A2 we use

the tests of multivariate normality based on the tests statistics being the equiva
lents o f b, and b, . The directed tests used will be most powerful for distribu-

l p 2 p

tion classes A, and A2. For the omnibus tests and the alternative defined by

family A} we apply the tests’ statistics being functions blp or b2p. These tests

have the property o f simoultaneous assessment of the departures of multivariate 
assymetry and kurtosis of the empirical distribution Pp from ß Xp = 0  and

ß 2p = g. These tests are recommended whenever we do not have any prior in

formation about the distribution specified in the alternative distribution.



The descriptive statistics based on blp and b2p have distributions known for 

big n, which are given by lemmas 4 and 5.

i ( p  + ALemma 4. nbip/ 6 ~  f  = \ I, when U ~ MN p that is when U has

the matrix nonnal distribution (see e.g. Wagner 1990).

Lemma 5. (b2p -  E(b2p)) l  D[b2p) ~  N(0, l ).

The proofs of the lemmas may be found in Mardia (1970, 1974), as well as 
in Domański Wagner (1982).

From the applicational point of view, one differentiates between the tests of 
multivariate normality based on bXp and blp with respect to the determined class

of alternative distributions, in the following way:

• Ai -  M „C „L (b{p) , u { b yp) ,w { b [p),Q, tests;

• A2-  M 2,C2,U(b2p) ,W[b2p) ,Q2 tests;

• A3-  M i ,C3,CĄ,S l ,S j l , S ^ , C l , C 2R,Q tests.

In what folows, we review the above mentioned tests, limiting ourselves to 
mentioning: (1) author (or authors), (2) test’s statistic and (3) the distribution of 
the test’s statistic, always assuming that U  ~  M N  .

A. Tests for hypothesis / / „ : Pp e N p or # ,  : Pp e Ar .

(a) (1) Mardia (1970); (2) M, = nbip /6  ; (3) (lemma 4);

(b) (2) Bera i John (1983); (2) C, = , (3) X 2. ,
0 1=1

T, = £ у , 2 / я , 1=1,2.

Yy = •S'"1/2(Arj - X )  = ( Y ]j, Y 2j, . . . ,Ypjy ;

(c) (1) Mardia and Foster (1983); (2) L(blp) = у  + S \n (b lp -<!;),

(3) N(0,1) y , S , ^  - SL Johnson distribution parameters;



(d) (1) Mardia and Foster (1983); (2) U ( b . )  =
К  ~ 6 f / n

—  P
6 ̂ 2  f i n 2

; (3) N(0,1);

1

[š *  N -3 /+ 3(e) (1) Mardia and Foster (1983); (2) W(bXp) = \ —n f ib[p - 3 / + — l ^ j l f

(the Wilson-Hilferty approximation of distribution bip ); (3) N (0,1).

B. Tests for hypothesis H 0 : Pp e  N p or H x : Pp e  A 2 .

(f) (1) Mardia (1970); (2) M 2 = ^  ; (3) Zi'>
8 g / n

(g) (1) Bera and John (1983); (2) C2 = — « £ ( Г .- 3 > ’ + £  (7 -,.- l) !
/ - I  I Z i< ľ ip

(3) T . - Y X l n ,  r » = X ( W 1 /n - r ,  as in (b);
y=l У-1

6, - g ( n - l ) / ( / j  + l)
(h) (1) Mardia and Foster (1983); (2) U(b2p) = -

y ß g / n 2

(3) N(0,1);

(i) (1) Mardia i Foster (1983); 

(2) W(b2B) = з Д  1 ~ -
1 -2 /9 /;

2/J V 2 I 9/; l + a p / ( f - 4 ) \
; (3) N(0,1);

/• <  +  2 )  _ b 2P - E ( b 2p )  
f = 6  + 4( d  + J d  + d  ) , d -  2(/7 + 8)2 ’ D (^ } •

C. Tests for hypothesis 7 /0 : Pp £ N p or H x \ Pp e  А ъ.

(j) (1) Jargune and Mckenzie (1982); (2) Л /3 = Л /, + Л /2; ( 3) ,£y+1;

4 É ^ 2 + É ( ^ - 3)(к) (1) Вега and John (1983); (2)
i=i

(1) (1) Bera and John (1983); (2) C4 - C ,  + C2; (3) Х Р(Р+з)/2>



(m )(l) Mardia and Foster (1983); (2) S 2Ĺ = L2 p) + U 2(b2p) , 

S l = U \ b ip) + U 2(blp), S2 = W \ b J  + W \ b 2l>),\ p f  ' ^  v 2p /» r t  \ L' \ p J  1 rr У У 2 p >

“li ŷ»2
N  —  U  r  O ,C 2n =b'V~'b,  C l  =d 'V~ 'd ,

b =
h i p  - 6 / / Л

, v  =
"1 2 f t  n2 \ 2 p h / n 2

b2p- g ( n - l ) / ( n + l ) \ 2 p h ! n 2 8 g i n

d =
’y[bTP - E ( J b ~ j

n - 1
И+1

(3) all statistics mentioned here follow the chi-square distribution with two 
degrees of freedom;

(n) Small (1980); (2) £ , =  « Y (1), P , e A , ;  Q 2 = Y (2)U ^ Y(2),

P , e A 2

0  = 0, + 02 , P p 6 A 3,

Y0> =

y 2 =

<5* s in h '1 (y]b{ ( X { ) /  Л,*

S ' s in h '1 Q b ^ X ^ / ^  

r 2 +S1swh- l[(b2( X l) - 4 2)/Ä1]

y2 + iJ2sinh-,[(62( X J - ^ ) / A 2]

Ц|) = (»■«■)» U (2) =  ( 4 )  . i’ = 1.2,...,A

where riľ are sample coefficients of linear correlation determined from matrix

U. The mentioned constants 5*\ and \ / X \  can be found in the tables given 
by D’Agostino and Pearson (1973). The remaining constants S 2, y 2, Л2, £2 are 
determined according to the principle of parameter estimation in the Sl Johnson 
distribution family.



IV. TH E PROPERTIES OF M ULTIVARIATE NORM ALITY 
TESTS USING blp AND b2p STATISTICS

In chapter 3 we mentioned many tests of multivariate normality of the di
rected and omnibus type. Some of them have simple form of tests’ statistics, 
other require additional numerical calculations.

More important properties of multivariate tests of normality using b]p and

b2p statistics are as follows:

a) they use scaled vectors of residuals allowing to find big residuals when big 
were the bXp and b2p statistics;

b) they use the numerical characteristics of the distribution o f bip and К  sta

tistics mentioned in chapter 3;
c) they make use of constant parameters of the Johnson’s family of distribu

tions which are determined by means of special numerical methods;
d) they have the limiting distribution either normal or chi-square;
e) the chi-square degrees of freedom depend only on p;
0  tests are appropriate for big n, because the numerical characteristics of blp

and blp were given for order 0(ri2);

g) the omnibus tests using both blp and will be good for applications in 

which the correlation between random variables blp and b2p is sufficiently

small i.e. whenever there the condition is n > 300(8p2 -1  Ър + 23) / ( p  +1) 

met;
h) the Wilson-Hilferty transformation for constructing tests based on bip may

replaced with a transformation corrected by Goldstein (1973);
i) because bip and b2p are invariant with respect to affine transformations, the

tests based on bip and b2p possess same property ;
j) there are no major numerical difficulties in determining tests statistics when 

one assumes that the sample covariance matrix is positive defined; 
k) tests based on bXp and b2p have moderate power for undetermined alterna

tive distributions and the power is higher for directed tests.

To illustrate the strength of correlation between bip and b2p influencing the 

usefulness of some tests of multivariate normality, in table 1 we present the re
sults of our own computations:



Table I

Correlation between blpand Ьг/1

.. p _____ n Corr ľ n Corr
1 30 0.9487 4 30 1.6499

50 0.7348 50 1.2781
100 0.5164 100 0.9087
200 0.3674 200 0.6390

2 30 0.9360 5 30 2.0605
50 0.7250 50 1,5960
100 0.5127 100 1.1285
200 0.3625 200 0.7980

3 30 1.2522 6 30 0.9533
50 0.9699 50 0.7784
100 0.6859 100 0.6029
200 0.4649 200 0.4767

The above presented calculations prove how important it is to determine 
the proper sample size with respect to the number of variables investigated p  in 
order to get a reasonable correlation measure. The general coclusion is that this 
number grows with the number of variables.

V. CONCLUSIONS

We gave an overview of more important tests of multivariate normality 
based on statistics bip and b2p, corresponding to multivariate sample asymmetry

and curtosis. These tests were also extensively discussed by K. V. Mardia in the 
seventies and eighties.

The tests mentioned are characterised with good power, especially in the 
case of directed tests. Many tetsts use the sample vector o f means and sample 
covariance matrix which is assumed to be positive defined. These assumptions 
may be weakened, then, instead of normal inversion the so called g-inversion is 
applied. This makes the scope of practical applications o f the tests discussed, 
much wider.

Investigating tests using statistics bip and b2p has been slightly curtailed,

mainly, due to the fact that more powerful tests o f multivariate normality have 
been proposed (e.g. those based on stochastic processes or empirical charteristic 
functions).



A general overview of other tests of multivariate normality based on ran
domization principle, union and Roy’s intersection, power transformation as 
well as radii and angles with the use of multivariate geometry was given in 
a monograph by Domański et al. (1998). On the other hand, Wagner (1990), 
gives a generalized Shapiro-Wilk test.
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W iesław  W agner

TESTY W IELO W Y M IA RO W EJ NORM ALNOŚCI KORZYSTAJĄCE 
Z  MIAR KSZTAŁTU ROZKLADU

Miary kształtu rozkładu jedno- i w ielow ym iarow ych zm iennych losow ych  znajdują 
pow szechne zastosow anie w  konstrukcji testów jedno- i w ielow ym iarow ej normalności. 
Przy ich konstrukcji korzysta się z pierw szych czterech m om entów  centralnych w ypro
wadzanych z odpow iednich statystyk próbkowych przy odpow iednich założeniach sto
chastycznych.

W pracy dokonano przeglądu testów  wielowym iarowej normalności opartych na 
próbkowych miarach asym etrii i kurtozy. Podano różne ich w łasności statystyczne, 
uwzględniające w ielkości prób oraz postacie przekształcone do jednow ym iarow ych  
statystyk próbkowych. Załączone zostały również w yniki badań dotyczące m ocy testów.


