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ON DETECTION OF HOM OGENEOUS SEGM ENTS  
OF OBSERVATIONS IN FINANCIAL TIME SERIES

A B ST R A C T . The aim o f  this article is to present financial data m odelling in pres­
ence o f  stochastic disorders. Change-point analysis is applied. W e adapt universal 
method o f  change-point detection for disorder in parameters o f  GARCH processes. 
A  comparison o f  the m odel fitted to whole sample with m odels built on hom ogenous 
data subset is made.
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I. INTRODUCTION

The disorder of probabilistic mechanism driving the data is common in fi­
nancial data analysis. It is known that markets generate clusters of different sto­
chastic volatility violating data homogeneity. This phenomenon can be inter­
preted as variance disorder. Analysts, when modelling financial data set, are 
very often faced with volatility effect. Unfortunately, in some cases it is really 
hard to find model well-fitted to the whole sample. The aim of this paper is to 
present financial data modelling supported by change-point analysis which help 
us to solve the problem of disordered data. Taking into account the type of ana­
lyzed disorder we use a method assuming changes in parameters of marginal 
distributions of data, in particular changes in variances. Such a method was pro­
posed in Lavielle (1999). We adapt it to GARCH process case. Finally, we fit 
a GARCH model to series of returns of dollar on DM exchange rate taking into 
account data disorders.
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II. PROBLEM  STATEMENT AND M ETHOD DESCRIPTION

Suppose that process {Xt is observed. К  -1  changes occur at unknown

times in marginal distributions Ft of Л ',’s, t = 1,2......n. They affect

parameter 0 ,0 e & Q R ''.  For the first /* observations we have 0 = 0\. Next, 

between instants +1 and t2, 0  = 02. Finally, marginal distributions of 

X . , . . . ,X  depend on 0 = 0... Thus we can consider a vector'ЛГ-М л
О = (#, j, 0y 6 0 c ť ,  j  = l ,. . . ,K  and the following model

for any Borel subset A of R P( X I 's can be p-dimension vectors) and with 

/0 = 0 . Detection o f the change-point set } bases on minimizing
a contrast function. For any subsequence X ,, . . . ,X .  we assume that there exist

functions ф: © -» Rp, \j/ : 0  -> Rm (twice continuously derivable functions) and 

£: R p —» R m for which the contrast function WH satisfies:

к

where 1 < t< t <n and ( . )  stands for the inner product. Define:

к
(2)

Then, the minimum contrast estimator

is obtained as a solution of the following minimization problem:



where:
TK = { l  = { r 0,r [......, r * ) ,0  = ro <г, < . . . < t k_\ < rK =1 }, with T j= tj!n \

QK={0 = ( ą ..... eK ) , 0 , e © } ;

Wn( X kt0k) is the contrast function calculated over segment 

X k = ( X lt У Proposed estimator works under two assumption. The

first one is imposed on the contrast function:

Assumption 1 There exist a function w: 0  x © —> /? suchthat

V I< j<K \/O e&  w ( 0 j ,0 ) ^ ( 0 ) + ( v / ( 0 ) ,E ^ X i)) . (4)

where /*_, +1 < / < ŕ* and such that, fo r  any

(<9,0 ')e@ x© , w {0 ,0 )< w [0 ,0 ')  with w (0 ,0 ) = w [ 0 ,0 )  i f  and only i f

0  = 0'. Furthermore, fo r  any 1 < j < K ,  there exists a neighborhood 

U (0 ' j cz © o f  O' and a constant В > 0 such that

V O eU  (0 j)  w(Oj, 0) -  w(Oj , 0 j ) ^ B \ \ 0 j - 0 1[

The second assumption is expressed in the terms o f process {7jr(0) 

defined below:

V 0 e ©  = (5)

Assumption 2 There exists h e [ 1,2 ), such that

E
V /«/

< C ( Ö K ,l< r < /  + i < n  (6)

fo r  some constant C(0).
The considered method can be summarized by the following theorem proved 

in Lavielle (1999):
Theorem  1 Let тя be the estimate o f  the normalized change-points se­

quence ť  / n and 0n be the estimate o f  the parameters in different segments,



obtained as a solution o f  the following minimization problem:

Ч{Ь в ) е Т к х ® к Jn( t , L ) ^ n ( b i ) -

Then, under assumptions I and 2, converges in P-probability to

(i.g').
Notice that process 77 and contrast function depend on the type of disorder. 

Changes in mean, variance or some other parameter determine different formu­
las (l)-{6). The point of our interest are disorders in GARCH parameters. In the 
next section we show that changes in such parameters can be interpreted as dis­
orders in variances o f X t 's.

III. ADAPTATION TO TH E GARCH CASE

Let us consider a GARCH (p ,q )  process:

X, = у[Щ г, , t e N , (7)

where {Z,} is a sequence of i.i.d. random variables such that E Z t = 0 and 

E Z 2 =1. Moreover { # ,}  follows the equation:

У-l J-1

We have:

Var(X , ) = E(X,2) = E (E (X ,2 IF„,)) = E (H , ) =

í p (9)
= а0+ £ « ; В Д 2-,) + 1 А В Д - Д

j - 1 j*>\

where: Ft_t = criX,,...A",,,). We infer that <r2(t): = Var(Xl) depends on the 

vector of parameters ( a0,a l, . . . ,a q,ß i, . . . ,ß l>y  Thus, a change in 0  can be 

considered as a change in variance cr2 (/). This means the method used for the



detection of variance disorders could be applied here. For that kind of disorders 
the following function J n(r,Q) is proposed (see Lavielle (1999)):

nk -  length of &-th segment; су]  =cr2(/t_ ,+ /) for 1 < i ś n k\ 1 <,k<K; 

H = E (X ,)\ \< t< n .  Moreover, in this case, for 0 = cr2,

Given (10) and (11) we are able to verify both assumptions for GARCH se­
ries. Assumption 1 for such function J n is satisfied as J n bases on the Gaussian

likelihood function and w ( 0 ,0 ) - w ( 0 ,0 )  is the Kullback-Liebler distance (see

Lavielle (1999)). On the other hand there are several sufficient conditions stated 
in Lavielle (1999) under which assumption 2 holds. If we impose on { 77, } ^  

the following covariance structure

for some a > 0, then (6) is satisfied with h -  max { 2 — a , 1}.
We are going to use this fact to show that assumption 2 is fulfilled for 

GARCH processes in case of variance disorder. First, applying formula (11), let

( 10)

( 11)

Cov(Tj,,Tjl^ )  = 0 (s -a) , t , s s N

us compute covariance function for {7/,},eV :

Cov{ijn til+s) - - ~ C o v iy X] - E ( X f ) ,X ^ s -E (X ? +s) ) -

= ± C o v ( x f , X l ) -

Notice that Cov(jf,,tj,łs ) requires knowledge about autocovariance function 

for { X ] }. To tackle this problem we will use well known property of squared



GARCH (p ,q) process: if { X ,} lsN is GARCH (p ,q) satisfying (7) and (8) then 

|X ,2| has ARM A representation:

^!=a»+ŹK+ ß j  )x l j -  Z ß j y' - j + v' >
J - I j . l

where r = max{ p , q } and vt = X ]  - Ht. The innovation process {v,} is white 

noise with finite second moment. Thus, if j A",3} can be rewritten as the ARMA 

process then its autocovariance function is geometrically bounded: 
C o v ( x f , X l s) < C r ,  with r  e (0,1) and C -  some positive constant (see 

chapter 13 of the book Brockwell, Davies (1991)). Using this fact we obtain that 
Cov(;/,,^,+J) < C r J for some constant opositive C. Of course the condition: 

ŕ  = 0 ( s ~a), a e  [ 1 ,2) is met. Hence, usage of presented method for detection
of changes in parameters of GARCH models has found a justification. Practical 
application of the method for К  = 2 is presented in the next section.

IV. REAL DATA EXAM PLE -  DETECTION OF CIIANGE-POINT

In practical part o f the paper we model financial time series using change- 
point analysis. We study series of returns of Dollar on DM exchange rate from 
18 May 1971 to 18 April 1975 (961 observations). The series of daily returns is 
displayed in the left panel of figure 1. We decided to model our data set using 
family of GARCH (p ,q ) processes with p  = q = 1. The empirical studies in the 
field of financial time series reveal that p  = q = \ is by far the most common 
model order for GARCH series.

We can observe two different regimes in the pattern o f the variance. The 
first interval refers to low market volatility, the second interval (followed by 
outlier) corresponds to high volatility.

This reasonable preliminary analysis suggests two homogeneous segments 
of data. The estimated change-point confirms our observation - see right panel of 
figure 1. Applying the method described in sections 2 and 3, we obtained mini­
mum of estimation procedure at point 430 what corresponds to 14 February 
1973. Thus we register a disorder point at this day. The change-point analysis 
splits data set into two homogenous segments. The next step is to compare the 
quality of the model fitted to the whole sample with models fitted to each regime 
separately.



Figure 1. Data plot. Left panel: data without the line expressing change-point, right panel: 
data with the line o f change-point.

V. REAL DATA EXAMPLE -  COMPARISON OF TH E MODELS

According to carried out change-point analysis we divided the series in two 
segment. The first contains observations from 1 to 430 (18/May/1971
-  15/Feb/1973). The second one in turn -  from 431 to 961 (15/Feb/1973
-  18/Apr/l 975). In table 1 we present results of parameters estimation. It is no­
table that parameter values differ significantly from subset to subset. The de­
tected disorder stands behind this effect. As a consequence o f nonhomogeneous 
regimes, estimation conducted on the whole sample results in compromise 
between stochastically different segments.

Table 1

Parameters o f fitted models

Data set «0 A

whole sample 0.378-10 s 0.1592 0.7550

first segment 0.764 10"* 0.4398 0.5051

second segment 0.545 10 s 0.2290 0.6754

Source: own calculations.

However when we look at table 2 we realize that it could be a bad compro­
mise. The table presents results of diagnostic checking of residuals. Assuming 
that the fitted model is correct we should get i.i.d. residuals. We collected results



of two test of randomness applied to analyzed models. We can suspect that re­
siduals based on the model fitted to all data are correlated, because p-value of 
Ljung-Box test is quite small. Other models pass both tests. Diagnostic of re­
siduals reveals that the model fitted to all data could be poorly adjusted. Com­
parison of stochastic volatility obtained on disjoin subsets with volatility ob­
tained on the whole sample provides us another argument against an idea of 
fitting one model to the stochastically different data segments. In figure 2 we 
display absolute values of analyzed series and estimated volatilities. Left panel 
plots volatility coming from single model and right panel -  volatility generated 
by separately built models. We can easily see that stochastic volatility generated 
by one model is overestimated and too smooth on the first segment. The second 
segment volatility looks reasonably in both cases.

Table 2

Diagnostic checking -  tests o f residuals randomness

Data set Test Test statistics p-value
whole sample Ljung-Box 32.632 0.037

Turning points 618 0.102
first segment Ljung-Box 19.731 0.475

Turning points 273 0.157
Second segment Ljung-Box 26.579 0.148

Turning points 349 0.705

Source: own calculations.

Figure 2. Absolute value of data versus estimated volatility. Left panel: volatility generated 
by the model fitted to whole sample, right panel: volatility combined from models built

on separate subsets



VI. FINAL REMARKS

Statistical analysis of data set exhibiting strong non-homogeneity provides 
us conclusions that stochastic modelling should be followed by change-point 
analysis. Disorder detection and -  after that -  building separate models on ho­
mogeneous segments plays a crucial role. Single model is not enough to capture 
sometimes very different data segments and can result in strong overestimation 
(underestimation). Final inferring may be very uncertain then.
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W ojciech Sarnow ski

W YKRYW ANIE JEDNORODNYCH SEGM ENTÓW  OBSERW ACJI 
W FINANSOW YCH SZEREGACH CZASOW YCH

Praca podejmuje zagadnienie modelowania finansowych szeregów czasowych 
w obecności rozregulowań struktury probabilistycznej. Zmiany wykrywane są za po­
mocą uniwersalnej metody detekcji zaadaptowanej do wykrywania rozregulowań 
w parametrach procesów typu GARCH. Przeprowadzona została statystyczna analiza 
jakości modeli uwzględniających wykryte zaburzenia z modelami, które zakładają iż 
ciąg danych ma jednorodną strukturę probabilistyczną.


