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Abstract. The problem of testing the hypothesis of multivariate normality is discussed. 
Several methods of transformations to univariate normal samples are compared. An 
extensive simulation study for the comparison of various tests is performed under broad 
range of alternatives. Numerical experiment shows that the testing procedures combining 
simple approximate transformations to  univariate norm ality and powerful tests for 
univariate normality give quite interesting results.
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I. INTRODUCTION

Although the assumption of multivariate normality is very common in 
many multivariate data analysis methods (like m ultivariate regression, 
principal components, ect.) it is, in practice, seldom verified because of the 
lack of simple testing procedures. Various tests for the multivariate normality 
were, of course, proposed: for classical overviews see e.g. M a l k o v i c h ,  
A f i f i  (1973) and M a r d i a  (1980); among tests proposed in the recent 
years there arc: test based on empirical characteristic function ( B a r i n g h a u s  
and I l e n z e  (1988)), tests based on distance and directions (see D u n n  
(1995)), methods based on density estimates ( B o w m a n ,  F o s t e r  (1993)), 
m ethods for combining independent tests of the univariate normality 
( M u d h o l k a r ,  S r i v a s t a v a ,  L i n  (1995)), test based on interpoint
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distances proposed in B a r t o s z y ń s k i ,  P e a r l  and L a w r e n c e  (1997) 
and the test based on the combination of the Shapiro -Wilk test for 
marginals and the principal components method ( P e t e r s o n  and S t r o m - 
b e r g  (1998)). However, these tests arc too complicated in general. From 
the practical standpoint it would be more interesting to decompose the 
problem of testing the multivariate normality into the problem of testing 
univariate normality.

In this paper we compare various existing schemes of transformations 
multivariate samples into univariate samples and then we test normality 
using well known univariate tests. An extensive Monte Carlo study was 
performed under broad range of alternatives. Numerical experiment shows 
that the testing procedures combining simple approximate transformations 
to univariate normality and powerful tests for univariate normality give 
quite interesting results.

U. TRANSFORMATIONS

Let us denote by X =  ( X X „ )  a p x n  matrix of n observations in

p-dimensions. A covariance matrix S is defined as S =  ( X - X X X - X ) '
n

where X =  ^ (Xt +  ... +  X„) is sample mean vector. Below wc describe five

methods of transformation X into p independent univariate samples.
Transformation I. Initial mukivariate data arc transformed into the 

scaled residuals Z =  S 1/2(X —X),  where S ~ 1/2 is obtained from the 
equation

s i/2( s i/2y =  S

the decomposition of matrix S by Choleski. The output data Z are 
approximately independent standard normals.

Transformation II. Let V =  diag(Sň 1'2, ..., Spp112), C =  VSV (this gives 
the correlation matrix) and A =  diag(Xlt ..., Xp) is matrix with the eigenvalues 
of С on the diagonal. Then we define transformed data matrix as

Z =  HA ~ 1/2H ' V(X — X )

where the columns of H are the corresponding eigenvectors, such that 
Л  Л  =  Ip a°d A =  ITCH. This method also gives approximately standard 
normals. For more details see D o  o r n i  к (1994).

transformation III. This method is based on the regression model 
obtained as the conditional distribution of X; given X1; ..., X^ j .  M u d -
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h o l k a r ,  S r i v a s t a v a  and L i n  (1995) proposed an algorithm which 
under assumption that random sample X of size n is taken from p-variatc 
normal population N p(\i, E) leads to p indepenedent normal vectors 
Z |,  Z i, Zp of sizes n, (n-2), (n -3), ... (n-p), respectively.

We suggest to use their algorithm followed by the Durbin randomization 
method (see D u r b i n  (1961)), which transforms vectors ZJ, Ъ'р into 
independent samples from standard normal distribution.

Transoformation IV. This method is a modification and simplification of 
the regression approach by Mudholkar, Srivastava and Lin mentioned above. 
However, now we obtain p approximately independent normal vectors 
ZÍ, ..., Zp each of size n. Then using the Durbin randomization method we 
may also obtain independent samples from standard normal distribution.

Transformation V. W a g l e  (1968) proposed to use the multivariate beta 
distribution and the principle of randomization to transform sample X from 
the multivariate normal population N p(ii,L) with unknown parameters into 
a sample Z from distribution N p(0 ,Ip). It means that we have pn independent 
observations from the univariate standard normal distribution.

III. TESTS

Now in order to verify a hypothesis of the multivariate normality we 
have to combine one of the data transformation £ described above with 
a test (p for the univariate normality. Such superposition T =  cp »£ of the 
transformation method with a test for the univariate normality also forms 
a testing procedure. Thus combining different transformations with different 
tests for the univariate normality we get various tests for the multivariate 
normality (tests T10-T18). We will investigate their statistical properties in 
order to find optimal combination. Moreover, we will compare these tests 
with other known tests for the multivariate normality (tests T1-T9). Here 
are a detailed list of tests used in our simulation study:

I 1 -  test based on transformed skewness and kurtosis measures, see 
D o o r n i к (1994);

T2 -  „classical” M ardia’s test based on multivariate skewness, see 
M a r d i a  (1970);

T3 -  M ardia’s test based on the multivariate kurtosis, see M a r d i a  
(1970);

T4 -  M ardia’s omnibus test based on T1 and T2;
T5 -  the Hellwig test, see H e l l  w i g  (1977);
T6 -  test based on empirical characteristic function (this statistic depends 

on parameter ß > 0; we used ß = 1), see B a r i n g h a u s  and H e n z e  (1988);



T7 -  test based on multivariate density estimation, sec B o w m a n  and 
F o s t e r  (1993);

T8 -  test that uses a transformation of the multivariate normal distribution 
into the uniform distribution of directions on the p-dimensional unit sphere 
(see K o z i o l  (1982, 1983)), sec D u n n  (1995);

T9 -  test based on testing uniformity of directions, see also D u n n  (1995);
T10 -  test based on a transformation to the unvariate normal sample 

followed by the jy-tcst of S h a p i r o  and W i l k  (1965); an implementation 
of VV'-test by R o y  s t o n  (1982a) was used;

T i l  -  test based on transformation to univariate normal sample followed 
by the univariate test of normality using correlation coefficient of the 
normal probability plot (see L o o n e y ,  G u l l e d g e  (1985));

T12 -  test based on transformation to univariate normal sample followed 
by the E p p s - P u l l e y  (1983) test of normality;

T13 -  test based on transformation to univariate normal sample followed 
by the V a s i c c k  (1976) entropy test;

T14 -  test based on transformation to univariate normal sample followed 
by the classical K o l m o g o r o v - S m i r n o v  goodness of-fit test;

T15 -  test based on transformation to univariate normal sample followed 
by the univariate version of the test based on inlerpoint distances proposed 
in B a r t o s z y ń s k i ,  P e a r l  and L a w r e n c e  (1997);

T16 -  test based on decomposition of the problem of testing p-variate 
normality into p independent problems of testing univariate normality; after 
decomposition test based on interpoint distances was used;

T17 -  test based on decomposition of the problem of testing p-variate 
normality into p independent problems of testing univariate normality using 
the S h a p i r o - W i l k  test;

T18 -  test based on decomposition of the problem of testing p-variate 
normality into p independent problems of testing univariate normality using 
the K o l m o g o r o v - S m i r n o v  test.

As it is seen test T16, T17 and 'Г18 are based on the decomposition of the 
multivariate problem into p independent problems of testing univariate norma
lity. Thus the initial null hypothesis of multivariate normality H 0 is the 
intersection or the logical conjunction of the univariate hypotheses H}>, Ilf,. 
Hence, the problem of testing hypothesis H0 is equivalent to testing p indepen
dent (or approximately independent) hypotheses Hk0, к = 1, ..., p, obtaining the 
p-values and then combining them in order to get an overall test of H 0.

We may combine independent p-values P t, P 2, Pp in many ways, 
e.g. using following well-known statistics (for details see for example 
M u d h o l k a r  and G e o r g e  (1979), M u d h o l k a r ,  S r i v a s t a v a ,  L i n
(1995)):

1. Fisher’s 4/F = -  2Ľ log(P,);



2. the logit statistic V L =  А  1/2E log(P,/(l — P,)), where A =  П
15p +  12

3. Liptak’s statistic 4*N =  £<r_1(l -  P ;) where Ф" 1 denotes inverse 
cumulative distribution function of the standard normal distribution.

These statistics have known distributions under null hypothesis of normali
ty: 4'F has a chi-square distribution with 2p degress of freedom, 4>1 is 
approximated by Student’s t distribution with (5p +  4) degrees of freedom, and 
4'N has a normal distribution with mean 0 and variance p. Fisher’s method 
was recommended due to its optimality property of Bahadur efficiency (see 
L i t t  el  and F o l k s  (1971)) and gives best power results according to 
simulation experiments from M u d h o l k a r ,  S r i v a s t a v a ,  L i n  (1995).

T19 -  the Peterson and Stromberg test based on the combination of 
the Shapiro-Wilk test for maginals and the principal components method. 
Their test requires its own transformation of the data (we denote it as 
transformation VI), see P e t e r s o n  and S t r o m b e r g  (1998).

IV. SIM ULATION STUDY

To compare different test of multivariate normality we performed extensive 
Monte Carlo simulations. The power of these tests at the 5% level against 
alternatives was estimated by the frequency of samples falling into the 
corresponding critical regions. We have considered 50 alternatives to multiva
riate normal distribution: 30 alternatives for bivariate case (series A) and 20 
altenatives for general case (series B). The detailed description of all alternati
ves can be found in Appendix A. For each alternative 1000 samples of sizes n:
10, 25, 50 and dimensions p: 2, 4, 8 were generated to obtain empirical power.

Critical values for all the test were obtained by corresponding percentage 
points from 10000 samples generated from N p(0,1) distribution.

The simulations were done in Ox version 2.00 m atrix program ing 
language (see D o  o r n i  к (1998)) on Cray Superserver 6400 computer in 
Warsaw University of Technology. Additionally some test were implemented 
in SAS language. Ox and SAS source programs can be obtained from the 
authors upon request.

We considered two multivariate normal distributions N p(0, Ľ), where
=  1, i = l , . . . ,  p and Ey =  0,5 for i ф j  and =  0,9 for i ^ j .  Results 

show that considered tests have acceptable size.
When a new test is suggested an author generally compares it with one 

or two other test using only few alternatives. This way it is no difficult to 
show that his test dominates the others. Moreover, the simulation study 
presentation may be very clear. However, we decided to compare 19 tests



using 50 alternatives and 6 data transformations for different sample sizes and 
dimensions. Thus the first problem is now how to compare all the results? The 
summarized version of our results is shown in tables 1-8 in Appendix B.

I'ables 1-6 show which test and transformation gives maximum power for 
corresponding alternatives and considered parameters n and p. Next we tried 
to utilize the nonparametric approach for multiple sample comparison. More 
precisely, we used the Kruskal-W allis test which computes mean ranks to 
distinguish statistically significant differences between samples under study. In 
our case we rank tests for multivariate normality according to their simulated 
power. Tables 7-8 show the ranking of tests based on Kruskal-W allis scores.

V. CONCLUSION

lh e  power comparisons lead to general conclusion that none of the 
tests is always the best. The behavior of the tests depends on sample size, 
dimension and alternative. However, one may observe some tendencies. It 
seems that the Peterson and Stromberg test (T19) is the overall winner in 
our ranking procedure. 1 hus this newest test, based on the combination 
of the Shapiro—Wilk test for marginals and the principal components 
method, requires further theoretical studies. Next important conclusion is 
that the idea of transformating data to one-dimensional sample (or samples) 
following by the univariate Shapiro-Wilk test gives competitive tools for 
multivariate normality testing. Here we reccommend tests T17 and 'Г12. 
Other tests which seem to have quite good properties are T9, T10 and the 
classical M ardia’s test based on the multivariate kurtosis (T3).

Additionally, regarding tests T16, T17 and T18 based on combinations 
of independent univariate tests, it is worth to note that the best method 
of combinations is Fisher’s method, so our experiments confirm results 
from L i 11 e 1 and F o l k s  (1971) and recommendations of M u d h o l k a r ,  
S r i v a s t a v a ,  L i n  (1995). According to our simulating study none of the 
data transformation to distribution N p(0, I) is the best too. Numerical 
experiments indicate only that the regression transformation III by M u d - 
h o 1 к a r, S r i v a s t a v a ,  L i n  is the worst.

A short comment on limitations of simulation would be desirable. One 
should be aware of two general difficulties with simulation: variability between 
simulations and that the results are often quite specific to the settings we have 
chosen. I he first difficulty is intrinsic to the inference problem and is dealt 
with by choosing samples large enough. But there is little we can do about the 
second difficulty. This means that simulations are less satisfactory than 
theoretical results but nevertheless they provide a very useful suplement to



theoretical results and often can be used when theoretical results are una
vailable. 

Hence the final conclusion is that more both theoretical and simulation 
studies in this field are still needed.

REFERENCES

A r i z o n o  I., O h t a  H. (1989), A Test fo r Normality Based on Kullback-ljeibler Information 
Amer. Statist., 43, 20-22.

B a r i n g h a u s  L., H e n z e  N. (1988), A Consistent Test fo r Multivariate Normality Based on 
the Empirical Characteristic Function, „M etrika” , 35, 339-348.

B a r t o s z y A s k i  R., P e a r l  D.  K., I . a w r c n c e  J. (1997), A Multidimensional Goodness-of-Fit 
Test Based on Interpoint Distances, J. Amer. Statist. Assoc., 92, 577-586.

B o w m a n  A. W., F o s t e r  P. J. (1993), Adaptive Smoothing and Density-Based Tests o f  
Multivariate Normality, J. Amer. Statist. Assoc., 88, 529-537.

C. o x  D. R., S m a l l  N. J. H. (1978), Testing Multivariate Normality, „Biometrika” , 65, 263-272.
D o o r n i k  J. A., H a n s e n  H. (1994), An Omnibus Test fo r Univariate and Multivariate 

Normality, Available on the Internet at http://www.nulT.ox.ac.uk/ Users/Doornik.
D o o r n i k  J. A. (1998), Object-Oriented Matrix Programming using Ox 2.0, London, Timbcrlake 

Consultants Ltd and Oxford: http://www.nulT.ox.ac.uk/ Users/Doornik.
D u n n  C. L. (1995), Critical Values and Powers fo r  Tests o f  Uniformity o f  Directions Under 

Multivariate Normality, Commun. Statist.-Theory Meth., 24(10), 2541-2560.
O u r  b in  J. (1961), Some Methods in Constructing Exact Tests, „Biometrika” , 48, 41-55.
E p p s  Г. W., P u l l e y  L. B. (1983), A Test fo r  Normality Based on the Empirical Characteristic 

Function „Biometrika” , 70, 723-726.
11 e l l  w ig  Z. (1977), On the Testing o f Hypothesis that on n-Dimensional Variable is Normal, 

[in:] Problems o f Formalization in the Social Sciences, Ossolineum, Wroclaw.
H e n z e  N. (1990), An Approximation to the Limit Distribution o f  the Epps-Pulley Test Statistic 

fo r  Normality, „M etrika”, 37, 7-18.
H e n z e  N., Z i r k l e r  B. (1990), A Class o f  Invariant Consistent Tests fo r  Multivariate 

Normality, Commun. Statist.-Theory Meth., 19(10), 3595-3617.
H o r s w e l l  R. L., L o o n e y  S. W. (1992), A Comparison o f  Tests fo r  Multivariate Normality 

that are Based on Measures o f  Multivariate Skewness and Kurtosis, J. Statist. Comp 
Simul., 42, 21-38.

J o h n s o n  M. E. (1987), Multivariate Statistical Simulation, Wiley, New York.
K o z i o l  J. A. (1982), A Class o f Invariant Procedures fo r  Assessing Multivariate Normality 

„Biometrika” , 69, 423-427.
K o z i o l  J. A. (1983), On Assessing Multivariate Normality, J. Roy. Statist. Soc., B45, 358-361.
L e s l i e  J. R., S t e p h e n s  M.  A., F o t o p o u l o s  S. (1986), Asymptotic Distribution o f  the 

Shapiro-Wilk W  fo r  testing fo r  Normality, Ann. Statist., 14, 1497-1506.
L i t  t e l  R. C., f o l k s  J. L. (1971), Asymptotic Optimality o f  Fisher's Methods o f Combining 

Independent Tests, J. Amer. Statist. Assoc., 66, 802-806.
L o o n e y  S. W., G u l l e d g e  T. R.  (1985), Use o f the Corelation Coefficient with Normal 

Probability Plot, „The American Statistician” , 39, 75-77.
L o o n e y  S. W. (1995), How to Use Tests fo r  Univariate Normality to Assess Multivariate 

Normality, „The American Statistician", 49, 1, 64-70.
M a a J. F., P e a r l  D. K„  B a r t o s z y  ń s k i  R. (1996), Reducing Multidimensional Two-Sample 

Data to One-Dimensional Interpoint Distances, „The Annals o f Statistics” , 24, 1069-1074.

http://www.nulT.ox.ac.uk/
http://www.nulT.ox.ac.uk/


M a l k o v i c h  J. F., A fi  fi  A. A. (1973), On Tests fo r Multivariate Normality, J. Amer. 
Statist. Assoc., 68, 176-179.

M a r d i a  K. V. (1970), Measures o f  Multivariate Skewness and Kurtosis with Applications, 
„Biometrika” , 57, 519-520.

M a r d i a  K. V. (1974), Applications o f  Some Measures o f Multivariate Skewness and Kurtosis 
fo r  Testing Normality and Robustness Studies, „Sankhya” , B36, 115-128.

M a r d i a  K. V. (1975), Assessment o f Multinormality and the Robustness o f  Hotelling's T2 
test, „Applied Statistics", 24, 163-171.

M a r d i a  K. V. (1980), Tests o f  Univariate and Multivariate Normality, [in:] Handbook o f  
Statistics, Ed. P R. Krishnaiah, Vol. 1, Ch. 9, North-Holland Amsterdam.

M a r d i a  K. V., F o s t e r  K. (1983), Omnibus Tests o f Multinormality Based on Skewness and 
Kurtosis, Commtin. Statist.-Theory Meth., 12(2), 207-221.

M u d h o l k a r  G.  S., G e o r g e  E. O. (1979), The Logit Statistic fo r  Combining Probabilities
-  an Overiew, [in:] Optimizing Methods in Statistics, Ed. J.S. Rustagi, 345-365, Academic 
Press, New York.

M u d h o l k a r  G. S., M c D e r m o t  M., S r i v a s t a v a  I). K.. (1992), A Test o f  p-Variate 
Normality, „Biometrika” , 79, 850-854.

M u d h o l k a r  G. S., S r i v a s t a v a D . K., L i n  C. T. (1995), Some p-Variate Adaptations o f  
the Shapiro-Wilk Test o f  Normality, Commun. Statist.-Theory Meth., 24(4), 953-985.

P e t e r s o n  P., S t r o m b e r g  A. J. (1998), A Simple Test fo r  Departures from  Multivariate 
Normality, Technical Report No 373, Department of Statistics, University of Kentucky; 
also available on http://www.ms.uky.edu/ ~  statinfo/techreports/tr373/tr373.html

Q u i r o z  A. J., D u d l e y  R. M.  (1991), Some New Tests fo r Multivariate Normality, 
„Probability Theory and Related Fields” , 87, 512-546.

R o y  s t  o n  J. P. (1982a), An Extension o f Shapiro and Wilk's W  test fo r Normality to Large 
Samples, „Applied Statistics” , 31, 115-124.

R o y s t o n  J. P. (1982b), Algorithm A S  177. Expected Values o f Normal Order Statistics 
(Exact and Approximate), „Applied Statistics” , 31, 161-165.

R o y s t o n  J. P. (1983), Some Techniques fo r Assessing Multivariate Normality Based on the 
Shapiro-Wilk IF, „Applied Statistics” , 32, 115-124.

S h a p i r o  S. S., W i l k  M. B. (1965), An Analysis o f Variance Test fo r  Normality (Complete 
Samples), „Biometrika” , 52, 591-611.

S m a l l  N. J. H. (1985), Multivariate Normality, Testing for, [in:] Encyclopedia o f  Statistical 
Sciences, Eds. S. Kotz, N. L. Johnson, C. E. Read, Vol. 6, North-Holland, Amsterdam.

S r i v a s t a v a  M. S., H u i  T. K. (1987), On Assessing Multivariate Normality Based on 
Shapiro-Wilk W  Statistic, „Statistic and Probability Letters”, 5, 15-18.

S z k u t n i k  Z. (1987), On Invariant Tests fo r Multidimensional Normality, Probab. Math. 
Statist. 8, 1-10.

V a s i c e  к О. (1976), A Test fo r Normality Based on Sample Entropy, J. Roy. Statist. Soc., 
B38, 54-59.

V e r s l u i s  C. (1996), Comparison o f Tests fo r  Bivariate Normality with Unknown Parameters 
by Transformation to an Univariate Statistic, Comun. Statist.-Theory Meth., 25(3), 647-665.

W a g l e  B. (1968), Multivariate Bela Distribution and Test fo r Multivariate Normality, J. Roy. 
Statist. Soc., B30, 511-516.

http://www.ms.uky.edu/


Przemysław Grzegorzewski, Robert Wieczorkowski

TESTOW ANIE W IELOW YMIAROW EJ NORMALNOŚCI 
ZA POM OCĄ TRANSFORMACJI DANYCH

(Streszczenie)

W pracy porównano różne metody testowania hipotezy o wielowymiarowej normalności 
za pomocą odpowiednich transformacji i znanych testów jednowymiarowej normalności. 
Wykonano szereg symulacji z wieloma alternatywami w celu zbadania mocy rozważanych 
testów, likspcrymcnty numeryczne pokazały dobre własności i możliwości praktycznego 
zastosowania idei transformacji połączonej z kombinacją sprawdzonych jednowymiarowych 
testów normalności (w tym klasycznego testu Shapiro-Wilka). W implementacji algorytmów 
i obliczeniach symulacyjnych bardzo efektywnym narzędziem okazał się język programowania 
macierzowego Ox.

I o describe different alternatives to multivariate normal distribution the 
following notation is used:

JV(0, 1) -  standard normal distribution, Exp(l) -  standard exponential 
distribution,

LN(0, 1) -  logonormal distribution given by exp(N(0, 1)), x} ~  chi-square 
distribution with /  degrees of freedom, tf  -  Student’s distribution with 
/  degrees o f freedom, G(a, b) -  gamma distribution with density 
h аГ(а)х“~ 1 exp( — x  / b), Beta(a, b) -  beta distribution with density 
B(a, b ) - ' x a- l { \ - х ) ъ~ \ Ъ < х <  1).

DX® D 2 is the distribution having independent marginals Dl and D2, 
Dp denotes the product of p independent copies of distribution D.

PSIIp(m, L) is p-dimensional elliptically symmetric Pearson Type II 
distribution with the density function

and tf  (E) is p-variate t distribution with /  degrees of freedom and density

Appendix A

Г(р /2  + т + 1) 
Г (т  +  1)лр/2 | Е Г 1/2(1 - х Т _ 1 х ) "  (0  <  х ' Е _ 1 х  <  1 , т  >  -  1)

|Z |- i / 2(1 + / - V l - b c r (/+p)/2

SPH(Q)  stands for a spherically symmetric distributed random  vector 
X  such that ЦА'Ц has distribution Q. N M I X _  A p(p0, p lt p2, a2, p2), 
denotes the normal mixture model poN p(0, E j) +  (1 -  p0)N p{p2, £ 2), where



and L 2 arc positively definite matrices with L , having all of its diagonal 
elements equal to 1 and all of its ofT-diagonal elements equal to p x and 
D2 having all of its diagonal elements equal to a\  and all of its off-diagonal 
equal to p 2. N M IX . .  ß p( |il t (i2) will be used for a specific bimodal normal 
mixture of the form I) -I- 0.5Np(|i2,1) and N M I X _ C p(p0, d ,L )  for
mixture poN p(0, Ľ) 4- (1 — p0)N p(Q, d h )  (d>  0). Multivariate chi-square dist
ribution will be denoted by ^p(fl5 fp\ f ) \  this distribution can be defined 
as the joint distributions of Wif W2, W p, Wt = V, -f- V for i =  1,2, 
where Vlt V2, V p arc independent y2 variates with degrees of freedom 
f u f z '  •■■■‘fp  respectively, and V is independent of F/.s with x2f distribution.

MLNp(L) stands for multivariate logonormal distribution obtained as 
exp(Np(0, E)) (coordinatewise). MBPLp(0) denotes multivariate Burr-Parcto- 
Logistic distribution with uniform marginals and parameter 0.

KII \  and K I I 2 will denote examples of the Khintchine distributions 
with normal marginals and GEP1 and GEP2 will denote two variants for 
Generalized Exponential Power random variables; we used definitions from 
H o r s  w e l l  and L o o n e y  (1992).

For more details concerned with methods of generation of samples from 
multivariate distributions we refer the reader to J o h n s o n  (1987).

We have chosen the following alternative distributions:

A l: E x i i I)2 A16: N(0,1) ® Beta(\, 2)

Л2: Щ 0, I)2 A17: N M I X _ A 2(0.5, 0.0, 2.0, 1.0, 0.0)

A3: G (5,l)2 A18: N M I X _ A 2(0.5, 0.0, 4.0, 1.0, 0.0)

A4: (x^)2 A19: N M IX .A ^ O . 5 ,  0.9, 2.0, 1.0, 0.0)

A5: (Z?5)2 A20: N M I X . A 2(0.5, 0.9, 0.5, 1.0, 0.0)

A6: ( i2)2 A21: N M I X - A 2(Q.5, 0.9, 0.5, 1.0, -0.9)

A7: ( t5) 2 A22: PS112(0 ,12)

A8: L(0, l ) 2 A23: PSII2( \ , I 2)

Л9: Beta (1, 1)J A24: t 2( l 2)

A10: Beta (1 ,2 )J A25: t HUi)

Al l :  Beta (2, 2)2 A26: SPH(Exp(  1))

A 12: N(0,1) ® £xp(l) A27: SPH(G(5, 1))

A13: N(0,1) ® x\ A28: SPH  (Beta (1, 1))

A14: N(0,1) ® t5 A29: SPH (Beta (1,2))

A15: N(0,1) ® Beta (1, 1) A30: SPH (Beta (2,2))



B l: (0(2,1)*’ Bl l :  P S U J  10 ,E), where I „ - l ,  i= l , . . . ,p  
LtJ =  0 ,5  for i Ф j

B2: N M I X -Л /0 .5 ,  0.0, 3.0, 1.0, 0.0) B12: PSIIJIO,  E), where XtJ =  1, ŕ =  1...... p
Zu ш 0.9 for i ŕ  j

B3: N M I X _ B p( 1.5, -  1.5) C5 u* o *»4

B4: N M I X . A „(0.5, 0.0, 0.0, 3.0, 0.0) B14: í 10(E), where Ey =  1, i =  1 E(y =  0.5 
for i ŕ  j

B5: ЛШ/АГ_Л„(0.5, 0.9, 1.0, 1.0, 0.0) B15: t 10(E), where E„ «  1, i =  1......p, E(J =  0.9
for i ŕ j

B6: KII  1 B16: MBPLfP.)

B7: KI I 2 B17: M I N P(Z), where £„ =  0.5, i =  l , . . . ,p  
Ey =  0.25 for i Ф j

B8: G £P(0.1663, 0.125) B18: N M I X _Ср(0Я, 9)

B9: G£P(27.905, 2.0) B19: N M I X . C ' Í 0.9, 16)

BIO: PSI I „(10, /„) B20: ZJ(2, 2,..., 2; 3)

Appendix В
T a b l e  1

Tests and transformations giving maximal power for various alternatives, n =  10

P
Alterna

tives
Power Test Transfor

mations P
Alterna

tives
Power Test Transfor

mations

2 AI 0.602 12 2 2 B16 0.240 15 2
2 A2 0.801 12 2 2 B17 0.501 12 1
2 A3 0.153 12 1 2 B18 0.344 6 1
2 A4 0.306 12 2 2 B19 0.370 2 1
2 Л5 0.142 12 2 2 B20 0.263 7 2
2 Л6 0.453 1 4 4 Bl 0.507 12 2
2 А7 0.172 6 1 4 B2 0.112 15 1
2 А8 0.125 2 4 4 B3 0.098 15 1
2 А9 0.227 15 1 4 B4 0.483 6 2
2 AlO 0.235 13 2 4 B5 0.305 4 5
2 A ll 0.123 15 2 4 B6 0.191 4 1
2 A12 0.308 19 6 4 B7 0.519 7 1
2 A13 0.143 17 2 4 B8 0.082 6 2
2 A14 0.124 4 4 4 B9 0.071 13 2
2 A15 0.113 3 5 4 B10 0.072 3 1
2 A16 0.094 13 2 4 B ll 0.074 3 5
2 A17 0.102 3 5 4 B12 0.074 5 1
2 A18 0.198 19 6 4 B13 0.124 19 6
2 A19 0.170 9 5 4 B14 0.122 2 1
2 А 20 0.141 6 2 4 B15 0.115 2 2
2 A21 0.296 19 6 4 B16 0.269 13 2
2 A22 0.224 3 1 4 B17 0.610 12 2



T a b l e  2

Tests and transformations giving maximal power for various alternatives, n =  10 (contd.)

p
Alterna

tives Power Test Transfor
mations P

Alterna
tives Power Test Transfor

mations

2 A23 0.139 3 4 4 B18 0.368 4 2
2 A 24 0.467 6 2 4 B19 0.392 19 6
2 A25 0.128 2 2 4 B20 0.395 12 2
2 Л26 0.547 7 1 8 B1 0.430 12 2
2 Л27 0.097 3 4 8 B2 0.202 19 6
2 A28 0.091 9 4 8 B3 0.152 19 6
2 A29 0.229 6 1 8 B4 0.286 19 6
2 Л30 0.110 3 4 8 B5 0.203 2 2
2 HI 0.348 10 2 8 B6 0.235 15 2
2 B2 0.118 15 1 8 B7 0.452 2 1
2 B3 0.126 3 4 8 B8 0.092 1 1
2 B4 0.316 6 2 8 B9 0.070 11 1
2 B5 0.151 2 2 8 B10 0.065 16 1
2 B6 0.101 6 1 8 B ll 0.068 14 1

22 B7 0.204 6 2 8 B12 0.070 6 3
2 B8 0.076 2 1 8 B13 0.108 19 6
2 B9 0.070 15 1 8 B14 0.096 19 6
2 BIO 0.079 3 1 8 В15 0.097 2 2
2 B ll 0.067 9 4 8 B16 0.215 15 2
2 B12 0.067 8 1 8 B17 0.706 19 6
2 B13 0.115 2 2 8 B18 0.394 19 6
•> B14 0.107 7 2 8 B19 0.512 19 6

5
B15 0.113 6 2 8 B20 0.535 12 2

T a b l e  3

Tests and transformations giving maximal power for various alternatives, л =  25

P
Alterna

tives Power Test
T ransfor- 
mations P

Alterna
tives Power Test Transfor

mations
2 AI 0.995 11 2 2 B16 0.748 13 2
2 A2 1.000 10 2 2 B17 0.988 10 2
2 A3 0.500 12 2 2 B18 0.774 6 1
2 A4 0.836 10 2 2 B19 0.776 6 1
2 A5 0.393 1 4 2 B20 0.696 10 2
2 A6 0.872 6 1 4 B1 0.992 10 2
2 A7 0.742 1 4 4 B2 0.776 19 6
2 A8 0.362 1 4 4 B3 0.760 19 6
2 A9 0.775 13 2 4 B4 0.979 7 2
2 A10 0.765 13 2 4 B5 0.832 7 1
2 A ll 0.315 13 1 4 B6 0.552 7 1



Table 3 (contd.)

p
Alterna

tives
Power Test

T ransfor- 
mations P

Alterna
tives Power Test T ransfor- 

mations

2 Л12 0.818 19 6 4 B7 0.961 7 1
2 Л13 0.431 17 2 4 B8 0.093 6 1
2 A14 0.233 1 1 4 B9 0.141 15 1

22 A15 0.316 16 2 4 B10 0.111 3 2
2 A16 0.277 17 2 4 B ll 0.121 3 4
2 Л17 0.113 3 4 4 B12 0.114 3 2
2 A18 0.828 19 6 4 B13 0.313 6 1
2 A19 0.794 1 4 4 B14 0.323 7 2
2 A20 0.299 7 2 4 B15 0.304 6 2
2 Л21 0.738 1 4 4 B16 0.915 15 2
2 Л22 0.682 3 4 4 B17 0.998 11 2

T a b l e  4

Tests and transformations giving maximal power for various alternatives, л =  25 (contd.)

P
Alterna

tives Power Test Transfor
mations P

Alterna
tives

Power Test Transfor
mations

2 A23 0.298 3 4 4 B18 0.934 6 1
2 A 24 0.897 6 1 4 B19 0.871 2 1
2 A25 0.250 7 1 4 B20 0.945 10 2
2 A26 0.953 7 1 8 B1 1.000 10 2
2 Л27 0.170 15 1 8 B2 0.990 19 6
2 A 28 0.121 14 2 8 B3 0.988 19 6
2 A29 0.492 7 1 8 B4 1.000 6 1
2 A30 0.174 3 4 8 B5 0.994 7 1
2 ВI 0.894 10 2 8 B6 0.905 6 1
2 B2 0.304 16 1 8 B7 0.999 6 1
2 B3 0.294 19 6 8 B8 0.089 13 2
2 B4 0.772 7 2 8 B9 0.162 15 2
2 B5 0.297 7 2 8 B10 0.150 3 2
2 B6 0.184 7 2 8 B ll 0.158 3 5

22 B7 0.450 9 5 8 B12 0.209 12 3
2 B8 0.090 7 2 8 B13 0.444 2 1
2 B9 0.095 16 2 8 B14 0.449 4 4
2 B10 0.079 13 1 8 B15 0.471 4 5
2 B ll 0.083 15 1 8 B16 0.968 15 2
2 B12 0.070 13 2 8 B17 1.000 10 2
2 B13 0.221 6 1 8 B18 0.973 2 1
2 B14 0.199 4 1 8 B19 0.899 4 5
2 B15 0.218 4 I 8 B20 1.000 10 2



T a b l e  5

Tests and transformations giving maximal power for various alternatives, n =  50

p
Alterna

tives Power Test Transfor
mations P

Alterna
tives Power Test Transfor

mations

2 Л1 1.000 1 1 2 B6 0.320 6 1
2 Л2 1.000 1 1 2 B7 0.822 9 5
2 ЛЗ 0.898 10 1 2 B8 0.136 14 1
2 A4 0.994 10 2 2 B9 0.134 15 2
2 A5 0.710 10 1 2 B10 0.094 15 1
2 A6 0.996 7 2 2 B ll 0.084 16 2
2 A7 0.654 6 1 2 B12 0.082 16 2
2 Л8 0.388 1 3 2 B13 0.390 6 2
2 A9 0.996 13 2 2 B14 0.362 7 1
2 A10 0.992 10 1 2 В15 0.348 6 1
2 A ll 0.668 13 2 2 B16 0.978 13 2
2 A12 1.000 19 6 2 B17 1.000 1 1
2 A13 0.810 17 2 2 B18 0.968 4 2
2 A14 0.372 1 5 2 B19 0.958 4 1

22 A15 0.690 16 2 2 В 20 0.962 10 2
2 A16 0.658 17 2 4 Bl 1.000 17 1
2 Л17 0.156 3 4 4 B2 1.000 19 6
2 A18 1.000 19 6 4 ВЗ 1.000 19 6
2 Л19 0.856 9 4 4 В4 0.872 17 3
2 A20 0.482 6 1 4 В5 0.709 19 6

T a b l e  6

1 ests and transformations giving maximal power for various alternatives, n =  50 (contd.)

P
Alterna

tives Power Test Transfor
mations P

Alterna
tives Power Test Transfor

mations

2 A21 0.940 19 6 4 B6 0.296 19 6
2 A22 0.982 3 4 4 В7 0.554 19 6
2 A23 0.664 3 1 4 В8 0.120 18 2
2 A24 0.996 7 1 4 В9 0.180 16 2
2 A25 0.478 6 2 4 В10 0.088 16 2
2 Л26 1.000 6 1 4 В11 0.092 16 2
2 A27 0.250 16 2 4 В12 0.082 16 1
2 A28 0.386 13 2 4 В13 0.330 19 6
2 A 29 0.786 7 1 4 В14 0.301 19 6
2 A30 0.358 3 4 4 В15 0.282 17 3
2 Bl 1.000 10 1 4 В16 0.992 16 2
2 B2 0.836 19 6 4 В17 1.000 17 1
2 ВЗ 0.856 19 6 4 BI8 0.980 19 6
2 В4 0.980 6 1 4 В19 0.981 19 6
2 В5 0.532 4 2 4 В20 0.996 17 2



1 =  20

19
17
9

12
2

10
4
6

11
7
8

18
16
1

14
15
13
3
5

)
6
5
5
4
4
1
1
1
2
1
2
1
2
2
1

Best ranked tests based on Kruskal-W allis scores

T a b l e  7

n = 25

19
3 

10 
12
17 
11 
9 
2

15
4

16 
1 
8 
6 
7

14
18 
13
5

■» 50 p - 2 p = 4 P "  8

19 19 19 19
3 10 17 9

10 17 9 12
11 12 12 2
17 3 16 11
12 11 11 17
15 15 10 10

1 16 18 8
16 9 8 4
9 1 2 6
4 4 6 18

14 2 4 16
2 14 7 7
7 18 1 15

18 7 14 14
13 6 15 1
6 13 3 13
8 8 13 3
5 5 5 5

Best ranked tests based on Kruskal-W allis scores

T a b l e  8

n =  25 n =  50 P =  2 p =  4 P =  8

19 6 19 6 19 6 19 6 19 6
3 4 3 1 10 1 9 5 12 3

10 1 3 4 17 5 9 1 11 3
3 2 10 1 10 2 18 1 9 5
3 1 10 2 17 4 9 4 2 3
3 5 3 2 10 5 17 1 9 4

10 5 3 5 11 1 17 5 6 1
10 2 11 1 10 4 17 3 9 1
17 5 11 4 16 1 17 4 17 4
12 4 10 4 12 1 9 2 17 5
11 1 10 5 12 2 16 1 9 2
10 4 17 4 17 1 6 1 10 3
16 1 15 1 3 1 8 1 16 1
10 3 17 5 17 3 11 1 17 3
12 1 11 5 3 4 11 ‘ 2 8 1


