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TESTING MULTIVARIATE NORMALITY
BY DATA TRANSFORMATIONS

Abstract. The problem of testing the hypothesis of multivariate normality is discussed.
Several methods of transformations to univariate normal samples are compared. An
extensive simulation study for the comparison of various tests is performed under broad
range of alternatives. Numerical experiment shows that the testing procedures combining
simple approximate transformations to univariate normality and powerful tests for
univariate normality give quite interesting results.
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I. INTRODUCTION

Although the assumption of multivariate normality is very common in
many multivariate data analysis methods (like multivariate regression,
principal components, ect.) it is, in practice, seldom verified because of the
lack of simple testing procedures. Various tests for the multivariate normality
were, of course, proposed: for classical overviews see e.g. Malkovich,
Afifi (1973) and Mardia (1980); among tests proposed in the recent
years there arc: test based on empirical characteristic function (Baringhaus
and llenze (1988)), tests based on distance and directions (see Dunn
(1995)), methods based on density estimates (Bowman, Foster (1993)),
methods for combining independent tests of the univariate normality
(Mudholkar, Srivastava, Lin (1995)), test based on interpoint
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distances proposed in Bartoszynski, Pearl and Lawrence (1997)
and the test based on the combination of the Shapiro -Wilk test for
marginals and the principal components method (Peterson and Strom -
berg (1998)). However, these tests arc too complicated in general. From
the practical standpoint it would be more interesting to decompose the
problem of testing the multivariate normality into the problem of testing
univariate normality.

In this paper we compare various existing schemes of transformations
multivariate samples into univariate samples and then we test normality
using well known univariate tests. An extensive Monte Carlo study was
performed under broad range of alternatives. Numerical experiment shows
that the testing procedures combining simple approximate transformations
to univariate normality and powerful tests for univariate normality give
quite interesting results.

U. TRANSFORMATIONS

Let us denote by X= ( X X ,, ) a pxn matrix of n observations in

p-dimensions. A covariance matrix S is defined as S= (X-XXX-X)'
n

where X = A (Xt + ..+ X,) is sample mean vector. Below wc describe five

methods of transformation X into p independent univariate samples.
Transformation 1. Initial mukivariate data arc transformed into the
scaled residuals Z =S 12X —X), where S~12 is obtained from the
equation
sil2(sil2y = S

the decomposition of matrix S by Choleski. The output data Z are
approximately independent standard normals.

Transformation IlI. Let V = diag(Sfil2, ..., Sppl12), C = VSV (this gives
the correlation matrix) and A = diag(XIt ..., Xp) is matrix with the eigenvalues
of C on the diagonal. Then we define transformed data matrix as

Z = HA~12H 'V(X —X)

where the columns of H are the corresponding eigenvectors, such that
NN =1lpa°d A=ITCH. This method also gives approximately standard
normals. For more details see Do orni k (1994).

transformation IIl. This method is based on the regression model
obtained as the conditional distribution of X; given X1, ..., X*j. Mud-
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holkar, Srivastava and Lin (1995) proposed an algorithm which
under assumption that random sample X of size n is taken from p-variatc
normal population Np(\i, E) leads to p indepenedent normal vectors
Z|, Zi, Zp of sizes n, (n-2), (n-3), ... (n-p), respectively.

We suggest to use their algorithm followed by the Durbin randomization
method (see Durbin (1961)), which transforms vectors ZJ, Bp into
independent samples from standard normal distribution.

Transoformation IV. This method is a modification and simplification of
the regression approach by Mudholkar, Srivastava and Lin mentioned above.
However, now we obtain p approximately independent normal vectors
ZI, ..., Zp each of size n. Then using the Durbin randomization method we
may also obtain independent samples from standard normal distribution.

Transformation V. Wagle (1968) proposed to use the multivariate beta
distribution and the principle of randomization to transform sample X from
the multivariate normal population Np(ii,L) with unknown parameters into
a sample Z from distribution Np(0,lp). It means that we have pn independent
observations from the univariate standard normal distribution.

Il. TESTS

Now in order to verify a hypothesis of the multivariate normality we
have to combine one of the data transformation £ described above with
a test (p for the univariate normality. Such superposition T= g»£f of the
transformation method with a test for the univariate normality also forms
a testing procedure. Thus combining different transformations with different
tests for the univariate normality we get various tests for the multivariate
normality (tests T10-T18). We will investigate their statistical properties in
order to find optimal combination. Moreover, we will compare these tests
with other known tests for the multivariate normality (tests T1-T9). Here
are a detailed list of tests used in our simulation study:

| 1 - test based on transformed skewness and kurtosis measures,
Doornik (1994);

T2 - ,classical” Mardia’s test based on multivariate skewness, see
Mardia (1970);

T3 - Mardia’s test based on the multivariate kurtosis, see Mardia
(1970);

T4 - Mardia’s omnibus test based on T1 and T2;

T5 - the Hellwig test, see Hell wig (1977);

T6 - test based on empirical characteristic function (this statistic depends
on parameter 8 > 0; we used B = 1), see Baringhaus and Henze (1988);

see



T7 - test based on multivariate density estimation, sec Bowman and
Foster (1993);

T8 - test that uses a transformation of the multivariate normal distribution
into the uniform distribution of directions on the p-dimensional unit sphere
(see Koziol (1982, 1983)), sec Dunn (1995);

T9 - test based on testing uniformity of directions, see also Dunn (1995);

T10 - test based on a transformation to the unvariate normal sample
followed by the jy-tcst of Shapiro and Wilk (1965); an implementation
of WHest by Roy ston (1982a) was used,;

Til - test based on transformation to univariate normal sample followed
by the univariate test of normality using correlation coefficient of the
normal probability plot (see Looney, Gulledge (1985));

T12 - test based on transformation to univariate normal sample followed
by the Epps-Pulley (1983) test of normality;

T13 - test based on transformation to univariate normal sample followed
by the Vasicck (1976) entropy test;

T14 - test based on transformation to univariate normal sample followed
by the classical Kolmogorov-Smirnov goodness of-fit test;

T15 - test based on transformation to univariate normal sample followed
by the univariate version of the test based on inlerpoint distances proposed
in Bartoszynski, Pearl and Lawrence (1997);

T16 - test based on decomposition of the problem of testing p-variate
normality into p independent problems of testing univariate normality; after
decomposition test based on interpoint distances was used;

T17 - test based on decomposition of the problem of testing p-variate
normality into p independent problems of testing univariate normality using
the Shapiro-Wilk test;

T18 - test based on decomposition of the problem of testing p-variate
normality into p independent problems of testing univariate normality using
the Kolmogorov-Smirnov test.

As it is seen test T16, T17 and 'T18 are based on the decomposition of the
multivariate problem into p independent problems of testing univariate norma-
lity. Thus the initial null hypothesis of multivariate normality HO is the
intersection or the logical conjunction of the univariate hypotheses H>, Mf,.
Hence, the problem of testing hypothesis HO is equivalent to testing p indepen-
dent (or approximately independent) hypotheses HR, k = 1, ..., p, obtaining the
p-values and then combining them in order to get an overall test of HO.

We may combine independent p-values Pt, P2, Pp in many ways,
e.g. using following well-known statistics (for details see for example
Mudholkar and George (1979), Mudholkar, Srivastava, Lin
(1995)):

1. Fisher’s 4F= - 2L log(P,);



2. the logit statistic VL= A 1/2E log(P,/(I —P,)), where A = I
15p + 12

3. Liptak’s statistic 4N= £<r_1(l - P;) where ®" 1 denotes inverse
cumulative distribution function of the standard normal distribution.

These statistics have known distributions under null hypothesis of normali-
ty: 4'F has a chi-square distribution with 2p degress of freedom, 44 is
approximated by Student’s t distribution with (5p + 4) degrees of freedom, and
4'N has a normal distribution with mean 0 and variance p. Fisher’s method
was recommended due to its optimality property of Bahadur efficiency (see
Littel and Folks (1971)) and gives best power results according to
simulation experiments from Mudholkar, Srivastava, Lin (1995).

T19 - the Peterson and Stromberg test based on the combination of
the Shapiro-Wilk test for maginals and the principal components method.
Their test requires its own transformation of the data (we denote it as
transformation VI), see Peterson and Stromberg (1998).

IV. SIMULATION STUDY

To compare different test of multivariate normality we performed extensive
Monte Carlo simulations. The power of these tests at the 5% level against
alternatives was estimated by the frequency of samples falling into the
corresponding critical regions. We have considered 50 alternatives to multiva-
riate normal distribution: 30 alternatives for bivariate case (series A) and 20
altenatives for general case (series B). The detailed description of all alternati-
ves can be found in Appendix A. For each alternative 1000 samples of sizes n:
10, 25, 50 and dimensions p: 2, 4, 8 were generated to obtain empirical power.

Critical values for all the test were obtained by corresponding percentage
points from 10000 samples generated from Np(0,1) distribution.

The simulations were done in Ox version 2.00 matrix programing
language (see Do orni k (1998)) on Cray Superserver 6400 computer in
Warsaw University of Technology. Additionally some test were implemented
in SAS language. Ox and SAS source programs can be obtained from the
authors upon request.

We considered two multivariate normal distributions Np(0, L), where

=1 i=Il,..., p and Ey= 0,5 for idj and = 0,9 for i”j. Results
show that considered tests have acceptable size.

When a new test is suggested an author generally compares it with one
or two other test using only few alternatives. This way it is no difficult to
show that his test dominates the others. Moreover, the simulation study
presentation may be very clear. However, we decided to compare 19 tests



using 50 alternatives and 6 data transformations for different sample sizes and
dimensions. Thus the first problem is now how to compare all the results? The
summarized version of our results is shown in tables 1-8 in Appendix B.

I'ables 1-6 show which test and transformation gives maximum power for
corresponding alternatives and considered parameters n and p. Next we tried
to utilize the nonparametric approach for multiple sample comparison. More
precisely, we used the Kruskal-Wallis test which computes mean ranks to
distinguish statistically significant differences between samples under study. In
our case we rank tests for multivariate normality according to their simulated
power. Tables 7-8 show the ranking of tests based on Kruskal-Wallis scores.

V. CONCLUSION

Ihe power comparisons lead to general conclusion that none of the
tests is always the best. The behavior of the tests depends on sample size,
dimension and alternative. However, one may observe some tendencies. It
seems that the Peterson and Stromberg test (T19) is the overall winner in
our ranking procedure. 1lhus this newest test, based on the combination
of the Shapiro—Wilk test for marginals and the principal components
method, requires further theoretical studies. Next important conclusion is
that the idea of transformating data to one-dimensional sample (or samples)
following by the univariate Shapiro-Wilk test gives competitive tools for
multivariate normality testing. Here we reccommend tests T17 and 'T12.
Other tests which seem to have quite good properties are T9, T10 and the
classical Mardia’s test based on the multivariate kurtosis (T3).

Additionally, regarding tests T16, T17 and T18 based on combinations
of independent univariate tests, it is worth to note that the best method
of combinations is Fisher’s method, so our experiments confirm results
from Lilleland Folks (1971) and recommendations of Mudholkar,
Srivastava, Lin (1995). According to our simulating study none of the
data transformation to distribution Np(0, 1) is the best too. Numerical
experiments indicate only that the regression transformation 111 by M ud -
holkar, Srivastava, Lin is the worst.

A short comment on limitations of simulation would be desirable. One
should be aware of two general difficulties with simulation: variability between
simulations and that the results are often quite specific to the settings we have
chosen. Ihe first difficulty is intrinsic to the inference problem and is dealt
with by choosing samples large enough. But there is little we can do about the
second difficulty. This means that simulations are less satisfactory than
theoretical results but nevertheless they provide a very useful suplement to



theoretical results and often can be used when theoretical results are una-
vailable.

Hence the final conclusion is that more both theoretical and simulation
studies in this field are still needed.
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TESTOWANIE WIELOWYMIAROWEJ NORMALNOSCI
ZA POMOCA TRANSFORMACJI DANYCH

(Streszczenie)

W pracy poréwnano rézne metody testowania hipotezy o wielowymiarowej normalnosci
za pomocg odpowiednich transformacji i znanych testow jednowymiarowej normalnosci.
Wykonano szereg symulacji z wieloma alternatywami w celu zbadania mocy rozwazanych
testéw, likspcrymcnty numeryczne pokazaty dobre wilasnosci i mozliwosci praktycznego
zastosowania idei transformacji potaczonej z kombinacjg sprawdzonych jednowymiarowych
testbw normalnosci (w tym klasycznego testu Shapiro-Wilka). W implementacji algorytméw
i obliczeniach symulacyjnych bardzo efektywnym narzedziem okazat sie jezyk programowania
macierzowego OX.

Appendix A

I o describe different alternatives to multivariate normal distribution the
following notation is used:

V0O, 1) - standard normal distribution, Exp(l) - standard exponential
distribution,

LN(0, 1) - logonormal distribution given by exp(N(0, 1)), x} ~ chi-square
distribution with / degrees of freedom, tf - Student’s distribution with
/ degrees of freedom, G(a, b) - gamma distribution with density
h al(a)x“~lexp( —x/b), Beta(a, b) - beta distribution with density
B(a, b)-'xa- I{\-x)p~\b<x< 1)

DX®D?2 is the distribution having independent marginals DI and D2
Dp denotes the product of p independent copies of distribution D.

PSlip(m, L) is p-dimensional elliptically symmetric Pearson Type Il
distribution with the density function

Fp/l2+T1+1)

M7+ 1)p2 [EF 121 -xT _1x)" (0< x'E_1x< 1,T > - 1)

and tf (E) is p-variate t distribution with / degrees of freedom and density
|Z]-i1/20 +/-V 1-Db cr (/)2

SPH(Q) stands for a spherically symmetric distributed random vector
X such that UAL, has distribution Q. NMIX_ Ap(p0, plt p2, a2, p2),
denotes the normal mixture model poNp0, Ej) + (1 - pO)Np{p2, £ 2), where



and L2 arc positively definite matrices with L, having all of its diagonal
elements equal to 1 and all of its ofT-diagonal elements equal to px and
D2 having all of its diagonal elements equal to a\ and all of its off-diagonal
equal to p2. NMIX.. Bp(lilt(i2) will be used for a specific bimodal normal
mixture of the form ) --0.5Np(]i2,1) and NMIX_Cp(p0,d,L) for
mixture poNp(O, L) 4 (1 —pO)Np(Q dh) (d> 0). Multivariate chi-square dist-
ribution will be denoted by ~p(fl5  fp\f)\ this distribution can be defined
as the joint distributions of Wif W2, W p, Wt=V, -V for i= 1.2,
where VIt V2, V p arc independent y2 variates with degrees of freedom
fufz' w=sifp respectively, and V is independent of F/.s with x2f distribution.

MLNp(L) stands for multivariate logonormal distribution obtained as
exp(Np(0, E)) (coordinatewise). MBPLp(0) denotes multivariate Burr-Parcto-
Logistic distribution with uniform marginals and parameter O.

KII\ and KI12 will denote examples of the Khintchine distributions
with normal marginals and GEP1 and GEP2 will denote two variants for
Generalized Exponential Power random variables; we used definitions from
Hors well and Looney (1992).

For more details concerned with methods of generation of samples from
multivariate distributions we refer the reader to Johnson (1987).

We have chosen the following alternative distributions:

Al: Exiil)2 A16: N(0,1) ® Beta(\, 2)

n2: u o, 12 Al7: NMIX_A20.5 0.0, 2.0, 1.0, 0.0)
A3: G(5,1)2 Al18: NMIX_A2(0.5, 0.0, 4.0, 1.0, 0.0)
Ad: (X7)2 A19: NMIX.A20.5, 0.9, 2.0, 1.0, 0.0)
A5: (Z75)2 A20: NMIX.A20.5, 0.9, 05, 1.0, 0.0)
A6: (i2)2 A21: NMIX-A2Q5, 0.9, 0.5 10, -0.9)
AT: (t5)2 A22: PS112(0,12)

A8: L(0, )2 A23: PSII2(\,12)

N9: Beta (L, 1)J A24: t2(12)

A10: Beta (1,2)J A25: tHUi)

All: Beta (2, 2)2 A26: SPH(Exp( 1))

A12: N(0,1) ®£xp(l) A27: SPH(G(5, 1))

A13: N(0,1) ®x\ A28: SPH (Beta (1, 1))

Al4: N(0,1) ®t5 A29: SPH (Beta (1,2))

Al5: N(0,1) ® Beta (1, 1) A30: SPH (Beta (2,2))



Bl: (0(2,1)* BIl: PSUJ10,E), where I, -1, i=1l,...,p
Lt)= 0,5 for i®Pj

B2: NM1X-1/0.5, 0.0, 3.0, 1.0, 0.0) B12: PSIIJIO, E), where XtJ= 1, f= 1.... p
ZuwO0.9 for ifj

B3: NMIX_Bp(15, - 15) By &

B4 NMIX.A,(05, 0.0, 0.0, 3.0, 0.0) Bl4: i10(E), where Ey = 1, i= 1 E(= 0.5
for ifj

B5: JILW/AT_N,(0.5, 0.9, 1.0, 1.0, 0.0) B15 tIE), where E, « 1, i= 1...p, EQ= 0.9
for ifj

B6: KII1 B16: MBPLfP.)

B7: KII2 B17: MINRZ), where £, = 0.5, i=1,...,p
Ey = 0.25 for i®j

B8: G£P(0.1663, 0.125) B18: NMIX_Cp(04, 9)

B9: GE£P(27.905, 2.0) B19: NMIX.C'i0.9, 16)

BIO: PSI1,,(10, /,) B20: Z)(2, 2,...,2,3)
Appendix B

Table 1

Tests and transformations giving maximal power for various alternatives, n= 10

AIFerna— Power Test Tran_sfor- o AIFerna- Power Test Tran§for-
tives mations tives mations
2 Al 0.602 12 2 2 B16 0.240 15 2
2 A2 0.801 12 2 2 B17 0.501 12 1
2 A3 0.153 12 1 2 B18 0.344 6 1
2 A4 0.306 12 2 2 B19 0.370 2 1
2 ns 0.142 12 2 2 B20 0.263 7 2
2 ne 0.453 1 4 4 BI 0.507 12 2
2 A7 0.172 6 1 4 B2 0.112 15 1
2 A8 0.125 2 4 4 B3 0.098 15 1
2 A9 0.227 15 1 4 B4 0.483 6 2
2 AlO 0.235 13 2 4 B5 0.305 4 5
2 All 0.123 15 2 4 B6 0.191 4 1
2 Al2 0.308 19 6 4 B7 0.519 7 1
2 Al3 0.143 17 2 4 B8 0.082 6 2
2 Al4 0.124 4 4 4 B9 0.071 13 2
2 Al5 0.113 3 5 4 B10 0.072 3 1
2 Al6 0.094 13 2 4 BIl 0.074 3 5
2 Al7 0.102 3 5 4 B12 0.074 5 1
2 Al8 0.198 19 6 4 B13 0.124 19 6
2 Al9 0.170 9 5 4 B14 0.122 2 1
2 A20 0.141 6 2 4 B15 0.115 2 2
2 A21 0.296 19 6 4 B16 0.269 13 2
2 A22 0.224 3 1 4 B17 0.610 12 2



Table 2

Tests and transformations giving maximal power for various alternatives, n = 10 (contd.)

N
NN N DD NDNONNNDNDNDRN

NN NN DNDDN

o

NN NN NN RN

Alterna-
. Power
tives
A23 0.139
A24 0.467
A25 0.128
n26 0.547
na7 0.097
A28 0.091
A29 0.229
n30 0.110
HI 0.348
B2 0.118
B3 0.126
B4 0.316
B5 0.151
B6 0.101
B7 0.204
B8 0.076
B9 0.070
BIO 0.079
BII 0.067
B12 0.067
B13 0.115
B14 0.107
B15 0.113

Test

W o O w~NNOO W

=
o

15

N O oo O W

15

D NN 0O w

Transfor-
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Alterna-
tives

B18
B19
B20
Bl
B2
B3
B4
B5
B6
B7
B8
B9
B10
Bl
B12
B13
B14
B15
B16
B17
B18
B19
B20

Power

0.368
0.392
0.395
0.430
0.202
0.152
0.286
0.203
0.235
0.452
0.092
0.070
0.065
0.068
0.070
0.108
0.096
0.097
0.215
0.706
0.394
0.512
0.535

Test

Transfor-

mations
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Table 3

Tests and transformations giving maximal power for various alternatives, n= 25

Alterna-
tives Power
Al 0.995
A2 1.000
A3 0.500
Al 0.836
A5 0.393
A6 0.872
A7 0.742
A8 0.362
A9 0.775
Al0 0.765

All 0.315

Test
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12

Transfor-
mations
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Alterna-
tives

B16
B17
B18
B19
B20
Bl
B2
B3
B4
B5
B6

Power

0.748
0.988
0.774
0.776
0.696
0.992
0.776
0.760
0.979
0.832
0.552

Test

13
10
6
6

Transfor-

mations

2
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Alterna-
tives

niz
nis3
Al4
Al5
Al6
ni7
Al8
A19
A20
n21
n22

Power

0.818
0.431
0.233
0.316
0.277
0.113
0.828
0.794
0.299
0.738
0.682

Test

19
17

1
16
17

3
19

W Rk N

Transfor-
mations
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Alterna-
tives

B7
B8
B9
B10
Bl
B12
B13
B14
B15
B16
B17

Power

0.961
0.093
0.141
0.111
0.121
0.114
0.313
0.323
0.304
0.915
0.998

Table 3 (contd.)

Test

Transfor-
mations
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Table 4

Tests and transformations giving maximal power for various alternatives, n = 25 (contd.)
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N
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Alterna-

tives

A23
A24
A25
A26
na27
A28
A29
A30
Bl
B2
B3
B4
B5
B6
B7
B8
B9
B10
BII
B12
B13
B14
B15

Power

0.298
0.897
0.250
0.953
0.170
0.121
0.492
0.174
0.894
0.304
0.294
0.772
0.297
0.184
0.450
0.090
0.095
0.079
0.083
0.070
0.221
0.199
0.218

Test
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Alterna-
tives

B18
B19
B20
Bl
B2
B3
B4
B5
B6
B7
B8
B9
B10
BII
B12
B13
B14
B15
B16
B17
B18
B19
B20

Power

0.934
0.871
0.945
1.000
0.990
0.988
1.000
0.994
0.905
0.999
0.089
0.162
0.150
0.158
0.209
0.444
0.449
0.471
0.968
1.000
0.973
0.899
1.000

Test

Transfor-
mations
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Table 5

Tests and transformations giving maximal power for various alternatives, n = 50

Alterna- Transfor- Alterna- Transfor-
p tives Power Test mations P tives Power Test mations
2 ni 1.000 1 1 2 B6 0.320 6 1
2 n2 1.000 1 1 2 B7 0.822 9 5
2 n3 0.898 10 1 2 B8 0.136 14 1
2 A4 0.994 10 2 2 B9 0.134 15 2
2 A5 0.710 10 1 2 B10 0.094 15 1
2 Ab 0.996 7 2 2 BII 0.084 16 2
2 A7 0.654 6 1 2 B12 0.082 16 2
2 nsg 0.388 1 3 2 B13 0.390 6 2
2 A9 0.996 13 2 2 B14 0.362 7 1
2 A10 0.992 10 1 2 B15 0.348 6 1
2 All 0.668 13 2 2 B16 0.978 13 2
2 Al2 1.000 19 6 2 B17 1.000 1 1
2 Al3 0.810 17 2 2 B18 0.968 4 2
2 Al4 0.372 1 5 2 B19 0.958 4 1
22 Al5 0.690 16 2 2 B20 0.962 10 2
2 Al6 0.658 17 2 4 Bl 1.000 17 1
2 niv 0.156 3 4 4 B2 1.000 19 6
2 Al8 1.000 19 6 4 B3 1.000 19 6
2 ni9 0.856 9 4 4 B4 0.872 17 3
2 A20 0.482 6 1 4 B5 0.709 19 6
Table 6

lests and transformations giving maximal power for various alternatives, n = 50 (contd.)

Alterna- Transfor- Alterna- Transfor-
. Power Test . P . Power Test -
tives mations tives mations

2 A21 0.940 19 6 4 B6 0.296 19 6
2 A22 0.982 3 4 4 B7 0.554 19 6
2 A23 0.664 3 1 4 B8 0.120 18 2
2 A24 0.996 7 1 4 B9 0.180 16 2
2 A25 0.478 6 2 4 B10 0.088 16 2
2 n2e6 1.000 6 1 4 B11 0.092 16 2
2 A27 0.250 16 2 4 B12 0.082 16 1
2 A28 0.386 13 2 4 B13 0.330 19 6
2 A29 0.786 1 4 B14 0.301 19 6
2 A30 0.358 3 4 4 B15 0.282 17 3
2 Bl 1.000 10 1 4 B16 0.992 16 2
2 B2 0.836 19 6 4 B17 1.000 17 1
2 B3 0.856 19 6 4 BI8 0.980 19 6
2 B4 0.980 6 1 4 B19 0.981 19 6
2 2 4 B20 0.996 17 2

B5 0.532 4
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Best ranked tests based on Kruskal-Wallis scores

» 50

19
3
10
1
17
12
15
1
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9
4
14
2
7
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p-2

19
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p=4

19
17

9
12
16
n
10
18

NP o NN oo

14
15

13

Best ranked tests based on Kruskal-Wallis scores
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