FOLIA OECONOMICA 132, 1993

Raimund Alt*

MULTIPLE TEST PROCEDURES AND THE CLOSURE PRINCIPLE (A new look at multiple hypotheses testing in the linear regression model)

Abstract. In this paper we show how to apply the closure test principle in case of testing linear hypotheses within the classical regression model. The closure test principle which was introduced by [Marcus, Peritz, Gabriel (1976)] results in the construction of test procedures which are in general much more powerful then conventional test procedures like the Bonferroni procedure or the Scheffé procedure. A small simulation study provides some evidence of the superiority of closed test procedures compared to classical test procedures.

Key words: Multiple test procedures, closure principle, linear hypotheses.

1. INTRODUCTION

In biometrics and medical statistics many researchers advocate the use of multiple comparison procedures (multiple test procedures) in case of testing two or more null hypotheses. While testing of multiple hypotheses plays an essential role in econometrics as well, multiple comparison methods are rarely mentioned in econometric literature. One exception, for example, is the survey article from [S a v i n (1984)], where he describes dif-

Professor at the Institute for Advanced Studies of Vienna.

Raimund Alt

ferent features of two classical multiple test procedures, namely the Bonferroni procedure and the Scheffé procedure.

One disadvantage of these two test procedures is that they are often quite conservative, i.e. the probability of rejecting at least one of the true null hypotheses is in general relatively small compared with the given level α . For this reason it might be useful to consider other test procedures like the so-called closed test procedures, which have been developed by [M a r c u s, P er i t z, G a b r i e l (1976)] and which are generally much more powerful. These test procedures seem to be quite unknown in econometrics. In particular, [S a v i n (1984)] did not.mention them.

The presentation of the paper is now as follows: After introducing some basic definitions for multiple test procedures it will be shown how to apply the fundamental theorem for closed test procedures (closure principle) to linear hypotheses, for example, that the regression coefficients are equal to zero. Then it will be demonstrated how to apply this principle to a set of general linear hypotheses. Then a small simulation study is presented which provides some evidence of the empirical performance of closed test procedures compared with that of the Bonferroni procedure or the Scheffe procedure.

2. THE CLOSURE PRINCIPLE: THEORETICAL FOUNDATIONS

Let H_{01}, \ldots, H_{0n} be our interesting null hypotheses, where H_{01}, \ldots, H_{0n} are subsets of a parameter space Γ with $H_{0i} \neq H_{0j}$ for $i \neq j$, and let $\phi = (\phi_1, \ldots, \phi_n)$ be a corresponding test procedure. Now the following definition describes a type I error concept which seems to be quite appropriate in the area of multiple hypotheses testing.

Definition 2.1. Let $0 < \alpha < 1$ and let C_1, \ldots, C_n be the critical regions of the tests ϕ_1, \ldots, ϕ_n . $\Phi = (\phi_1, \ldots, \phi_n)$ controls the multiple level α , if for every non-empty index set $I \subset \{1, \ldots, n\}$

 $P(UC_{i} | H_{0i} true, i \in I) \leq \alpha.$

Multiple test procedures and the closure principle

Clearly a test procedure which controls the multiple level α also controls the overall level α , since $I = \{1, ..., n\}$ is a special subset of $\{1, ..., n\}$ and so we have

$$\mathbb{P}(\bigcup_{i=1}^{n} C_{i} \mid H_{01}, \dots, H_{0n} \text{ true}) \leq \alpha.$$

But the multiple-level- α concept is of course much more general. It quarantees that the probability of rejecting at least one of the true null hypotheses is always smaller than or equal α for every combination of true null hypotheses.

The closure test concept makes also use of the following two definitions.

Definition 2.2. A set $\{H_{01}, \ldots, H_{0n}\}$ of null hypotheses is closed under intersection if for any two indices $i \neq j$

H₀₁ ∩ H₀₁ {H₀₁, ..., H_{0n}}.

Definition 2.3. The test procedure $\phi = (\phi_1, \ldots, \phi_n)$ is called coherent, if $H_{0j} \subset H_{0i}$ implies $C_i \subset C_j$, i.e. the rejection of any null hypothesis H_{0i} implies the rejection of every subhypothesis $H_{0i} \subset H_{0i}$.

The closure test theorem is now as follows.

Theorem 2.4. [Marcus, Peritz, Gabriel (1976)]. Let H_{01}, \ldots, H_{0n} be closed under intersection and let C_i be the critical region of the test ϕ_i with $P(C_i|H_{0i} \text{ true}) \leq \alpha$, $1 \leq i \leq n$. Then the test rule:

reject H_{0i} , if every subhypothesis $H_{0j} \subset H_{0i}$ is rejected by its level- α -test ϕ_i -

defines a coherent test procedure $\Psi = (\psi_1, \ldots, \psi_n)$ which controls the multiple level α .

Such a test procedure is called a closed test procedure or a closure test. For a proof see for example [Marcus, Perritz, Gabriel (1976), Sonnemann (1982) or Alt (1988)]. In the next section we will demonstrate how to apply this theorem to testing linear hypotheses in the classical regression model.

3. LINEAR HYPOTHESES AND CLOSED TEST PROCEDURES

Let us consider the classical linear regression model $y = X\beta + u$,

where u is a T x 1 disturbance vector with $u = N(0, \sigma^2 I)$, $\beta' = (\beta_0, \beta_1, \dots, \beta_K)$ is an unknown 1 x (K + 1) parameter vector and X is a T x (K + 1) nonstochastic matrix of rank K + 1. We will assume that we are interested in testing the following null hypotheses:

 $H_{01}: \beta_1 = 0$

 H_{OK} : $\beta_{K} = 0$.

For the sake of simplicity we will restrict ourselves to the case K = 3 and in the following subsections we will demonstrate how to construct closed test procedures, i.e. coherent test procedures which control the multiple level α .

3.1. The closed Bonferroni procedure

Now, the null hypotheses interesting us are

 $\begin{array}{l} {}^{\rm H}_{01} \colon \ \beta_1 \ = \ 0 \\ {}^{\rm H}_{02} \colon \ \beta_2 \ = \ 0 \\ {}^{\rm H}_{03} \colon \ \beta_3 \ = \ 0 \, . \end{array}$

Clearly this set of hypotheses is not closed under intersection. In order to obtain this property we have to add all possible intersection hypotheses:

It is easy to verify that the set $\{H_{01}, \ldots, H_{023}, H_0\}$ is closed under intersection which means that now the first assumption of the closure theorem is fulfilled.

It is well known that the test statistic

$$Q_{i} = \frac{\hat{\beta}_{i}^{2}}{\hat{\sigma}^{2} a_{ii}}$$

is distributed as F(1, T-K-1) under H_{0i} : $\beta_i = 0$, where $\hat{\beta}_i$ is the ols estimator of β_i , ∂^2 is the usual unbiased estimator of σ^2 and a_{ii} is the i-th diagonal element of the matrix $(X'X)^{-1}$.

Now let p1, p2 and p3 be the corresponding p-values, i.e.

 $p_i: P(Q_i \ge Q_i(y) | H_{0i} true), i = 1, 2, 3$

where $Q_i(y)$ is the value of the test statistic Q_i evaluated at the observed vector y.

Now we will construct a level- α -test for every null hypothesis in {H₀₁, ..., H₀₂₃, H₀} for a given level α .

Let us consider the following test scheme:

$ \begin{array}{ccc} H_{01} & \beta_1 &= 0 \\ p_1 & \leqslant \alpha/3 \end{array} $	$H_{02}: \beta_2 = 0$ $P_2 \leq \alpha/3$	$ \begin{array}{l} H_{03}: \ \beta_3 = 0 \\ P_3 \leqslant \alpha/3 \end{array} $
$H_{012}: \beta_1 = \beta_2 = 0$ min(p ₁ , p ₂) $\leq \alpha/3$	$ \begin{array}{l} H_{013}: \ \beta_1 = \beta_3 = 0 \\ \min(p_1, \ p_3) \leq \alpha/3 \end{array} $	$ \begin{array}{l} H_{023} \colon \beta_2 = \beta_3 = 0 \\ \min(p_2, p_3) \leqslant \alpha/3 \end{array} $
10 - 12 1	$ \begin{array}{l} H_{0} \colon \ \beta_{1} \ = \ \beta_{2} \ = \ \beta_{3} \ = \ 0 \\ \min(p_{1}, \ p_{2}, \ p_{3}) \ \leq \ \alpha/3, \end{array} $	

where below each null hypothesis a rejection region is given which defines a level- α -test for this hypothesis, i.e.

P(Reject H|H true) $\leq \alpha$. For example, given H_{01} : $\beta_1 = 0$, we have

 $P(p_1 \leq \alpha/3) = \alpha/3 \leq \alpha$

or, given H_{012} : $\beta_1 = \beta_2 = 0$, we have

 $P(\min(p_1, p_2) \le \alpha/3) = P(p_1 \le \alpha/3 \text{ or } p_2 \le \alpha/3) \le P(p_1 \le \alpha/3) + P(p_2 \le \alpha/3) = \alpha/3 + \alpha/3 = 2\alpha/3 \le \alpha$

and so on.

This means that the second assumption of the closure theorem is fulfilled and we can now apply the test rule which results in a coherent test procedure controlling the multiple level α . It turns out that if we are only interested in testing H_{01} , H_{02} and H_{03} it is not necessary to consider the intersection hypotheses. If, for example, $p_1 \leq \alpha/3$, then all subhypotheses are rejected by their level- α -tests.

What we have constructed is nothing else than the closed version of the classical Bonferroni procedure on the basis of three null hypotheses H_{01} , H_{02} and H_{03} . But now we are able to show how to improve the classical Bonferroni procedure.

3.2. The closed Holm procedure

Let us modify our test scheme as follows.

$H_{01}: \beta_{1} = 0$	$H_{02}: \beta_2 = \dot{0}$	$H_{03}: \beta_3 = 0$
p ₁ ≤ α	p ₂ ≤ α	p ₃ ≤ α
	$H_{013}: \beta_1 = \beta_3 = 0$ min(p ₁ , p ₃) $\leq \alpha/2$	$H_{023}: \beta_2 = \beta_3 = 0$ min(p ₂ , p ₃) $\leq \alpha/2$

$$H_0: p_1 = p_2 = p_3 = 0$$

min(p₁, p₂, p₃) $\leq \alpha/3$,

where in the first stage we have replaced $\alpha/3$ by α and at the second stage $\alpha/3$ by $\alpha/2$.

Again each null hypotheses is connected with a critical region defining a level-a-test for this null hypothesis. For example, given H_{01} : $\beta_1 = 0$, we have now

 $P(p_1 \leq \alpha) = \alpha$

or, given H_{012} : $\beta_1 = \beta_2 = 0$, we have

$$P(\min(p_1, p_2) \leq \alpha/2) = P(p_1 \leq \alpha/2 \text{ or } p_2 \leq \alpha/2) < P(p_1 \leq \alpha/2) + P(p_2 \leq \alpha/2) = \alpha/2 + \alpha/2 = \alpha.$$

Applying the closure test rule we again get a test procedure which controls the multiple level α . We will call it the closed Holm procedure, because there is a shortcut version of this procedure which was developed by [H o 1 m (1979)].

It is easy to see that every null hypothesis which is rejected by the closed Bonferroni procedure is also rejected by the closed

Multiple test procedures and the closure principle

Holm procedure. But the latter procedure is able to reject more null hypotheses since the critical values at the first two stages are greater than the ones used for the closed Bonferroni procedure. Together with the fact that the closed Holm procedure does not exceed the multiple level α , it turns out that the closed Holm procedure is uniformly better than the closed Bonferroni procedure!

3.3. The closed LSD-procedure

There is still another interesting modification which is called the closed LSD procedure because of its relation to Fisher's Least Significant Difference test [F i s h e r (1935)], which was developed in the context of multiple comparisons of several means.

In this case our testing scheme is as follows:

$H_{01}: \beta_{1} = 0$ $p_{1} \leq \alpha$	$H_{02}: \beta_2 = 0$ $P_2 \leqslant \alpha$	$H_{03}: \beta_3 = 0$ $P_3 \leqslant \alpha$
$H_{012}: \beta_1 = \beta_2 = 0$	$H_{013}; \beta_1 = \beta_3 = 0$	$H_{023}: \beta_2 = \beta_3 = 0$
P ₁₂ ≼ α	$P_{13} \leqslant \alpha$	$p_{23} \leqslant \alpha$
	$H_0: \beta_1 = \beta_2 = \beta_3 = 0$	· · ··································
	p ₀ ≼ α	

where p_{12} , p_{13} , p_{23} and p_0 are the p-values of the corresponding direct F-tests. Now we have for each null hypothesis of our scheme an exact level-a-test. The application of the closure test rule is straightforward and so we get another example of a closure test. This test procedure seems to be quite attractive, though there is no such simple implication between this test procedure and the two mentioned before. But the results of a simulation study presented in section 4 indicate that the closed LSD procedure might be quite an attractive alternative compared to other multiple test procedures.

3.4. Testing general linear hypotheses

Suppose that we are interested in testing the general null hypotheses

 $H_{01}: C_1\beta = C_1$

$$H_{0q}: C_{q}\beta = c_{q}$$

where C_1, \ldots, C_q and c_1, \ldots, c_q are known with $C' = [C'_1, \ldots, C_q']$ having full column rank = q = rank(C, c). Then the application of the closure principle is straightforward. We only need to construct all possible intersection hypotheses by stacking the C_1 -vectors. This results in a set of hypotheses based on submatrices of C. The assumptions of the closure principle are fulfilled by defining a level-a-test for each null hypothesis. Then the test rule can be applied and we get a corresponding test procedure controlling the multiple level a.

4. A SIMULATION STUDY

In this section we will present the results of a small simulation study designed to compare the empirical performance of four multiple test procedures, namely the Bonferroni procedure, the Holm procedure, the closed LSD procedure and another classical test procedure, the Scheffé procedure.

A simple regression model of the form

 $Y_t = \beta_0 + \beta_1 x_t + \beta_2 x_{t-1} + u_t$ t = 1, ..., 120was simulated, where the x_t's were generated once from the relation

$$x_t = 0.7x_{t-1} + e_t = 1.1.d.N(0,1)$$

and remained constant for all experiments. The u_t 's were independent drawings from a N(0, 10.0) distributed random variable. The coefficient β_0 was 2.0 while β_1 and β_2 were varied using the values 0.0, 0.2, 0.4, 0.6, 0.8, 1.0. So there were 36 different parameter combinations of β_1 and β_2 .

We considered here the testing of two null hypotheses

 $H_{01}: \beta_{1.} = 0$

$$H_{02}: \beta_2 = 0$$

where the level a was given by 0.05.

Multiple test procedures and the closure principle

The Bonferroni procedure was carried out by using the p-values P_1 and P_2 , each at level 0.025. The Holm procedure was carried out at level 0.025 for the intersection hypothesis H_{012} : $\beta_1 = \beta_2 = 0$ and 0.05 for the single hypotheses H_{01} and H_{02} . The application of the closed LSD procedure is straightforward while the Scheffé procedure employs the use of the statistics Q_1 and Q_2 , each of which was compared with the critical value $S^2 = 2F_{0.05}(2, 117)$, where $F_{0.05}(2, 117)$ is the upper 0.05 significance point of an F distribution with 2 and 117 degrees of freedom. 10 000 replications were performed for each combination of β_1 and β_2 . The following tables show the estimated rejection probabilities for the Bonferroni (B) procedure, the Holm (H) procedure, the closed LSD (CLSD) procedure and the Scheffé (S) procedure.

Table 1

Estimated Rejection Probabilities $H_{01}: \beta_1 = 0$

β ₁	β2	S	В	н	CLSD
0.0	0.0	.0169	.0259	.0284	.0268
	0.2	.0141	.0236	.0282	.0287
	0.4	.0156	.0264	.0339	.0398
	0.6	.0151	.0267	.0376	.0465
	0.8	.0144	.0258	.0409	.0505
	1.0	.0124	.0247	.0415	.0502
0.2	0.0	.0362	.0530	.0551	.0545
	0.2	.0362 .	.0573	.0590	.0748
	0.4	.0347	.0529	.0557	.0880
	0.6	.0379	.0561	.0626	.0983
	0.8	.0360	.0544	.0690	.0986
	1.0	.0400	.0607	.0855	.1019
0.4	0.0	.1230	.1664	.1672	.1809
	0.2	.1203	.1686	.1700	.2154
	0.4	.1194	.1645	.1687	.2361
	0.6	.1201	.1651	.1824	.2437
	0.8	.1190	.1636	.1982	.2464
	1.0	.1223	.1687	.2281	.2528

	Ra	imund	Alt	
--	----	-------	-----	--

Table 1 (contd)

β1	β2	S	В	н	CLSD
0.6	0.0	.3010	.3748	.3759	.4233
	- 0.2	.2923	.3622	.3643	.4508
	0.4	.2959	.3739	,3852	.4804
	0.6	.2999	.3705	.4073	,4840
	0.8	.3066	.3718	.4396	.4838
	1.0	.2963	.3712	.4684	.4864
0.8	-0.0	.5429	.6188	.6191	.6870
	0.2	.5368	.6209	.6264	.7090
	0.4	.5420	.6221	.6433	.7230
	0.6	.5424	.6254	.6710	.7257
	0.8	.5462	.6247	.6984	.7247
	1.0	.5390	.6161	.7097	.7184
1.0	0.0	.7693	.8259	.8270	.8788
	0.2	.7644	.8234	.8317	.8880
	0.4	.7729	.8304	.8511	.8934
	0.6	.7736	.8295	.8689	.8929
	0.8	.7729	.8276	.8849	.8952
	1.0	.7699	.8259	.8845	.8866

Table 2

Estimated Rejection Probabilities Hect $\beta_{re} = 0$

lool	p a	-	- U
"02 [†]	- 2		
- P. M.			

β1	β2	S	В	н	CLSD
0.0	0.0	.0159	.0270	.0295	.0260
	0.2	.0378	.0575	.0601	.0617
	0.4	.1190	.1623	.1636	.1752
	0.6	.2975	.3653	.3661	.4103
51	. 0.8	.5490	.6321	.6329	.6913
	1.0	.7644	.8218	,8235	.8748
0.2	0.0	.0129	.0235	.0270	.0270
* //•	0.2	.0336	.0542	.0558	.0704
	0.4	.1213	. 1633	.1640	.2081
	0.6	.2960	.3728	.3758	.4540
	0.8	.5388	.6172	.6225	.7112
	1.0	.7714	.8276	.8350	.8864
0:4	0.0	.0155	.0245	.0325	.0381
	0.2	.0346	.0526	.0549	.0827
	0.4	.1242	.1720	.1750	.2423
	0.6	.2913	.3667	.3759	.4674
	0.8	.5451	.6244	.6441	.7261
	1.0	.7668	.8273	.8499	.8958

Multiple tes	procedures	and the	closure	principle
--------------	------------	---------	---------	-----------

		a	ANTE NO		Table 2 (contd)
β ₁	β2	S	В	Н	CLSD
0.6	0.0	.0138	.0244	.0366	.0447
	0.2	.0367 \	.0578	.0635	.0954
	0.4	.1233	.1699	.1844	.2519
	0.6	.2994	.3673	.4024	.4851
15	0.8	.5496	.6298	.6782	.7365
	1.0	.7745	.8310	.8687	.8912
0.8	0.0	.0125	.0225	.0360	.0468
	0.2	.0379	.0585	.0727	.1016
	0.4	.1236	.1682	.2030	.2528
	0.6	.2927	.3688	.4373	.4827
	0.8	.5421	.6230	.6977	.7244
	1.0	.7711	.8282	.8832	.8942
1.0	0.0	.0134	.0239	.0393	.0481
	0.2	.0346	.0554	.0834	.0996
	0.4	.1202	.1645	.2226	.2458
	0.6	.3044	.3810	.4716	.4885
	0.8	.5326	.6161	.7167	.7245
	1.0	.7788	.8366	.8948	.8971

The reported results clearly indicate the superiority of the Holm procedure and the closed LSD procedure compared with the Bonferroni procedure and the Scheffé procedure. In particular the differences between the closed LSD procedure and the Bonferroni/ /Scheffé procedures are in general quite substantial.

5. CONCLUSIONS

This paper deals with the application of closed test procedures to linear hypotheses within the classical linear regression model. It was shown via the closure test theorem how to construct such test procedures which always control the multiple level α . A specific closure test, namely the closed LSD procedure, seems to be quite attractive compared with the Bonferroni/Scheffé procedures.

REFERENCES

- A 1 t R. (1988); Hierarchical test problems and the closure principle, [in:] Bauer P., Hommel G., Sonnemann E. (ed.) - Multiple Hypotheses Testing-, Reihe: "Medizinische Informatik und Statistik", Springer Verlag.
- Fisher R. A. (1935): The Design of experiments. Oliver and Boyd Ltd, Edinburgh and London.
- Holm S. (1979): A Simple Sequentially Rejective Multiple Test Procedure, "Scandinavian Journal of Statistics", 6, p. 65-70.
- Marcus R., Peritz E., Gabriel K. R. (1976): On closed testing procedures with special reference to ordered analysis of variance, "Biometrika", 63, 3, p. 655-660.
- Savin N. E. (1984): Multiple Hypothesis Testing, [in:] Handbook of Econometrics, Vol. 2, Griliches, Z./Intriligator, M. D. (ed.), Amsterdam, North-Holland Publishing.
- Scheffé H. (1953): A method for judging all contrasts in the analysis of variance, "Biometrika", 40, p. 87-104.
- Sonnemann E. (1982): Allgemeine Lösungen Multipler Testprobleme, "EDV in Medizin und Biologie", 13, p. 120-128.

Raimund Alt

PROCEDURY TESTÓW WIELOKROTNYCH I ZASADA DOMKNIĘCIA

W pracy tej pokazujemy jak stosować zasadę testu domknięcia w przypadku badania hipotez liniowych w klasycznym modelu regresji. Zasada domknięcia, wprowadzona przez [M a r c u s a, P e r i t z a, G a b r i e l a (1976)], pozwala skonstruować procedury, które zasadniczo są o wiele silniejsze niż konwencjonalne procedury testowe, np. procedura Bonferroniego czy Scheffégo. Krótkie badanie symulacyjne dostarcza pewnych dowodów wyższości procedury testu wielokrotnego domkniętego nad procedurą testu klasycznego.