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MINIMAX ESTIMATION IN LINEAR MODELS

Abstract. We consider the linear model у * Xß + ос, E E * 0, Eee‘ ■ In 
under the ellipsoidal constraints ß e В ■ {ßi ß' ß á 1} . We give a review of 
the problems involved with the determination of the Best Linear Estimator of 
ß in this model.
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1. INTRODUCTION 

Consider the linear model
у * Xß + ас, Ее = 0, Есе' = Cov е = 1п , fl.ll

where X is a known n х к-matrix, the design matrix, ß is an unknown 
k x 1 parameter vector and y, the observation vector, as well as 
e, the unobservable disturbance term, are random n x l-vectors.
о is unknown scalar parameter. The setup implies that

Cov y = o2Cov e = o2In « (1.2)
If instead of (1.1) the model у * Xß + oZ, Ее = 0, Cov e = V, V a 
positive definite (p.d.) n x n-matrix is given then by the trans- 

-l/2~formation у = V *'*y the model can be brought into the form (1.1)
with X = V-1^2X. Therefore the restriction to (1.1) is not es­
sential from the theoretical point of view, possibly, however from 
the numerical point of view. The usual method to estimate ß is the
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method of least squares resulting in the estimator ß 5 (X$X)~X'y, 
where in general A -  is a g-inverse of matrix A ,  i.e. a n y  matrix 
A  such that AA A  = A .  However, this method is only a good one in 
the case that ß is really unresticted. If there are some restric­
tions imposed on ß then ß may behave rather badly. We shall assume 
in the sequel that ß obeys the ellipsoidal constraint

ß e M « {ß* ß ’ß i 1). * (1.3)
An ellipsoidal constraint of the kind

ß e Ъ  = {ß; (ß - ßQ) T(ß - ßQ) i, 1) (1.4)
with a p.d. matrix T  can be brought back to the above restriction 
by the reparametrization

ßj = T"1/2 (ß - ß0 )
and the transformation у -► у - XßQ = y, Eý = Xßj, í = XT1^2, and 

1/2ß = + T ß^. Therefore the restriction to the circle (1.3) is
not connected with any loss of generality.

We consider linear estimators fi = Ly of ß. In order to define 
a risk we consider a non negative definite matrix A of order k*k. 
If A is of rank m, we can write A = CC' with a suitable k x m-ma- 
trix C. Then we define the risk R(ß, ß) as

R(ß, ß) = E((íä - ß)'A(ß - ß))
= E((ß - ß T C C M ß  - ß)) = E D C  (ß - ß) II2. (1.5)

By elementary computations we get
R(Ly, ß) = ß'(LX - I)'A (LX - I)ß + o2tr(L'AL).

"he minimax-principle now consists in finding L in such a way that
sup R(Ly, ß) = min sup R(Ly, ß).
ß€S L ß«B

This principle incorporates the prior information given from ß e 3s, 
i.e., ||ß|| <, 1.

2. THE MINIMAX ESTIMATOR

It is well-known that
sup -ß1(LX - I)1A(LX - I)ß = max ß’(LX - I)'A(LX - I)ß

IIPII <1 ||ßII SI
= xmax((LX " D ’A(LX - I))> (2.1)



the largest eigenvalue of the n.n.d. matrix (LX - I)'A(LX - I) * 
= Q(L) and the maximum is attained if ß is any unit eigenvector 
belonging to the largest eigenvalue of Q(L). Therefore the opti­
mization problem consists in

minimite Xmax(0(L>) + o2tr(L'AL) subject to L £ K kxn. (2.2) 

The difficulty now consists in the fact that X a (Q(L)) is notШал
a differentiable function of L [G i r к о (1988), p. 74; S t a h ­
l e c k e r  (1985); S t a  h.l e c k e r and L a u t e r ­
b a c h  (1989), p. 2758]. Since Q(L) = (LX - I)'CC'(LX - I) and 
Xmax((LX ' I>'CC’<LX " = Xmax(C'(LX - I)(LX - I)'C) [see G i r-
k о (1988), p. 73] the minimization of (2.2) is equivalent to 
the minimization of

Z(L) * Xmax(S(L,) + °2tr(L'AL), (2.3)

where Q(L) = С'(LX - I)(LX - I)'C. Clearly, Z(L) = A (Q (L )) isШдХ
an expression of the kind

Z(L) = max a'W(L)a 12 4)
INI *1 }

where W(L) is of the form AqLBB'L'A^ + DLE + E'L'D' + F with sui­
table matrices Aq , B, D, E, and F. It is easy to verify (using 
Cauchy-Schwarz inequality) that W(L) is a convex function of L. 
Hence Z(L) is a convex function of L, too and a local minimum of 
Z(L) is a global minimum as well. Thus L is optimal iff for any 
matrix 0 of order к x n

Z(L + Y0)|y=o * 0, (2.5)

provided that the derivative exists. The differentiation ofJ £
tr((L + y0)'A(L + y6)) is of course not very difficult and yields 

the value for y = 0 equal to 2tr(AL0'). It is more difficult to 
find the derivative of Xmax(Q(L + Y0)), evaluated at y = 0. Howe­
ver, [G i r к о (1988), p. 64 ff. and p. 74] has found the cor­
responding expression. Let ex be a unit eigenvector of Q(L) =
= C'(LX - I )(LX - I)'C corresponding to the largest eigenvalue of 
Q(L). Then



d7 W ° (L + Y0) > ly- о = eic ’(LX - Ш ' в ' С  ex
= tr(e^C'(LX - D X ' 0 'С ex) (2.6)
= tr(C e’q̂  ejC'(LX - I)X'0').

This holds ln the case that xmax(Q<L)) is a simple eigenvalue. It 
is still unclear what happens if ^max is a multiple eigenvalue of 
Q(L). Thus

d7 (Xmax(6 (L + VO)) + o2 tr ((L + y0)'A(L + Y©> >) I у=0

= 2tr([C . C'(LX - I)X' + o2 Alje') = 01 el

(2.7)

is the necessary and sufficient optimality condition. Since this 
is to hold for 0, (2.7) is equivalent to the equation

C ei^C'(LX - I)X’ + o 2CC'L = 0. (2.8)

The solution of this equation is very simple if C = b, a k x 1-vec­
tor. Then C'(LX - I) (LX - I)'C = b ’ (LX - IMLX - I)' b is a num­
ber and trivially the largest eigenvalue. Thus ex = 1 (or ej = -1) 
and (2.8) becomes

CC’[(LX - I)X' + o2L)] = 0. (2.9)
A solution independent of b is given by the solution of the 

equation
(LX - I)X' + o 2L = 0 (2.10)

which gives the ridge estimator
Ly = ß = (X'X + o2I)_1X'y.

It seems that this approach should be followed further and it 
should be compared with the results obtained by other methods.

An alternative approach was given by Läuter [ L ä u t e r  
(1975), H o f f m a n n  (1979), S t a h l e c k e r  (1985), 
P. 111)3. Let

S = o”2X'X = (a2(X'X)“1)"1, (2.11)
F = S’1 AS'1, ,2.12)

then necessary and sufficient for the existence of a solution Ly 
of the Minimax-problem is the existence of a n.n.d. matrix V and a 
positive real number v such that



Dv,V * /7 (F + V)1/2 ■ s'1 is n.n.d., (i)

F + V)"1/2V = SV, (ii)

-jk tr( (F + V)1/2) = 1 + tr(S_1). (ill)
If these conditions are met then a minimax-estimator is given by 
the ridge estimator

ß * (X'X + Dv<v)_1 X'y. (2.13)
If A = I, i.e. С * I, then V = 0 and v = (tr(S~1)(1 + tr S-1)-1)2 
meets the conditions (i), (ii), and (iii). The minimax-estimator is 
the shrunken estimator

ß = ----- =— ------- —  (Х’ХГЬс'у, ' (2.14)
1 + a trl(X'X) )

L = (1 + o2tr((X'X)_1))"1(X'X)"1X', i.e.
LX - I = -(1 + o2tr((X'X)'1 ))"1o2tr(X'X)‘1 I,
C(LX - I)(LX - I )'С' = vi. 

v is the maximal eigenvalue, but a multiple one. The Girko-equa- 
tion (2.8 ) is then equivalent to

X'X e.ei X'X = ----- ł--- —  X'X (2.15)
(tr(X'X) )

and means that e^ej is proportional to a generalized inverse of 
X'X. This can only happen if Rank(X) is equal to zero or one. But 
this case is ruled out by the assumption of regularity of X'X.

Unfortunately, there is no constructive way of finding V, v 
besides some special cases as that one discussed above. There­
fore it is necessary to apply numerical methods for the determina­
tion of the minimax-estimator Ly. Such numerical methods were de­
veloped by Stahlecker’ [ S t a h l e c k e r  (1985), p. 141 ff.t 
S t a h l e c k e  r - L a u t e r b a c h  (1989), p. 2757 ff.J. He 
uses a p-norm-approximation of the largest eigenvalue. Let Q be 
any k x к-matrix. Then

(trd/kQP))1713 < Xmax(0) * (tr Q13)1^  (2.16)
for any positive integer p and

lim (trd/kQP))1711 = lim (tr(Qp ))1/P * Xm <Q). (2.17)
P  -»со p -МО m a x



Therefore it seems convenient to replace the minimization problem 
arising from Minimax-Estimation by either

Minimize l/k(tr((S(L))p))1/p + o2 tr(L'AL) (2.18)
or by

(tr((Ö(L))P))1/P + o2 tr(L'AL). (2.19)
Stahlecker proves that there are к * n-matrices Lp and Lp * which 
solve the minimization problems (2.18) and (2.19), respectively. 
There are numerical procedures known from, optimization theory [the 
authors quote D e n n i s  and S c h n a b e l  (1983) and 
G Ö p f e r t (1973)]. Moreover, they can show that there exists
a subsequence {IDi}, pj e N  such that lim L ,  = L and L is a mi-j-*» PJ
nimax-estimator. They are also able- to obtain estimates on
!!Lpj “ I'll* (|IA II = (tr (A' A)) ̂ 2). These estimates allow to stop 
computations as soon as a required accuracy is obtained.

3. AFFINE AND ELLIPSOIDAL RESTRICTIONS

Consider the linear model Ey = Xß, Cov у = o2I and assume that 
besides the ellipsoidal restrictions ||ß|| £ 1 also affine res- 
strictions Rß = r are given, where R is a given s x к-matrix (with­
out restricting generality Rank(R) = s can be assumed and r e  IRS). 
Let therefore

■4 = ( M  : Rß 5 r) (3.1)
At a first glance it may seem that these additional restrictions 
do not produce any new statistical problem what minimax-estimation 
is concerned. The reason is that we could consider r as additional 
observations with zero covariance. Thus we could build up the 
linear regression model

Е(.У.) = (.?.) ß, cov (. У.) = a2 ( ? . . ? )  (3.2)
r R r 0 - 0

under the ellipsoidal constraint j|ß || i 1. A miriimax-estimator can 
easily be calculated, the corresponding formula can be found in 
[ D r y g a s  (1991), section 1]. We call this estimator naive 
minimax-estimator. It coincides with the minimax-estimator to be



discussed later if r * 0. The main shortcoming of the naive mini- 
max-ostimator is that he does not react on the possible situation 
Л П В  * 0 or the situation Л П В  «= {t*}, a single point in which 
case the naive minimax-estimator is not equal to t* with probabi­
lity one. '

One may argue that the problem of a non-consistent statistical 
model may occur in many situations. Let us mention a few examples. 
Consider the linear model A Ey * b, Cov y=V, where A is some linear 
mapping. If the equation Ax = b is consistent, then a Best Linear 
Unbiased Estimator (BLUE) of ЕУ is given by

Gy = (I - V A M A V  A ’)"A) у + V A'(AV A')"b. (3.3)
But what does this formula mean if the equation Ax = b is incon­
sistent, i.e., contradictory? Under the assumption im((AV A')‘AV) g 
Ł  im(A) - im(A) = {y s у ■ Ax) - (which is correct if the g-in- 
verse is the Moore-Penrose inverse) Gy is the BLUE of Ey in the 
model A Ey = AA+b, Cov у = V. Thus Gy is not the BLUE in the gi­
ven (inconsistent) model but in a different consistent model.

Consider the model r = Rß, Cov r = 0. Then R_r has the pro­
perty that a 1 R r is BLUE of a* ß in this model for any estimable 
a' ß provided the equation r = Rß is consistent. If the equation 
Rß = r is not consistent and R is a reflexive g-inverse of R 
(i.e., R~RR = R ), then a'R r = a 'R~RR_r is BLUE of a'ß, a'ß 
estimable, in the model RR~r ■ Rß, Cov RR~r = 0. Again, the 
meaningless estimator has changed to a meaningful estimator in a 
different model.

Let us now consider the consistent equation Rß = r, Cov r * 0. 
If in addition to this, ellipsoidal restrictions ß'Tßsl are given 
then Ar is approximate minimax-estimator of ß iff ART-*R' = T_1R' 
[see D r y g a s  (1991), formula (1.14) in section 1]. This 
implies RART_1R' = RT-1R', which is again equivalent to RAR = R. 
It shows that A is a g-inverse of R. Therefore we realize that 
the additional information ß'Tß < 1 reduces the choice of g-in- 
verses R-. However, the information may be destructive and con­
tradictory, leading to an inconsistent model. Inspection of the 
equation ART-1R* = T_1R' shows that it is not changed if T is re­
placed by aT, a > 0. Since there will be at least one a > 0 such 
that both restrictions are simultaneously consistent, again the ap­
proximate minimax-estimator is an approximate minimax-estimator in



a meaningful model. This consideration can readily be carried over
2to the general model Ey = Xß, Cov у * a V : Just replace V by aV 

and T by a-1T (the restriction is then ß'Tß s 1).
The naive minimax-estimator can nevertheless be used if in ad­

vance it has been checked that neither <A n JS is empty (inconsis­
tent model) nor (ЛПЭЗ consists of a single point (in which case 
there is no estimation problem at all). This check is not necessary 
if one uses the minimax-estimator defined by [ S t a h l e c k e r  
and T r e n k l e r  (1988)] as follows: С + d is called Mini- 
max-Estimator if

sup R(cy + d, ß) = min sup R(Čy + d, ß). (3.4)
ß€<Ana C,a ße^n»

In the course of the computation the quantity 
a = 1 - r'(R'R)~r 

is computed, a ž 0 is the necessary and sufficient condition that 
c4ri33i*0. If a = 0, then «Л rt 33 consists of a single point t„ 
and the minimax-estimator is just this point. If a = 1, i.e., 
r = 0, then the naive minimax-estimator and the minimax-estimator 
coincide.

4. ELIMINATION AND REPARAMETRIZATION METHODS

Let us consider as simple example the regression model Ey =2
= xlßl + x2ß2' Cov У = 0 1 with ß^ and ß2 scalars. Assume that 
we have the ellipsoidal restriction ßj + pj i 1 and the affine 
restriction ßj + ß2 = 1. Of course you would try to eliminate ß2
by ß2 = 1 - ß1 implying ß2 + ß2 = ß2 + (1 - ßx)2 = 2ß2 - 2ßt + 1 =

2 2 
= 2*ßl * 5* + 1 - \ ~ " 7 ) + f S 1 or equivalently (ß^ -

1 2 1 ,■ 5 ) < -ę, which again is equivalent to |ßj - -|| < 1 or ß^ e [0,1]. 
So we could write the regression model as well as

E(y - x2) = (xj - x2)ßlf Cov(у - x2) = o2I, (4.1)

and the ellipsoidal constraint - here indeed an interval-constraint
• 1 - 2" IP1 ~ 2 1 SI. Indeed in this model one would estimate ß^ by the 

usual minimax-method resulting in an estimator ßj • ß2 will then 
oe estimated by ß2 = 1 - ß^. The question, however, is: What are



the properties of this estimator? When computing the estimator 
P ß2^ t u r n s  out that it coincides with the minimax-
-estimator of ß in the Stahlecker-Trenkler sense. This result gives 
rise to an investigation of elimination and reparametrization me­
thods in linear models with affine and ellipsoidal restrictions.

Let us discuss at first elimination methods. We can assume that 
Rang(R) * s (as already done earlier) because otherwise there are 
redundant or contradictory restrictions. Let RQ be determined in 
such a way that 

RH = (...) (4.2)
R0

is a regular k x к-matrix (RQ is then a (k - s) x к-matrix). If 
R = (R^ : R2), 6 K SXS' Rang(R^) = s, then Rq = (0 : 1^_3 ) may 
be a special choice of RQ leading to the elimination of ßr

Let у = (Y'r  y’2)' = Hß = (r',(R0ß)')'. If H'1 = (H1 I H2) with 
H1 e K kxs' H2 e K kx(k-s)' then

Xß = Xxr + X2y2’ X1 = XH1' x2 = XH2 ' Н.З)
Moreover, [see D r y g a s (1991), section 1], it can be shown 
that ß e В n cA iff (y2 “ >2,0> T22^Y2 ” Y2,0  ̂ - a ior some a 6 ̂  
and some p.d. T22> a > 0 holds iff J3n<A # ф and a = 0 iff JSncA 
consists of a single point t4. If a £ 0 then the minimax-estima­
tor ?2 of y2 in the model E(y - Xjr) = X2y2, Cov(y - Xjr) = o2I
under the ellipsoidal restriction (Yi - y, -)'T ťv - v  1 < n2 '2,0 22' '2 '2,0 *
has the property that

ß = Hxr + H2y2 (4.4)

is a minimax-estimator of ß. Thus, in a sloppy way, we can for­
mulate:

Theorem. Elimination methods do not destroy minimax-estimators. 
Another method to get estimators is the method of reparametri­

zation. Since Rß = r we get from ß = R-Rß + (i - r ~r )ß, where R" 
is a g-inverse of R, i.e., RR'R * R, that

ß = R~r + (I - R~R)ß. (4t5)
Indeed {x.’x — R r  + (I - R R)ß^} = {x s Rx = r). Let us therefore 
consider the model



E( У - XR_r) =» Xfl - R'RJßj, Cov (y - XR'r) = o2I (4.6)
under the ellipsoidal restrictions ß’̂ Э ̂ S i. We can estimate ßj by 
the minimax-method. Thus we will get an estimator ß^. We estimate 
P by

ß = R'r + (I - R'R)ßr  (4.7)
Then Rß = r. This is a continuum of estimators for ß. Unless r * 0 
neither of these estimators coincides with the minimax-estimator. 
If R" = R'(RR')“ ( = R'(RR')"1 = R+ if Rank(R) = s), then ß coin­
cides with the naive minimax-estimator [ D r y g a s  (1988)].

Instead of reparametrizing the regression function also the el- 
liposidal constraint could be reparametrized by (4.5). This leads 
to a model with singular ellipsoidal constraints (see next section). 
A minimax-eętimator in this model exists (ß is minimax-estimable) 
and one version of it is a minimax-estimator in the model Ey = Xß, 
Cov y e o2I, ß e (А П B, too.

5. SINGULAR RESTRICTIONS 

We consider the linear model
Ey = X^ßj + Xjß2 + e» Cov e = Cov у = o2I (5.1)

under the constraint
»ißj S 1. (5.2)

This is the canonical form of a linear model with singular el­
lipsoidal constraints, i.e., any linear model with singular el­
lipsoidal restrictions can be brought into this form after some 
reparametrization. Consider estimators of ß of the form

C, V C,Су = (.И) = (.łj у, (5.3)
c2y c2

where С^ e e i = 1,2; kj + k2 = k. There are several
approaches available in the literature to cope with such problems. 
We will only discuss our own results [ D r y g a s  (1985)]. Unless 
C2X2 = * follows that

sup E(Ćy - ß)'A (Cy ß) = (5.4)ß££
where 33 = {ß * (ß^, ß'̂ )' s ß'̂ ßj ^ 1). Thus Cy has to be a partial



unbiased estimator. If C2X2 B I is not consistent, then only func­
tions of the kind D j ^  + D2X2ß2 are minimax-estimable. In the 
case A = aa' the minimax-estimators are obtained by computing the 
BLUE of Djßj + D2X2ß2 in the artifical linear model

E(.ľ.) * ( 1 2)(^1)# Cov (.Y.) * (° 1 °) (5.5)
0 I 0 ß2 о 0 1

0 is considered as an artifical observation with expectation ß^,
uncorrelated with у and with covariance-matrix I. .

kl
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Hilmar Drygas 

ESTYMACJA MINIMAX W MODELACH LINIOWYCH

Rozwaíamy model liniowy у •* X ß + ос, Ее," 0, Еее1 « In przy ogranicze­
niach elipsoidalnych ß 6 К ■ {ß iß' ßsl}. Podajemy przegląd problemów zwią­
zanych z determinacją Najlepszego Liniowego Estymatora Minimaxowego ß w tym 
modelu.


