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ON THE USEFULNESS OF REGULARIZATION IDEAS OF ESTIMATION:
THE LINEAR MODEL CASE

Abstract. In the paper we present an analysis of negative effects of ill- 
-condltioning for the performance of LSE. These results will be observed 
through the behaviour of LSE's variance, MSE, sample standard deviation, 
sample multiple correlation coefficient., F and t-statistics. We also include 
some results on ill-conditioning effects induced by data centering, weighting. 
To overcome those negative effects we propose now versions of regu’.arizatien 
criteria for the linear model case. The resultant regularising estimators are 
consistent and asymptotically normal.

Key words: linear models, regularization, ill-conditioning, re
gularizing estimators.

1. INTRODUCTION

In econometrics and statistical literature one can find discus
sion about the existence and effects of
i) multicollinearity of the columns of matrix x,
ii) almost-múlticoľlinearity of the columns of matrix x,
iii) bad-conditioning of matrix x,
iv) high correlation of explanatory variables xL, xk . These 
four concepts (i) - (iv) are intertwining in the scopes of their 
meaning. These readers who trace advancement in numerical and sta-
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tistical data analysis on the one side and in applied econometrics 
and statistics on the other, feel strongly the necessity to fix 
the strict meaning of (i) - (iv) and to carry on the analysis of 
their relationships. One of the practical reasons of this neces
sity is the need to create good diagnostic methods and program
ming diagnostic packages for identification of the existence of 
(i) - (iv), its sources, and consequences.

It is known that such diagnostic tools can not be created 
without diagnostic acts concerning such phenomena as outliers, 
missing values, autocorrelation, influential observations, stabili
ty of the parameters and models.

In this paper we concentrate our analysis on bad conditioning 
of the data matrix with some points of reference to multicol
linearity, almost-multicollinearity and strong correlation, f

Negative effects of (iii) will be discussed through the analy
sis of the effects of centering, weighting, standardization.

In § 2 we try to define these concepts and give some notes on 
their complexity.

In S 3 we discuss relationship between almost-multicollinearity 
and bad-conditioning.

In S 4 there is a discussion of negative and positive effects 
of centering, weighting, standardization of x.

As a device of overcoming negative effects of bad conditioning 
we propose regularising estimators.

In § S we propose some regularising ideas and estimators.
\ .In S 6 a short discussion on asymptotic properties of regula

rising estimators is given.

2. ON INTERWINING CONCEPTS OP RELATIONSHIP BETWEEN EXPLANATORY VARIABLES

The term "multicollinearity" [see: K e n d a l l ,  B u c k -
1 a n d (1971)] denotes linear dependence between the predictor 
.(sometimes called: independent) variables. In algebraic terms it 
denotes the linear dependence of columns in the data matrix x of 
dimension n x k, i.e. the matrix with rank (x) = kQ < k. In the 
case of the linear model describing the random n x 1 vector У .

У = xß + W, k0 < к, Ру = Ny(xß, c2I) (1.1)



where the relation kQ < к or, equivalently, the relation x5 = 0,
6 ^ 0  characterizes "multicollinearity" of the columns of x, and 2"Py = Ny (xß, о I) "denotes" the normal distribution of the random 
vector V with mean xß and dispersion o2I". By (1.1) OLSE (Ordina
ry Least Squares Estimator; does not exist. Other estimates are 
no-unique and their sample standard deviations go to infinity. 
These are the most notorious negative effects of assumptions (i) 
and (1.1) on the OLSE.

Other known negative effects are: biasedness of estimators, 
predictors, residuals, singularity but still normality of distri
butions of generalized inverse estimators, predictors and resi
duals, as well as, that the sum of squares of predictors and re
siduals, based, on Moore-Penrose inverse, is X2-distributed.

There are other interpretations of multicollinearity. One can 
find them in the works of [ J o h n s t o n  (1962), S i 1 v e у 
(1969), G u n s t  (1983), M a s o n ,  G u n s t ,  W e b s t e r  
(1975), F a r r a r ,  G l a u b e r  (1967), H a r v e y  (1977), 
C h a t t e r j e e ,  P r i c e  (1977)]. For example J. Johnston 
A. Harvey say that (i) occurs if two or more explanatory variables 
are highly correlated, i.e. if (iv) occurs. They do not distinguish 
the model

У = xß + W, k0 = k, corr (x) high, py = Ny (xß, o2I) (1.2)
where x:n x к is a real matrix and corr (x) has purely non-proba- 
bilistic descriptive meaning from the model

Y * xß + w, k0 = k, corr (x) high, py = Ny (xß, o2I) (1.2a)
where the matrix x is a random n x к matrix, and corr (x) has
normal meaning. It is known that corr (x) = d”^ 2x'CxD-1^2 is aX X
descriptive correlation matrix since it is defined, through С » 
= I - n_1l ľ  and Dx a ^  diag (х'л Схл , ..., x ^ C x  k ).

However in the case of (1.2a) corr (x) = A-^ 2 хл”*^2, whereX X
Лх = diag (o2 ,̂ ..., a2^), a2  ̂* var xi# i » 1, ..., к, X s x'C^x.

It is obvious that the statistical meanings of (1.2) and (1.2a) 
are different.

With the expression "multicollinearity" we associate the ex-



pression "near or almost multicollinearity of columns of x". It is 
[see: G u n s t  (1983)] characterized by

x6 » d, ||d|| £ n II«II, d, M  0 «  k0 = к (1.3)
The linear model describing (y, x) with the almost-multicol- 

linear columns of x has the form
Y = xß + W, kQ = k, xi = d, II d D s n II o H , Py * Ny (xß, o2I)

(1.3a)
In defining bad-conditioning of x and a corresponding model 

for bad-conditioned data we use popular index of bad-conditioning.

v = vx = x£/2X"1/2 (1.4)

where X ^ 2, * X*a2(X), xj^2 = X*^2(X) ' are singular values of the
matrix X = x'x, appropriately, the largest and the smallest and 
Xk' X1 are the lar9est and the smallest eigenvalues of x'x.

It will be said that the matrix x is bad-conditioned if
2 2v > v* (1.5)

2 2 where v4 is the threshold value of v distinguishing bad- and
good-conditioned matrices x.

Therefore our model describing bad-conditioned results of ob
servations is of the form

Y = xß + W, k0 = k, v2 > v2, Py = Ny (xß, a2I) (1.6)

By (1.6) it is seen that the statistical meaning of bad-condi
tioning and correlation in the context of (1.6) and (1.2) - (1.2a) 
is different. It can happen that strong correlation in x can coin
cide with strong bad-conditioning of x. It can also happen that 
strong correlation coincides with the small bad-conditioning. It 
can also happen that for a given matrix x all phenomena (ii)-(iv) 
occur simultaneously. Up to now there has not been clear cut sepa
ration devices for them. Some qualitative interrelationships will 
be shown in § 3.



3. ON RELATIONSHIPS BETWEEN EXPLANATORY VARIABLES

Remember that there are distinguished four kinds (see (i) (iv) 
in § 2) of relationships between explanatory variables. Let us 
start with (i). It is characterized by 

к
xí ■ E  » 0, 3j, «j 0, J - 1, к (3.1)

or equivalently as kQ < k.
In (3.1) the vector i is not too informative. In order to 

change its qualitative definitional role we replace [see: G u n s t  
(1983)] the vector 6 with the eigen vector v , corresponding to 
the eigenvalue X^ = 0. Hence, (3.1) takes more diagnostic form

xV.l = °' V .l * 0 (3.1a)
The relation (3.1a) enables us to detect the structure of collinear
relationship between the columns of data matrix x. Note that if
the parameter vector ß coincides with V , then• X

У - XVл  + w = w, XŁ = о п>2)

The point ß - V i is, therefore, a pathological point of parameter 
space. It annihilates the signal xß. Such atrophy of signal evi
dently spoils specification efforts and should be taken into con
siderations in constructing nested and non-nested types of testing 
procedures. It is the break-down point for any sensible linear 
specification. So, for kQ < к and ß = V л , it is useless to
estimate ß and to do testing. Less hopeless but still very se
rious situation we have in *the close neighbourhood of this break
down point ß * V Ł. More details can be found in [ M i l o  
(1989)]. • * -

For ß t У л  and ß and Vл , sufficiently far away, we can 
sensibly estimate ß and test it in spite of (3.1a). The relation 
between multicollinearity and almost-multicollinearity can be seen 
from the discussion of (1.3a). If d * 0 and kQ < k, then (1.3a) 
becomes (1.1). Hence, the last two modified forms of assumptions 
are linkage forms between (i) and (ii). In this respect some more
comments illuminate the mater: - in (1.3a) the quantity ň = JLíL L



can measure the degree of almost multicollinearity. Another option 

is the quantity rj = < 1, where 3 approximates d. They

measure closeness to dependence or • distance from independence, 
kQ < к (or (3.1)) is not equivalent to non-orthogonality since 
even for kQ = к (independent system x of vectors) the system x 
does not need to be orthogonal, i.e. there is always

хл  1 x_j) i f j « 1, к ■* xfi = 0, fi ф 0 (3.3)
but

(xfi * 0, fi ф 0) = *  x fi 1 x y  i j = 1, ..., к ' (3.4)

- from (1.1) and (1.3a) it can be seen that (i) and (ii) are code
fining linear models and influence properties of statistics defi
ned on the elements of these models. Thanks to (1.6) one can see 
that (iii) codefines the linear model (1.6) describing bad-condi
tioned results of observations. Therefore (iii) has partly numeri
cal and partly statistical role and meaning. In order to depict 
relationship between (ii), (iii) and (i) we will use the idea of 
singular value of decomposition SVD [see: M a g n u s-ri e u d e c-

k e r (1988)]. Due to SVD we can write x = £  x H 2U ,V ,, where
i-1 1 -1 -1

V ^ }  are eigenvectors corresponding to the eigenvalues 
{X^} of XX' and x'x. We rewrite xfi = 0 as 

0̂
Xí/2u.i V '.i6 = 0 (3.5)

or after dividing (3.5) by \\12

vi 6 v и-1ТПТ+ •” + ̂  u.k "jffi"r = 0 ,3-5a)
This equation relates bad-conditioning (iii) and multicollinearity 
(i). To connect near-multicollinearity (ii) with bad-conditioning 
(iii) we use SVD and (1.3) to obtain

“•1 T R F ł • • • + "  u.k T f ł f '  d <3-‘ ’
Squaring the last equation gives more diagnostic equation



(3.6a)

Special cases of (3.6a) are %
a) if 6 * v k then v2.= X ' ] V 2 or n"2 = Xk

b) if « = v у  j * 1, k-1, then II d II2 = xx

c) if Í * ß, then

d

d) If 6 * ß * V k, then v * X ^ n "2 and rf2 = Xk

In order to relate strong correlation (iv) with bad-conditioning 
(iii) one needs to consider two cases: (.) x is non-random real » 
matrix without regard to the situation when x is a sample value 
of random vector X = (X]>, ..., xR)f (..) X is a random matrix 
with n rows and к columns.

Suppose that in the case of (.) we transform x into 
x, = CxD"1/2.
For standardized matrix x„ we obtain counterparts of

x*«, = 0 multicollinearity (3.7)
= d*»* II II • £ Л* II á* II , d,, 5* # 0 almost multicol

linearity (3.7a)

Due to SVD we can rewrite (3.7), (3.7a) as

or



u*i V*l6* . V*k6* 1
H O I * "  + V * *  II e. II "  A^||«,|| d* (3-8a)

the above relations in obvious way relate bad-conditioning of the 
matrix x. with multicollinearity and almost-multicollinearity of 
the columns of x*. Since x* *= corr x, therefore we connected in 
(3.8) both multicollinearity, bad-conditioning and, if the elements 
of corr (x) are greater than *0,7, strong correlations.

In the case (..) we have

X. = C§XXD'1/2 where C{x - I ■ I i|W (  

diag l\ ..... 0xk >' x* = xix*-4/2
Therefore, our characterizations of multicollinearity, almost-mul
ticollinearity, bad-conditioning are as follows

X*á* = 0 (3.9)
x*á* ■ d*, K d, U <, К 6* d , d*, 6, j* 0 (3.9a)

Vx* > v* (3.9b)
corr X = Х’цХ* with elements greater than ±0,7 (3.9c)

Using SVD, as above, it is easy to formulate forms of (3.9), (3.9a),
(3.9b) that clearly combine four above types of relationships 
between explanatory variables.

4. ON CONSEQUENCES OF BAD-CONDITIONING

In ss 1-3 we occasionally mentioned effects of existence of
bad-conditioning for the characterization of multicollinearity,
almost-multicollinearity, strong-correlation as well as properties
of statistics defined for x in the context of linear models. Now
we will use formulas derived in Appendix A. As it is easily seen 
from A1-A21:

- the values of У, У У ,  y, Y~2, У С У  generally depend on the va
lues of bad-conditioning index v also called "condition number 
v of matrix x" (see: A10-A14),
the values of y, V Y ,  y, y'CY do not depend on v if, for each 

*•" k> v .i 1 ß/ ß ŕ 0 (see: A18).



- residuals E * MY, sum of squares E'E = Y'MY of residuals, the
0 1sample variance a = (n-k)~ E'E do not depend on the level v of 

x, (see: A2, A16, A16a),
- by dependence of Y'CY (sees .A11-A14) on the level of v the sample 

correlation coefficient R2 ■ R2(v) = corr (Y, B'X) = 1 -  (Y'CY)"1 
Y'MY, X = (X^, ..., Xĵ )1 also depends on v.

It is easy to find that under the conditions:
Xj-» 0, > 0 relatively large, cu  = v ’.ip(v’ i0 " nUI2> > 0
c2i = v '.iP<u'.iw " nUj[2) > 0, i = 2, к, с = W M W  > 0, we

have lim (Y'CY) *E'E 0, and lim R*"(v) a 1. Otherwise, under 
X1-»0 A ^ O

the high values of v there would be a tendency to overevaluate
2indications given by R . Other effects of bad-conditioning are as 

follows:
- both t-statistic as well as F * (1 - R2)-1 R*'(n - k) statistic 

used in testing significance of model parameters depend on v,
- the Uuibin-Watson statistic, by its definition, does not depend 

on the condition number v of x,
- Durbin-Watson, Dent as well as Theil-Nagar estimators of auto
correlation coefficient do not depend on v,

- the internally and externally studentized residuals [see: С о о k- 
- W e i s b e r g  (1982)] do not depend on the condition number
of X,

- recursive residuals do depend on (n - k) condition numbers cal
culated for matrices x'(i)x (í), i = k, ..., n, where x {i) is a 
submatrix (<i) * k) of matrix x,

- values of the empirical influence curve EIC, = nX_1x, E4 depend*• 1 • 1on V,
- the sample influence curve SICi defined, in Cook-Weisberg book, 

as SIC^ = (n - 1) (1 - M£ĵ ) ''’x^ E^ depends on the condition 
number,

- the CUSUM test and the fluctuation test statistics for their de
finition [see: K r ä m e r ,  S o n n e r b e r g e r  (1986)] 
do depend on the condition numbers of some submatrices of x'x,



- an instrumental variable estimator (for definition and interes
ting numerical and statistical properties see discussions given 
by [ F a r e b r o t h e r  (1988), K i v i e t (1987), P o l 
l o c k  (1979)], does depend on the condition number x.
The above mentioned negative and positive effects of bad-con

ditioning existence for the properties of statistics defined for 
the elements of linear model in a clear way show us when and why 
regularizing estimation methods are useful in the sense of in
creasing stability of estimators with respect to bad-conditioning. 
Such estimators are derived from certain regularizing functionals. 
Some of them we will show in the next paragraph. The negative ef
fects that were listed above are not the only ones. Many of them 
would extend to at least simple simultaneous linear models, spe
cial types of single equations models. We did not touch problems of 
the size and sensitivity of negative effects on the level of bad- 
-conditioning. They can be tackled among others, by the use of ma
trix differential calculus tools (for their exposition see, for 
instance, [ M a g n u s ,  N e u d e c k e r  (1988)].

It has to be remembered that in the above notes the bad-con
ditioning was only confirmed as existing in x and said to be 
harmful. There were no arguments why it exists. In general, it is 
very difficult to give them on the grounds of numerical or sta
tistical analysis.

There are, however, situations when we can explicitly state why 
bad-conditioning arises. They take place, under certain conditions 
as the result of centering, weighting, standardizing the data 
matrix x.

In the case of centering, it is easy to check that if vx = 1, 
then vx>Cx > i if vx > ^l^uk^' wliere is the square of
average of the elements of the eigenvector U ,. If the last Ine-

• 1
quality holds, then centering operation introduces bad-conditioning. 
Otherwise, it does not.

In the case of weighting on the RHS of x^ (called variables 
scaling) with the weight matrix W = diag(w^) , 0 < w ^  £ 1, due

to Fan Ky theorem [see: M a g n u s ,  N e u d e c k e r  (1986)], 
we have: if vx = 1 then > 1 if ( w ^ - l ) O ł ^ - l )"1 > Х ц Х ^ ,
where w ^ ,  w ^  are the largest and the smallest weights



and and are the first and last element of the matrix x'x.
It means that if the before scaling matrix x had the ideal \>x * 1
than the obtained matrix XW will have an increased condition 
number vwxw > 1.

In the case of standardizing operation we transform a matrix x 
- 1/2into x, = CxDx . Its cross product's form X* * x;x* * 

- 1/2 - 1/2= Dx x'CxDx is called descriptive dispersion matrix if x is
a sample value of random vector X * (X^ X2..... x^'. It can be
found that if

x'.jCx.j > _ П 1— 2---' then vx > l>
n - ( ^ - f >  - 7" К  *n - 1 к

vx = 1,

or
> i if v * i, x’ ,cx л > ----------a, ~ 1______

* "1 '1 , 1 5 -1 -
ln - í r h 1 - " V  “k

Equivalent conditions of negative effects are 
Ük > 0, n > 1+x‘jCx j

Uk < 0, n < l+x‘jCx j
4(n-l)2 U.Jn-1-x1jCx 4) 

X ,  > -------------- - y J L Z --------- J ----- J _

(n-2)2 x' cx 4• J О

5. REGULARIZING ESTIMATORS

As it is well known [see the works of H o e r l ,  K e n 
n e  r d (197a), V i n o d (1978), F a r e b r o t h e r  (1978), 
T r e n k l e r  (1985), V i n o d ,  U l l a h  (1981)] bad-' 
-conditioning produces instability of l.s. estimators in the case 
of linear model. There are many ways to reduce this instability 
with respect to small changes in the elements of x ’x or x ’y. One 
popular option is to derive regularizing ridge type estimators by 
minimizing

ФНК(В) = *o(B) + Yß,ß



The obtained, parametric in у, family of estimators has the form

Note that belongs to a set of families of regularizing esti
mators. In this paper we introduce new families of regularizing 
estimators. Their detailed discussion is given in [M i 1 о (1988, 
1989)]. Now we present new criteria functions. They are as follows

where is the eigenvector corresponding to the least eigen
value of x'x.

These new criteria functions can be motivated by the following 
reasoning.

Suppose that the least squares system of normal equations 
XB = x'Y

is unstable bad-conditioned with respect to the small changes of 
the elements of x'x or x'Y. In order to increase the stability 
of this system we propose to regularize it, i.e.

Bhr(y) = (x'x + yI)_1x'Y 
and its empirical counterpart is of the form

* (5.1)

*R2(y2' v) = *o(ß) + vx (y2' v)' y2 =
a

(5.2)

<ťR 3 (v) = (1 - V - 1 ) Ф о ( 0) + v ' 1 II V a  - ß II 2 (5.3)

or putting it into another useful notation
(x'x + y ^IJP = x'Y.

larized matrix X s (x'x + y J1!) equals



V2 * fj' Where ^  = xk + Ч 1' -xi * xi + y'l1
We postulate that this condition number be small as possible. It 
is, by definition (through y^ a function of ß, and a2). The regu
larizing part of estimation quality functional is here equal 
V Y1' = vx' minimizing with respect to 3 we also mi
nimize vx which was postulated. By the rules of differential

a#
calculus we obtain parametric family estimators

°K1 - <»'» * T . , ' ; , 1 2 4 ' V .  ■ (5.4)
0 *1 (1 + xlYl'

Replacing a2 and y± with a2 = (n - k)-1Y'MY, $ = В'ВЗ"2, 
where В = X + Y, x « (х'х)"1х', we obtain

Bri - (x'x + * - 1 л I)~1x'Y (5.4a)
0 (1 + X1y1 )̂

For given x, Y the formula (5.4a) gives us one member of the 
(5.4) type estimators.

Repeating the above argumentation for the second type of regu
larization, i.e.

d  
ß'Xß(x'x + — z~ x)0 = x'Y

or in alternative form 

(x'x + y ^ D ß  = x'Y,

we arrive at the parametric family of estimators
m2 2

BR2 = 1 ---- ТГ,---- T T B ' m " + (5.5)m + a Aj^v - 1) A

and the empirical regularizing estimator has the form 
-2

BR2
ni n л 2 , л 2 о

7~г\ ,---- Tľ ' m = + 4 B’XB) (5.5a)m + crXjtv - 1) 1

In the case of (5.3) by the minimization of convex regularizing 
combination ФКЗ with respect to ß we obtain



BR3 ■ lx'* ł 7 ^ 7  I,_l |X'Y * 7 ^ 7  v .i>
It is known that our estimators [see: M i l o  (1988), (1989)] 

or comments in the included Appendix) that the following state
ments are true.

Theorem 1. If У is normally distributed with the mean xß and
2 -1 - 1  dispersion a I and A * (x'x + у* I) x',

y;1 = - --j ---- r, then BR1 ~ N (A x ß, o2AA').
0 Xj (1 + Xj^y^)

Theorem 2. Under the assumptions of Th. 1 and lim Хг = ®,
n-»»

lim X11Xi = e R, ß'ß = к the family BR, is a consistent family n-»«> <
of estimators.

Theorem 3. Under the assumptions of Th. 2 we have plim BD- = ß
n-»“

i.e. the family BR2 is a consistent family of estimators.
Theorem 4. If the assumptions of Th. 2, except ß'ß = k repla-

2ced with ß'ß = k(ß'v hold, then BR3 is consistent and normally
distributed estimator.

From the definitions of BR2, BR3 and estimators bias it follows. 
Theorem 5. Under the assumptions of Th. 4, and

Y ' M Y  0COV(B, 77^ 7 ) = o, cov(У М У , (У 'N^Y) = 0 ,  ac * 0,

a = (n - 1t)_1(Xk - Xx), с в aa2(n - k)d"1, d = JJY'NjV,

= x(x'x)-1x' we have



Since MSE(B) = o2 Z  X^1, and MSE(BR3) = ß'ß + ß'XX^2Xß + o2trXX"2 +

+ ß'XX^1 therefore it is easy to find conditions under which 
MSE(Br )̂ < MSE(B). Similar reasoning will lead us to fix superio
rity conditions for other regularizing estimators.

Summarizing, we can say that regularizing estimators are useful 
because they provide more stable solutions for the system or normal 
equations. Condition numbers for regularized matrices are under 
given conditions smaller then for non-regularized ones. Similarly 
new regularizing estimators can be more precise in terms of smal
ler values of MSE. These reasons as well as those given in S§ 2-5 
speak for the usefulness of using regularizing estimators.

APPENDIX

A. Effects of bad-conditioning, in § 4 we used the following 
results
В * x+Y, x+ = X _1x', X = x'x /Д1)
У - XB, E = Y - Y = MY, M = I - XX+ (A2)
Y'Y = Y'(I - M)Y, E'E = Y 'MY (A3)

R2 = 1 ' = 1 ' VCY' C = 1 - n"lH '  (A4) 
Due to SVD we have

m " i "i " £ и Л иЛ ' *  * £  XiV .iV !i (AS)

X "1 = £  XľlV ^  for k0 = k, I - M = E U , 0 . 
1*1 •* (A6)

(A7)x+ = é X"1/2V -U'l, xx+ = £  U .U1,, x+x = I. i-1 1 ,*A i«l -1

X'W = I, a u :iw.

В = ß + x+w, В - ß = S  Xľ1/2V .U’^W (A9 )i • x . 1

Y = r  x1/2u>iV;iP + w (X10J



Y'Y * £  X, (V', ß)2 + W'W + 2 2  X y 2V',pU',W (All)
1*1 * 1-1 1 *Ł ,ł
к к

nÝ2 * n £  X? (V. 0 )2 + nW2 + 2n 2  X,Ü,W V ,ß (A12)
1*1 1

Ý * n'1Y ’l, = n ' V ^ ,  W = n-1W'l - (A13)

Y'CY = Y'Y - nY2 (A14)
Л  ̂ Л/2 ^
Y = *  xi u .ív :ip + =  u .iu :iw (A«)

k
E = M W = W - S U , U ' , W  (A16)

1 "L
. k

E'E = W'W - Zl U ^ W )  (A16a)

„2
MSE B = ~  ** + *" + v * (A17)

Y'CY = W'W - nW2 if V  ̂ l ß for each i (Al8)
k

Y'CY = W'W - nW2 + X Xt (1 - nÜ2) + 2 1  xJ/2(W'U L - nU.W) (A19)

if for each V . = ß
• X

Y'CY * W'W - nW2 if nÜ2 * 1, W'Uti о n Ö ^  (A2 0)

Y'CY strongly depends on the values of expressions
xk(i - nü2)(v;kß)2, u;kw - n ükwv;kß (A21)

к

В. Properties of regularizing estimators.
Due to definition of A, у from S 5 and Chebyshev inequality 

n̂ !ľ = Hence plim BR  ̂= ß. Normality follows from
known theorems given in, f.ex. [ S r i v a s t a v a ,  K h a t r i  
(1979)].

In the case of BR  ̂ consistency follows from the fact that 

ÍÍ!ľ SXlł  ̂ * °' U m  S X ^ y -2 = a,, у * c[Y* (M + X,N. )Y]“2Y'MY,n*>oo x 1 1
с = (n - k)(v - k)Xx.



Consistency of BR2 follows from the fact that
cov (УМУ, (УМУ, (Y1N^Y)2) = 0 and under the assumption of th. 3

2 m2
lim Y = 1» lim Y * 1» X * “5---- ?--------- •

m + o^(Xk - Xx)
Normality of BR2 follows from normality of В and boundedness of y*

X, YConsistency of Bn, come from lim — ---- = o, lim ---*—  * c.
X^ + Y Xt + Y

Normality follows from theorems given in the book of Srivastava,
Knatri. In the proof of Th. 5 it must be remembered that matrices
M, N^ are projection matrices and we additionally use assumptions
about zero covariance between Y'MY and (Y'NjY)2 and B.
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Władysław Hilo

0 UŻYTECZNOŚCI IDEI REGULARYZACJI PRZY ESTYMACJI MODELI LINIOWYCH

Celem artykułu jest pokazanie czytelnikowi użyteczności idei regularyzacji 
w zmniejszaniu lub dużej redukcji negatywnych skutków występowania złego uwa
runkowania danych. Skutki te obserwowano w samym estymatorze metody najmniej
szych kwadratów jak i jego statystycznych i numerycznych charakterystykach. Pod
stawowe analizowane charakterystyki tego estymatora to: MSE, wariancja, próbkowe 
odchylenie standardowe, próbkowy współczynnik korelacji wielokrotnej (inaczej: 
współczynnik determinacji), statystyki testu t-Studenta oraz testu F. Zbadano 
też skutki estymacyjne przeprowadzania takich operacji jak centrowanie, ważenie 
danych. W celu zmniejszenia negatywnych skutków złego uwarunkowania proponuje 
się stosowanie estymatorów regulaiyzujących. W omawianym modelu są one zgodne 
i asymptotycznie normalne.


