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1. INTRODUCTION

The paper discusses univariate normality tests based on sto­
chastic processes. The theory of these tests has been developed 
extensively since 1973, i.e. the year of D u r b i n's study 
publication (1973), devoted to the weak convergence of distribu­
tion of sample elements function for unknown parameters.

Here we present three normality tests based upon stochastic 
processes. The selection of these tests was done on the ground 
of their application, comparing with the classical normality tests.

Let us start with a short presentation of same notions re­
ferring to the theory of stochastic processes.

DEFINITION 1. A set of random variables X(t), t e T depending 
on parameter t e T c R, where R = (-«,<=) is called a univariate 
stochastic process.

DEFINITION 2. Stochastic process is called real (complex) 
when random variables X(t) are variables having real (complex) 
values.
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DEFINITION 3. Stochastic process is called continuous (dis­
crete) if scalar t takes only continuous (discrete) values. Dis­
tribution of stochastic process is defined when probability dis­
tributions of random variables Х(^), X (12)» •••» when t^, t2, 
... e T are known. The knowledge of the expected value E [X (t )] 
and autocovariance cov [X (t^), X(12)] , tj « T is required for 
that purpose.

DEFINITION 4. Stochastic process {X (t)}, t e T is called the 
univariate Gaussian process (normal) when X(t), t e T are random 
variables of univariate normal distribution for each t e T. The­
refore, the Gaussian process is defined simultaneously by its 
normality and E [X (t) ] and E [X(11) X(t2)] since cov [X(t^), 
X(t?)] = E[X(tx) X(12)] - E[X(t1)] E [X(t2)].

The interest in stochastic processes for the construction of 
univariate normality tests results from the fact that each dis­
tribution function of this process is invariant with respect to 
parameter t. This property allows to use invariance of affine 
transformation.

Normality tests based on the stochastic process take into ac­
count:

a) empirical distribution function - real stochastic process,
b) empirical characteristic function - complex stochastic pro­

cess .
Generally speaking, the univariate stochastic process which is 

being considered here is expressed by the following functional
Zn(t) = i/rT{Fn (t) - F (t)}, t e R,

where Fn(t ) is the empirical function of the sample elements and 
F (t) = E{Fn(t )} is its expected value. This process expresses the 
difference between the empirical distribution and the theoretical 
(expected) distribution defined in the set T = R. Under the null 
hypothesis of normality for n -» 00 the process 2П<Ь) Z(t) for n 
where Z(t) is an univariate random variable normally distributed 
with a zero expected value and known covariance. The aim of the 
paper is to show how the stochastic process can be used for the 
construction of univariate normality tests. Making use of dif­
ferent properties of the characteristic function, empirical dis­
tribution function and empirical characteristic function we dis­
cuss normality tests.



2. PREREQUISITES

Let X be a random variable with an unknown distribution func­
tion Gv(x, 6) = Gv (x ), where x e R and ô is a set of unknown pa-X Л
rameters belonging to a certain parameter space 0. Let, subse­
quently, a sequence of independent realizations of random variable 
X be Xj, Xn and the values in non-decreasing order •••
< X. , be sample order statistics. The distribution function of the\ П ) Л
normal distribution is denoted by = ^x^x ' 0  ̂ = ^X^x '
where 0 * (y, a2), u e R and o2 e R+. If the parameters p and
o2 are known, we write 0Q = (pQ, o2). If they are unknown, we

— ?find unbiased estimators X and S , as arithmetic mean and sample 
variance, respectively, and denote Ô = (X, S2).

Empirical distribution function from sample X ^  ..., Xn is 
defined by

Fn(X) =

0, X < X
( 1 )

i/n, ^(i-1) ^ ^  ̂ ^ ( i ) *  ̂ = ^ f * * ’ 9 ^
I 1, X > X (n)

while empirical characteristic function is expressed by 
n

where i = У - Т .

The compound null hypothesis of normality is expressed as 
HQ : Gx (x, 0) = Fx (x, 0) against Gx (x, 0) Ф Fx (x, 0). In the
case when 0 = 0Q the sample null hypothesis of normality is de­
noted as H°: Gx (x, 0) = Fx(x, 0). Characteristic function c(t), 
t e R of random variable X with a distribution defined by Gx (x > 
is written as

CD

C(t) = f  exp(itx) dGx (x)
— CD ■%

Its basic characteristics are as follows:
a) C(0) = 1,
b) |C(t)I < 1,
c) C(T) = C(-t),



d) C(t) C(-t) « IC(t)I2,
e) C(t) = exp{P(t)} if P(t) is a polynominal of degree £ 2 

(Marcinkiewicz theorem),
f) for С (t) there exists such 6 > 0 that C(t) / 0 for |t| < Ó. 
The properties given above are used for constructing normali­

ty tests based on empirical characteristic function, which is gi-2ven in 4.1. It is worth to note that for X ~ N(p, о ) there is
C(t) = exp (it p - o2t2/2) and that a distribution with the cha-

2 1/2racteristic function C(t) is normal if and only if {—In|C (t)| } 
is linear with respect to t * 0.

3. CRAMER - VON MISES TEST FOR NORMALITY

2 2Let ф(Х, 0) = (X - p) /с . Under the assumption that hypothe­
sis H° is true there is ф(Х, 0)~x2* Transformation of variables 
X^ onto Y^ = ф(Х^, ®0 ) leads to random variables, each of which
has the distribution x?- Let F_(y) and F (x) = V(x) denote* x ̂

distribution functions: empirical for Ylf ..., Yn sample and 
distribution x2, respectively.

The measure of divergence of empirical distribution of a nor­
mally distributed random sample Y^, ..., Yn is given as the sto­
chastic process:

Zn(t) = v^rT{Fn(t) - V(t)}, t e <0, «>

This process is used to check H° hypothesis. The well-known 
goodness - of - fit tests e.g. Kolmogorov - Smirnov and Cramer - 
von Mises tests are taken into account.

Cramer-von Mises test is presented for 0 =0, i.e. when2unknown parameters у and a are estimated from the sample
Xl' V  T^e stochastic process zn(t) replaced by

Žn(t) = S x \ (Fn(t) - V (t)},

where is an empirical distribution function from the
sample Y.̂ , ..., Yfi when Y^ = i|/(X̂ , 0). The stochastic process 
Z(t), t e <0, •) is, in terms of methods given by D u r b i n  
(1973) and N e u h a u s (1974), convergent to the Gaussian 
process Z(t) with covariance for HQ hypothesis (K o z i о 1 1982).



cov(t, ť )  = V(min(t, t' )) - V(t)V(ť) - 2tt'V( t)V( ť  ), 
where V (t) ■ V(t') is a derivative of a distribution function

2V (t) i.e. it is a density of distribution xj- For the hypothesis 
HQ we have

f  ( t )  d v ( t )  S  ( t ) d v ( t )
■ e — 00

the statistic of Cramer-von Mises - type. The last functional was 
studied by D u r b i n  (1973) and S t e p h e n s  (1976). 
Their studies were aimed at presenting integral in the form of 
certain sum which depends on eigen-values and eigen-vectors of 
covariance matrix

cov(t, ť  ), t, ť  e <0, »).
The summation form of Cramer-von Mises test statistic for ve­

rifying the hypothesis HQ is given as

m2 - Ш  E < v <$ (i)> -

where = i|i(x̂ , 0) and < ... < The critical values for
2M were given by A n d e r s o n  and D a r l i n g  (1952).

4. TESTS FOR NORMALITY BASED 
ON THE EMPIRICAL CHARACTERISTIC FUNCTION

4.1. DEFINITIONS OF THE EMPIRICAL CHARACTERISTIC FUNCTION

If Fn(x) is an empirical distribution function based on the 
sample X^, ..., Xn then the function having complex values

°° itX 1 n 1 nC (t) = f  eitA dFn(x) = ± £  exptit X.) = £ Z  cos tX. +
n j-l J-l 3

n+ i S  sin tX, 
n j-l 3

is called the empirical characteristic function (ECF). Its basic 
properties are as follows:

a) cn (0) = 1;
b) |Cn (t)| < 1,



C) Cn(t) = Cn(-t);

d)  An ( t )  = l c n ( t ) ! 2 = n + \ j J j  cos [t(Xj " x J ' > b

e) if Yj = aXj + b, a, b - constant, a f  0 and n(t) Cy n(t) 
denote the EOF of random variables X and Y, then

CY,n(t> = el+bcX,n (at);
f) E [Cn (t>] = C (t );

g) An (t) = |Cn(t)I2 is invariant with respect to the shift and 
change of scale of the parameters, where Cn (t ) = Cn(t/s) while

is a standard deviation from the sample X^, ..., Xn>
h) for the fixed T < “ ( F e n r v e r g e r  and M u- 

r e i к a 1977)
Pílim sup IС (t) - C(t)I} = 0 = 1; 

n-»® t<T

T
i) n f  n I Cn( t ) - C (t) I P dt -» 0, 0 < P < 2.

Some of the above properties are analogous to those presented 
in section 2.

4.2. A TEST FOR NORMALITY BASED ON THE SQUARED ABSOLUTE VALUE
OF THE ECF

Let A(t) = IC(t )I 2 and An(t) = ICn(t)I 2 denote absolute va­
lues of the characteristic function for the distribution function 
of the random variable and ECF based on the sample X^, . Xn- 
Function An(t) is invariant with respect to location parameter, 
therefore it can be used to test the hypothesis HQ when у is 
unknown and a is known. Let us first define the complex stochas­
tic process

Zn(t) = v/ÍT{Cn(t) - С (t ) >

which is weakly convergent to the Gaussian process characterized 
by the following properties:

a) Z(t) = Z (-t),
b) E [Z(t) = 0,



C) E [Z(t) Z(t')] * C(t + ť )  - C(t) (ť).

Next we shall define the real stochastic process,

Z* (t) * УИ Г {An(t) - A(t) >

which is also weakly convergent to the Gaussian process characte­
rized by the following properties:

a) Z1(t) = Z1(-t)j

b) E(Z1(t)) = 0,
c) E [Z1 (t) Z1 (t •) ] ■ 2 Re í C(-t) C(-ť) C(t+t') + C(-t) C(t') 

C(t-T') - 4A(t) A(t')}, where Re (:) denotes the real part of the 
complex number which is the argument of the Re operator.

For the hypothesis H^: Gx(x, 0) = Fx(x, \x, 1) the process

Z1(t') is transformed into (M u r o t a and T a k e u c h i  
1981)

Z* = y/rn ' {An (t ) - exp (-t2)} 

since then
C(t) = C(-t') = IC(t)12 = Alt) = exp (-t2)

and
E[21(t) Z1(t1)] = 4 exp (-t2-t|2)cosh(tť) - 1).

A simple test for normality is obtained when for a
fixed t, is treated as the test statistic instead of certain func­
tionals which make use of Z*(t).

It is possible to determine moments of the statistic 
under the hypothesis together and the skewness and kurtosis mea­
sures which e.g. for t = 0.5 assume values - 1,83 У~п and 
2.76/n. The hypothesis is verified in such a way that it is
rejected when A (t) > A„ for ’ t close to zero, where a is a pre- 

J n n
-assigned significance level. The critical values for the test 
A (t) can be established for different t close to zero. M u- 
r o t a (1981) accepted 1,0 as an appropriate parameter t and 
he fixed for it the critical values by means of computer simula­
tion. These values are contained in Table 1.



T a b l e  1
Critical values A (a , 1,0) of A (1,0) test n n

n 0.05 0.10 0.50 0.90 0.95

10 0.1653 0.2155 0.4239 0.6557 0.7174
20 0.2075 0.2459 0.3959 0.5575 0.6025
50 0.2571 0.2830 0.3191 0.4798 0.5086

4.3. TEST FOR NORMALITY BASED ON THE SQUARED ABSOLUTE VALUES 
OF THE STUDF.NTIZED ECF

Now we give a test for normality to verify the hypothesis
' 2HQ : Gx (x; 0) = Fx (x: ц, О ),

2where p and о are unknown. The studentized form of the ECF is 
defined as Cnt = C(t/s), where S is a standard deviation from 
the sample Xj, ..., Xn> Then the square module of the studenti­
zed ECF is denoted as A (t) = |Cn(t) | 2. A change of An(t> *-n" 
variant with respect to the change of location and variability 
parameters which results from 

. n n
A (t) £  £  exp {it(Xj - Xv )/S).

n  n 2 j - 1  k -1  3

Therefore, the squared absolute value of will be an ap­
propriate test for both Hn and hypotheses.

M u r o t a and T a k e u c h i  (1981) prove the fol­
lowing theorem.

THEOREM 1. Assume that the distribution of variable X has the 
finite fourth moment = E(X4) with E(X) = 0 and D2(X) = 1. 
Then, due to the properties of ECF, the process zn(t) is weakly 
convergent to the Gaussian process Z(t), i.e.

Zn(t) = v/rT{C(t) - С(t)> - Ž (t) 
and the process Zn(t) has the following properties:

a) E [Z(t)] = 0;
b) Z(t) = Z(-t);



C) E [ Z( t) 2( t * ) ] =» C(t+t') - C(t)C(ť) + j  t C(t) [C(t') +

+ C "  {t' ) + jt'C'(t) [C(t) + C"(t')] + \  (y4 - l)tt'C'(t)CMt'),

where С 1 ( ), C''( ) denote the first and second derivative of 
C( ) respectively.

A similar theorem can be formulated for the stochastic pro­
cess of the real values. It makes use of the square module of the 
studentized ECF

Z2(t) = v/TT{An(t) - A( t)) - Z2(t)

and is weakly convergent to the Gaussian process Z(t). The Gaus­
sian process has the following properties:

a) Z2(t) = Z2(-t),
b) E [Z2(t)] = 0,
C) E [Z2(t)Z2(ť )] = 2Re{C( -t) C(-ť) E [Z( t)Z( f  ) ] +

+ С ( — t) C( t ' ) E [2( t )2T(f )]}.
The last stochastic process for the HQhypothesis is transfor­

med into

Z2 (t) = т /п A (t) - exp( -t2) Z(t)

and it is the process which is weakly convergent to the Gaussian 
process with covariance:

E [Z2(t)Z( ( ť )] = 4 exp( -t2 - ť 2) [cosh(tt') - 1 - t2t ,2/2].

Hence, it is possible to construct a test for normality based on 
the statistic *n(t). The moments for An(t) were determined by 
M u r o t a (1981), while the critical values for t * 1.0 were 
given by M u r o t a and T a k e u c h i  (1981) (of Table 2).

T a b l e  2
Critical values A ( a, 1, 0) of statistics A (1, 0)

n \ 0.05 0.10 0.50 0.90 0.95

10 0.3604 0.3650 0.3883 0.4325 0.4527
15 0.3512 0.3557 0.3792 0.4241 0.4440
20 0.3475 0.3523 0.3753 0.4172 0.4365
35 0.3462 0.3505 0.3717 0.4059 0.4192
50 0.3466 0.3509 0.3701 0.3991 0.4094



The comparative studies of the power of tests for normality
based on A (t) and A„(t) show that the test A (t) has an advantage n n n
over the An(t ) and the power is the greatest for t ■ 1.

5. FINAL REMARKS

The tests presented above do not discuss comprehensively the 
problem of application of stochastic processes to the construc­
tion of goodness-of-fit tests. The studies on this problem 
originated as early as in 1955 by D a r l i n g  (1955) and then 
developed by D u r b i n ,  K n o t t  and T a y l o r  (1975). 
They aimed at different possible ways of defining Cramer-von Mises 
test. The basic results include the expression of the functional, 
being Cramer-von Mises statistic in the form of a non-finite 
series of normal variables with N(0, 1) distribution with coef­
ficients which are the eigen-values of Fredholm integral equation.

The introduction of the ECF made it possible for the research 
on tests for normality based on stochastic processes to take a new 
direction. Earlier the empirical distribution function characte­
rized the properties of distribution and now this role was taken 
over by the ECF.

Along with the tests discussed in this paper there are many 
other tests for univariate normality. They were given by e.g. 
K o n t r o c c v e l i s  (1980), K o n t r o c c v e l i s  and 
K e l l e r m e i e r  (1981) E p p s  and P u l l e y  (1983), 
and H a 1 1 and W e l s h  (1983). The theory of ECF was 
also studied in a multivariate case (e.g. C s ö r g о 1984), 
which makes it possible to construct test of for multivariate 
normality. The examination of properties of these tests is also 
the subject of interest of the authors.
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Czesław Domański, Wiesław Wagner
V

TESTY NORMALNOŚCI OPARTE NA PROCESACH STOCHASTYCZNYCH

Artykuł przedstawia testy normalności oparte na procesach stochastycznych.
W szczególności zaprezentowany został test Cramera-van Misesa i dwa testy nor­
malności oparte na empirycznej funkcji charakterystycznej rozkładu Studenta.
Podane wartości krytyczne umożliwiają ich praktyczne zastosowanie i analizą ich
własności.


