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IN THE SAMPLE

Abstract. The study provides presentation of selected statistical concepts based on 

data depth by Tukey. The concepts as: the rang of depth, the half-space convex, contour, 

simplicial depth breakdown points, position numerical measures, the trimmed mean 

depth, regression depth and the set of generally positive points were exemplified in 

a two-dimensional space of the dataset. There are also given numerical algorithms in 

some cases to indicate already mentioned concepts and to study their affined transfor-

mation. There are also given exemple for a one-dimensional space besides general 

description.
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1. INTRODUCTION

The development of the mathematical statistics theory is strongly based 

upon the limit theorems that incorporate appropriate sample statistics in 

the process of statistical inference. The following statistics are of particular 

importance: empirical distribution function, sample moments, sample quantiles, 

order statistics, empirical characteristic function, 17-statistics and L-, R-, 
M-estimators ( S e r f l i n g  1980).

In the recent years, thanks to T u  k e y ’ s (1975) work, many new 

notions connected to numerical data explorative analyses have been intro-

duced. One of the new notions is data depth used for visualisation of both 

one-dimensional or multivariate numerical data. Since their introduction, 

data exploration techniques have developed into different tool forms such as
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-  decision trees,

-  neural networks,

-  analysis time event,

-  inductive search and recognition rule,

-  data visualisation -  detection of correlations in multivariate data,

-  online analyses and ad hoc requests -  data studying in different cross- 

sections and data hypercube dimensions, summing by particular dimensions 
and their subranges.

Many scientists (L i u 1990, D o n o h o  and G a s k o  1992, R o u s s e e u w 

and R u t s  1996, H e  and W a n g  1997, S t r u y i  and R o u s s e e u w  1999) 

have studied data depth in respect of its usefulness for one-dimensional and 

multivariate data statistical description. Observation depth in a sample has 

been proposed as a tool for the determination of multivariate order 

statistics, particularly for outliers data, encumbered with outliers observations.

2. GENERAL CONCEPT OF DEPTH MEASURE

Let the following set Pd =  {xu  x 2, x„} be the system of the observable 

vectors expressing the d-dimensional n-sized sample, given from a certain 

^-dimensional distribution defined by Fd distribution function and let 0 e R d 
be a certain point in the real space Rd. Point 0 may in particular belong 

to the system of points from the Pdn sample. The depth measure of 0 point 

in the Pdn sample is expressed by Dd(0: x u  x 2, xn) =  Dd(0 : Pdn), which 

meets the following (H e and Wang 1997):

(Dl) Set O" =  {0: Dd(0 : Pd)~^ c} is convex and restricted to almost all 
n and c,

(D2) Occurs lim Dd(0 : Pd) = D(0) for almost all 0, and D(0) arc
n —* 00

contours in the form of {0:e(0) = c} for certain e(0),

(D3) For certain compact sets Cc=Rd, occurs lim \Dd(0 : Pd) -  Dd(0)\ =  0,
n-> 00

(D4) The D(0) contour is a strictly monotonous function e(0), which 

implies, that for certain с > 0, occurs the following probability 
P(0: D(0) = c} = 0.

Intuitive 0 point depth measure in the Pd sample is expressed by the 

smallest number of points from the Pd„ sample located at one side of the

0 number. With the use of the depth measure we can sort Pd„ sample 

elements into the x (1), x(2), x(n) array in which the following 

Dd(x d ) : Pn) > Af(*(2) ■' Pi) > -  >  ß <,(■*(„): Pd„) array occurs.



3. ONE-DIMENSIONAL SAMPLE DEPTH

Let now Pn =  {x1; x2, x„} =  {x„i =  1, 2, n} express one-dimensional 

n-sized sample from the population of distribution defined by F distribution 

function, OePn express the observation in this sample and let set measures: 

i_(0) =  #(i: x t ^ 0 } ,  i+(0) =  #{i: x t ^  0) express the observation number 

from Pn sample, not exceeding (not larger) or exceeding (not smaller) than 

any of the observations OePn, where #{.} means the population (cardinal 

number) of the set in question.

Let now P^  and P* express P„ sample sorted non-decreasingly or 

non-increasingly, respectively. Then the functions of i_(0) and i+(0) of the 

OePn variable define ranks the 0 observation in the sample sorted non- 

decreasingly or non-increasingly.

Definition. The depth for the observation OePn is the number representing 

the lower rank from P„** or P* samples, which is the smallest observation 

number from Pn sample at the same time not exceeding or exceeding the 

sample, which can be expressed as follows:

D^O) =  depth x(0; P J  =  min{i_(0), i+(0)} =  min(#{i; x, <  0}, #{i, x, Ss 0}).

(1)

The above function allows for direct definition of the following order 

statistics:

-  the smallest observation

x,!) =  depth^fl; Pn) =  1 and i_(0) = 1,

-  the largest observation

xw =  depth x(0; Pn) = 1 and i+(0) =  1,

-  lower quartile

Qt — depthj(0; Pn) «  n/4 and i_(0) «  n/4,

-  upper quartile

Q3 =  depth^O; Pn) a  n/4 and z + (0) as n/4,

-  median (middle quartile)

Med =  depth j(0; P„) яа n/2 and i_(x) « i+(0) «  n/2,



-  a trimmed arithmetic average ( 0 < а < 1 )

TÁPn) = теап {х ,еР „ : depth^x,; P J  >  an}.

Lemma. One-dimensional depth is invariant into linear transform 

х ,-ш л , + Ь, which is depth^aO +  ft; {ax, + h}) = d e p t h ^ P J  for constants 
a > 0 and b.

Definition. Let Dk be the set of all OePn, for which depth^fl; P„)>k.  
The Dk set is called contour of depth of the fc-order.

The Dk can be identified with quasi-range Rk,n- k+1 = х(и_4+1) -  x№) for 

к = 1 ,2 ,..., [и/2], and for к =  1, quasi-range changes into a range in simple 

respect, and R = R ln  =  x(n) — x(I), and x(1) ^  x(2) < ... <  x(n) is the array of 

order statistics from the P„ sample.

Directly related to the problem of depth is excessive outlyingness of the 

x observation in the Pn sample, whose depth is described as follows:

where Med(P„) is a median, and MAD(Pn) median absolute deviation from 
the Pn sample in the form of

Simplex notion is one of the ways of defining depth for one-dimensional 

sample, which in the case of R 1 space is transformed into a section. Such 

conception was earlier reported by Li u (1990), in which the depth function 
has the following form:

where 1(A) represents the indication function of the A  event, where 

1(A) =  1, if it occurred and 1(A) = 0 otherwise, a xjx] is a section of the 
x, and Xj points.

Ihe study oi O eR 1 point belonging to the x txj section, as it was given 

in the depth criterion (2), which means that Oex^xj, could be replaced with 

the study, into whether the convex combination has been met

MAD(P„) =  Med I x, — Med(Pn) | .

(2)

0e( l  — A)xt + Axj, dla Ae(0,  1). (3)

If Аф(0, 1), then the 0 point does not belong to the section in question. 

Otherwise for non three numbers 0, x„ xp the 0 number belongs to the



(X;, Xj)  range, then and only then, when the convex combination has been 

met (3).

The algorithm of number belonging to none of the sets OeR*, includes 

the following steps:

(i) Sorting the P„ observation sample into the P f  sample, which is 

a non-decreasing array x(1) ^  x(2) < ... «S х(л),

(ii) If the inequality 0 < x a) lub 0 > x (n) occurs, then the 0 number does 

not fit into the range of the sample variability (in range), when Dx(0) =  0,

(iii) If the 0e< x(1), х(л)> condition has been met for all (i, j) indicator 

pairs, such as 1 ^ i < j ^ n ,  then the following constant is to be calculated:

Я =  — x ^ x j ,  (4)
X j - x t

as well as, exemplary к number of the Яе<0, 1) condition satisfaction.

2k
(iv) The depth measure for the given 0 then equals Dt(0) = —----- >

tí(tí 1)

(v) If in (4) occurs the following x; =  Xj lub |x, — Xj| <e  (e.g. e =  10~4), 

then the section is reduced to a point which may be regarded as their 

e -  overlapping.

4. TWO-DIMENSIONAL SAMPLE DEPTH

Let Pi — {xt , x2, хя} =  {xi5 i — 1, 2, ..., n} be a two-dimensional 

n-sized sample from a ccrtain distribution described by Fz two-dimensional 

distribution function. It means that each element from the Pi  sample is 

a point from the R 2 real space, and x;ei?2 occurs to i — 1, 2, n. It is 

assumed that at least h — [n/2] + 1 number of points from the Pi  sample 

do not lie on one line, i.e. the system of x l5 x2, ..., x„ vectors meets the 

general position set conditions, according to the nomenclature introduced 

by D o n o h o  and G a s k o  (1992). At the same time it is assumed that 

this set does not include nodes and no more than two points lie on one line.

The set of vectors from the Pi sample forms on the R2 plane a corelation 

chart, also called a points cloud. For three non-collinear random points: 

Xj, Xj, x k from this chart, a closed triangle can be built from the points, 

which represent its vertex. Such a triangle is symbolically described as 

follows: A(x„ Xj, xk) =  Aijk.

For the system of n points in R2, the number of 

different triangles can be built. Lets indicate that the Aijk triangle transforms

( " )  =  j  » ( » - ! ) ( » - 2 )



into a section or becomes a single point when the vectors which form the 

triangle are collinear. This condition then means that there are such three 

constants A1; A2, A3eR, not all equalling zero at the same time, that the 

linear combination which is Atx; +  X2Xj +  A3x* =  0. The mentioned collinearity 

may be of f. -  order, so called e -  collinearity, when the area of the triangle 

Aijk<e, where e is a given sufficiently small constant (e.g. e =  10~4).

For a random OeR2 let OeAijlt be an event of 0 point belonging to 

the interior of the triangle built on the x(, Xj and xk vertex. In other words, 

the 0 vector is expressed by a convex linear combination: 0 =  Ахх, + X7xj + Ax* 

with the following conditions A1( A2, A3SsO and A1 +  A2 + A3 =  l. In case 

when the indicated convex combination does not occur then the point 0ф Aijk.

Definition. The simplicial depth measure for the point of OeR2, built 

on triangles Д(хг, Xj, xk) from the P2 sample elements, is a ratio of the 

triangle number including the 0 point to the number of all possible 

triangles, which could be illustrated as:

SD2(0) = depth2(0, P2) = ( Л  £  í  [0eA(xi; Xj, xŁ)] (5)
V-5/  K i ś j ś k ś n

where 1(A) is an indication function of the A event.

It was noticed that SD2(0) in the above definition may be regarded as 

an empirical distribution representing the following probability:

D(0) = Pr(0e A(x„ Xj, x k,)),

if Xj, x2, ..., xn are independent random variables from the two-dimensional 

distribution described by the F2 distribution function.

There are several methods of studying whether a OeR2 point belongs 

to the given triangle A(x, y, z), on condition that the mentioned vectors 

are not collinear. These are: (a) the cosine method, (b) the linear convex 

combination method, (c) three triangle area method and (d) angular 

transformation method by R o u s s e e u w  and R u t s  (1996).

(a) The cosine method ( W a g n e r  and K o b y l i ń s k a  2000)

For the given three vectors x = \ X l \, у =  *2 , z =  I Хз there will be

■ , u ,  L^iJ U i J  b a j
a triangle built of vertex in А, В, С (Figure 1).



С(л'з^з)

B{X2,yi)

A ( x \ , y \)

Fig. 1. Interior angles a, ß and у

The condition of the OeR2 point belonging to the triangle A(x, y, z) is 

expressed by a + ß  + у =  In, were a, ß, у are interior angles given in 

Figure 1. The a, ß and у angular measures are determined through the 

following steps:

(i) determination of triangle side lengths

a =  {x3- x 2)2 +  (Уз-Уг)2} 112, b = {(x2 -  x j 2 +  (y2 -  y i )2}*'2,

с =  {(x3- x 1)2 +  (j'3 -> 'i)2} 1/2>

(ii) determination of the distance between the vertex points A, В and 

С and the internal point 0 = with the use of the following for-

mulas:

e =  {(*! -  xw)2 + (y! -  y j 2}1/2, /  =  {(x2 -  xw)2 + (y2 -  yJ 2} 42, 

g = {(x3 — xw)2 + (y3 — yw)2} 1/2,

(iii) application of the cosine theorem for each internal triangle

AOBC: a =  arc cos (f2 + g2 — a2)J,

AO AB: ß =  arc cos (e2 + / 2 — b2)J,

А О AC: у = arc cos -— (e2 + g2 — c2) ,
12 eg



as well as vector 0 =

(iv) if the following condition is met \a +  ß +  у -  2л \ <  e0, where e0 is 

sufficiently small (e.g. e0 =  1(T3), then point 0eA(x, y, z).
Example. Three vectors are given

* - И ' - Б И Я

Does the 0 point belong to the interior of the

A(x> z) triangle? From the calculations: a =  2.8284, b =  4.4721, с — 4.4721, 

e =  2.8284, /  =  2, g = 2, and angular measures equal: a =  1.570796, 

ß = 2.356195 and у =  2.356195, and \a + ß + y - 2 n  =  6.283186-6.283185 = 
=  0.000001 <0.001, which means that the given point 0 belongs to the 
triangle interior.

(b) The convex combination method ( W a g n e r  and K o b y l i ń s k a  2 0 0 0 )

It could be assumed that a triangle is a set of all the convex combination 
points for the given three non-collinear points. The following are vectors: 
x, y, z and 0 is as in (a). If 0eA(x, y, z), then 0 =  Avx  +  A2y  +  A3z, 
Alt A2, A3 >  0  and At + A2 + A3 = 1 occur, and the following system of linear 
equations is met:

fxjA j + x 2A2 + x 2A3 =  xw

\ У 1^1 +  У 2^2 + Уз ^ з  =  У w 
Aj +  A2 +  A3 =  1

Here is the solution of the given system:

Д — (*» ~  Xl )(y2 ~  У l)  ~  СУ w ~  У l ) ( X 2 ~  Xl)

3 (X3 -  Xj )(y2 - y i ) - ( y 3 -  y i ) ( x2 -  Xi)

^ 2  ~  [ X w  -*1 Я 3 ( Х 3 —  X j ) ] ,  X 2 X j  ф  0 ,  /Í.J =  1 ---  A2 ---  Aj.
л 2 Л1

So, when the point 0eA(x,  y, z), then A1, A 2, A 3^G,  otherwise, when 
certain Au A2, A3 are negative, then this point does not belong to the 
triangle in question.

Example. Let x, y, z and 0 be as they are in the example in point (a). 
Calculations are made for At , A2 i A3 according to the indicated formulas 
in the system:



2Aj +  6Á2 ■+■ 4A3 =  4 

Aj -f~ 3A2 •+• 5 Я3 =  3 

Aj +  A2 + A3 =  I

and

_  (4 — 2)(3 — 1) — (3 — 1)(6 — 2) 1 

1 (4 -  2)(3 — 1) -  (5 -  1)(6- 2 )  3 2

then all Alt Л2, A3> 0 , and the point in question 0 belongs to the interior 
of the triangle built on the: x, y, z.

(c) The three triangle area method ( W a g n e r  and K o b y l i ń s k a  2000)

There are three non-collinear points given on a plane as in point (a), 

x, у , z e R 2, and x =  (xlf y j)', у  = (x2, y2), z = (x3, y3)'. The given vectors, 

based on the assumption made, determine a certain closed triangle 

A =  A(x, y, z). Lets further assume that 0 = (xw, yw)'e R z is an internal 

point of the triangle. This allows three internal triangles to be built and 

carry out the complete triangle division so they are disjointed and their 

area sum equals the area of the triangle A, as was shown in Figure 2.

There are three triangles such as Ax =  At(0, y, z), A2 = A2(0, x, z), 

A3 =  д з(fl> У)> which meet the condition of the complete division: 

A =  A j u A 2u A 3 and А;пА^ =  0 ,  i Ф} and i, 7 =  1,2, 3. Let S(x, y, z) be 

the A triangle area, which is a determinant function in the following form:

z

у

x

Fig. 2. Complete division of the triangle A(x, y, z)



S(x, y, z) =  abs
1 1 1

X у  z

1

У1

Уг

= \  abs {(^i -  x l )(z2 -  x 2) -  (zt -  Xj)(y2 -  x 2)j,

where the symbol abs(.) is an absolute value. In the same way, the areas 

of S t(0, y, z), S(0, x, z) and S(0, x, y) for the following triangles A1; A2

i A3 were determined. If the condition of \S -  S1— S2 -  S3\ < e  is satisfied 

when e is sufficiently small (e.g. equalling 10~4), then point 0 is an inner 

point of the triangle A(z, y, z).

We need to consider two cases in the following issue: when point 

0 belongs to the triangle (a) circumference, (b) vertex.

Case (a). In this situation the 0 point should satisfy the equation of 

the triangle side line to which it belongs. The lines determining the A sides 

according to the symbols in Figure 2, are the following: L y = L ^y ,  z), 

L 2( x ,  z )  i L3(x, y ) .  So, if 0 e L x( y ,  z), the following equality 

(Уг — .Ki)(02 ~  zz) = ( z 2  — z t)(0i — У1) is satisfied. It means that if the 

\(.Уг — Уi)(02 ~  2г) — ( z 2 ~  z i)(0i — У1) I <  £ inequality is satisfied, the 0 point 
belongs to the L l line. Similarly, the same conditions are checked for the 

other two L2 and L3 lines, for the constant, sufficiently small value of e.

Case (b). If the 0 in a vertex point of the A triangle, and overlaps with 

the x, y, or z, then the following conditions should be satisfied e.g. for 

the x vertex x: |x j — < e and |x2 — 02| <e. These conditions are checked 

for the other two vertices in the same way.

(d) The angular transformation method

Now let’s consider the triangles covering a given point O e R 2 with the 

use of angular measures determined on a unit circle. With the use of 

these angles, the triangles which do not overlap the 0 point are deter-

mined for each two-dimensional observation. The required number of 

triangles overlapping a given 0 point is then determined as the subtrac-

tion of the total number of all possible triangles and ones that do not 

overlap. The following steps illustrate the operations leading to obtaining 

this number:

Step 1. Transferring vectors from the bivariate sample P2 = {x1; x2, ..., x„} 

into centralised vectors: yt = x, — 0.

Step 2. Calculating the length of the centralised vectors dt =  ^ у \у ь 

which are their Euclidean norms.



Step 3. Determining the normalised vectors u, =  y ijd i of the length of 1, 

that means that they are vectors lying on a unit circle.

Step 4. For each u, =  (un , ui2) vector, inner angles in rd are determined 

according to the principle given in a specification below including formulas 

in two versions:

Quarter Signs <p =  arc sin <p — arctan

1 u ,>  0, u2 > 0, tp =  arc sin(u2) q> =  arc tg(u2/u,)
II u, <0, u2 > 0, q> =  я/2 —arc sin(«,) р =  я /2 - a r c  tg (u ju 2)
III M, <0 , u2 <0 tp = n — arc sin(u2) <p = 7 t-  arc tg(u2/u,)
IV ut > 0, u2 <0 q> =  1.5я +  arc sin(u,) <p =  1.5я —arc tg(u,/u2)

Step 5. Sequencing the tp, angles into a non-decreasing array -  a l5 a2, a„, 

and then calculating the subtractions S = а,— а ,_1( i =  2, 3, ..., n. If there 

is ôt > n, then the 0 point lies outside the P 2 sample and the depth measure 

equals D2{0) =  zan2(0, P 2) =  0, which is the end of the algorithm.

Step 6. Rotating by the a, angle which means transforming а;—>a; — ap 

i = l , 2 , . . . , n ,  which in consequence leads to the following array: 
0 =  aj ^  a2 ^ ... ^ an.

Step 7. Checking the number of angles located in the I and II quar-

ter, by calculating the number of angles, from the array given in the step 

6, that satisfy the inequality а( <я: — e, where e is a given small number 

(e.g. e =  10”4). Let m be the number of such angles. If n =  m, then all 

angles lie in the upper semi-circle, which at the same time means the lack 

of triangles overlapping the given 0 point and that the depth measure 
equals zero.

Step 8. Three points on the unit circle (the converted data) determine 

a A(x, y, z) triangle (the original data) overlapping the 0 point, if the 

angular measures -  ax, ay, az in the given order satisfy the following 

conditions: ay — ax < л, az — ay < л, az — ax < л. In connection to the above 

determination three angle sets were introduced:

0*) A-n {®1> ®2> ®n)> ® =  ®1 ^  ^  ••• ^
( b )  T„  =  { t j ,  T2 , Tn} , ri =  ai +  Л,

number table

from the An, Tn and V„, sets which exclude the triangles that do not overlap 

the 0 point, with the elements ht = f t - i .  where

( c ) K  =  { v „ v 2 ..........» f  * ■ - ? < « -

[t, - 2 Л, gdy Ti - 2 n >  0.

Step 9. Determination of the h = {h^ h2, hn} ang

f i =  #  {a t : a.j <  r,} +  #  {a7 : a 7 < v j .



Step 10. Determination of the “bad” A triangles number for each point

on a unit circle, which do not overlap the 0 point, so Щ =  ( ^ j  and if

ht < 2, then m, — 0.

Step 11. The total number q of the triangles overlapping the point

" / л \  1
0 equals q = k -  £  m„ where к = ( 1 =  ^ ( n -  l ) ( n - 2), and the depth

measure for the given 0 point equals D2(0, P2)q/k.

Example. For a given sample of P\ -  {(10, 13), (13, 9), (4, 7), (15, 6), 

(5, 9)} consisting of five (n =  5) two-dimensional observations, the depth 

measure for 0 =  (6, 1; 8, 1) point should be calculated. The table below 

includes angular measures obtained from the above calculations:

i X, У1 Vl 4>i

1 10 13 0.623 0.782 0.899

2 13 9 0.992 0.129 0.130

3 4 7 -0.886 -0.464 3.624

4 15 6 0.973 -0.230 6.051

5 5 9 -0.774 0.633 2.456

Three angle sets are then created according to the given algorithm: 

A s =  {0, 0.739, 2.326, 3.494, 5.921}, T 5 =  {3.142, 3.910, 5.467, 6.636, 9.063} 

and V5 =  {0, 0, 0, 0.353, 2.779}. Elements/,, are determined from the given 

sets in the following way:

f t  =  #{dj : aj <  3.142} +  #{a j : a} < 0} =  3 +  0 =  3,

/2  =  #{«;: o.j < 3.910} + #{dj : a, <  0} = 4  + 0 =  4,

/3  =  #Wj '■ “y < 5.467} +  #{a.j: а} < 0} = 4  + 0 = 4,

/4  =  #№j ■ dj < 6.636} + #{a.j: dj < 0.353} =  5 + 1 = 6 ,  

f 5 =  #{a.j: a; < 9.063} +  #{a j : aj < 2.779} =  5 + 3 =  8,

then we can determine as follows /i,: hj = 2, h2 =  2, h3 = 1, /j4 =  2, h5 =  3, 

and from these numbers the following numbers are obtained m,: m1 = 1, 

m2 =  1, m3 =  0, w4 =  1 and ms =  3, and in total we have 6 bad triangles, 

which do not overlap any of the 0 — (6, 1, 8, 1) points. In total there are 

к =  10 possible triangles for the given sample, the number of the triangles 

overlapping the given 0 point equals 4, and for this point the depth 

measure equals 0.4.
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Wiesław Wagner, Małgorzata Kobylińska

WYBRANE POJĘCIA STATYSTYCZNE W ŚWIETLE KONCEPCJI 
ZANURZENIA PUNKTU W PRÓBIE -  UJĘCIE NUMERYCZNE

(Streszczenie)

W pracy omówiono definicję zanurzenia punktu w próbie oraz wywodzące się z lej 
koncepcji pewne inne pojęcie statystyczne. Przedstawiono między innymi wskaźniki określające 
stopień zanurzenia oraz zaproponowano metody numerycznego ich wyznaczania.


