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DEPTH BASED STRATEGIES TO ROBUST ESTIMATION
OF ARIMA PARAMETERS

Abstract. In this paper we propose two strategies for robust estimation of ARMA
and GARCH models. The propositions are based on two statistical depth functions
namely famous regression depth introduced by Rousseeuw and Hubert (1998) and
general band depth function introduced by Lopez-Pintado and Romo (2006). We study
a performance of the propositions on various time series simulated from ARMA(1,1) and
GARCH(1,1) models containing additive outliers.
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I. OUTLIERS IN TIME SERIES

Often data considered in a broad range of economic applications contains
one or more atypical observations called outliers. This refers to observations that
are well separated from the majority or a center of the data cloud, or in some
way deviate from the general pattern of the data. Outliers in financial or macro-
economical time series are more complex than in the other situations, where
there is no temporal dependence in the data (for details see Marona et al.
(2006)). Time series outliers can have an arbitrarily negative influence on
parameter estimates for time series models, and the nature of this influence
depends on the type of outlier. In the time series setting we encounter several
different types of outliers. From a model — based point of view we have among
others additive outliers (AO), replacement outliers (RO) and innovation outliers
(I0). The AO model is a special case of the RO model, 10 outliers refers to
a special type of a process ex. ARMA process with a heavy — tailed distribution
of the innovations (for details see Marona et al. (2006). Further on we use
a probability model for time series outliers including additive outliers (AO). Let
x, be a wide — sense stationary ‘core’ process of interest, and let v, be
a stationaryoutlier process which is a non — zero fraction ¢ of time i.e.

P(v, =0)=1-¢. Under an AO model, instead of x, one actually observes
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y,=x,+v, (1)

where the processes x, and v, are assumed to be independent of one another.
The AO model will generate mostly isolated outliers if v, is i.i.d. process,

with scale much larger than that of x,. In the presence of the AO outliers in

economical time series classical estimators of ARMA and GARCH models
generally became useless.

II. DEPTH FUNCTION IN ROBUST TIME SERIES ANALYSIS

A statistical depth function expresses the centrality or "outlyingness" of an
observation within a set of data (or with respect to a probability distribution) and
provides a criterion to order observations from center - outwards. For a detailed
overview see Serfling (2006) and references therein. For other applications of
the statistical depth functions in a robust economical analysis see e.g.
Kosiorowski (2007) or Kosiorowski (2008).

We use the notion introduced by Rousseeuw and Hubert (1998) notion of
regression depth in order to propose a robust procedure for the ARMA(p,q)
parameters estimation. The regression depth measures the quality of any
candidate fit in a linear regression setting. This fits with higher regression depth
fit the data better than does fits with lower regression depth. Hence, the
regression depth ranks all possible fits from worst (depth=0) to best (maximal
depth) case. The errors in the underlying regression model are assumed to be
independent, each having zero median. These are very weak conditions, e.g. the
error distribution does not have to be symmetrical, nor does it have to stay the
same across different values of predictors. A maximal depth estimator (MDE) is
a fit which maximizes regression depth. This is one of the best robust estimators
for linear regression (for details see Van Aelst and Rousseeuw (2000)).

We also use a generalized band depth function introduced by Lopez-Pintado
and Romo (2006). Lopez-Pintado and Romo (2006) has extended the notion of
statistical depth function to deal with functional observations. They proposed
robust graph — based methods for supervised classification of curves. We
incorporate their concepts in robust estimation for ARMA and GARCH models.
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II1. ROBUST ESTIMATION FOR ARMA MODELS

An important class of models for describing the single time series {z,}is the

class of autoregressive - moving average models referred to as ARMA(p,q)
models

(Z, _:u) = ¢](Zt—l _ﬂ)+-..+¢p(zt —,u)+at _elat—l _"'_eqaf—q > (2)

where z, is a stationary time series with a fixed mean u, a, is a random
residual series, ¢ ,...,¢p , 6’1,...,6’q , M are parameters to be estimated from the

data.

ARMA models may be fitted to data, using an iterative cycle of
identification, estimation and checking. Classical statistical procedures for
estimating ARMA models based on maximum likelihood, least squares or
autocovariance estimates are not robust in the presence of AOs or ROs.
Proposed diagnostic procedures generally suffer from the masking problem.
Estimates based on regular residuals (M-, S- estimates) are not very robust. This
is due to the fact that an outlier in one period, does not only affect the residual
corresponding to this period, but it may also affect all the subsequent residuals
(for details see Maronna et al. (2006)). Recently Muller et al. (2009) proposed
a generalization of the MM- estimates introduced by Yohai for regression which
are robust when the series contain outliers. They showed also several asymptotic
properties of the propositions.

In this paper we propose an alternative procedure for robust estimation
ARMA models. Our regression depth based proposition is user-friendly and
performs well due to the very good statistical properties of the regression depth.

PROPOSITION 1: Let X, ={y,,...,¥;}, 2 < T denote a time series under

consideration. We obtain estimates of the parameters of ARMA(p,q) in a two
step procedure :
STEP 1: We calculate MDE estimates of the AR(p) part of the underlying

process by choosing ¢1,...,¢P as the maximal regression depth estimates applied

to a data set Y ={y,...y; 1, X ={VpesVr it X, =AY, Vp )
obtained from X .

STEP 2: We add the MA(q) part to the estimated in the step 1 AR(p) part by
minimizing a robust measure of a dispersion between observed and generated by
the model values e.g. MAD (median absolute deviation).
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IV. ROBUST ESTIMATION FOR GARCH MODELS

Many time series display time — varying dispersion, or uncertainty, in the
sense that large (small) absolute innovations tend to be followed by other large
(small) absolute innovations. Let y, denote the observable univariate discrete-

time stochastic process of interest. Denote the corresponding innovation process
by &, where ¢ =y, —E (y,), and E, (1) refers to the expectation

conditional on time (t-1) information. A general specification for the innovation
process that takes account of the time-varying uncertainty would then be given
by

g =z,0,, 3)

where z, is an ii.d. mean - zero, unit - variance stochastic process, and o,

represents the time-t latent volatility; i.e. E (8,2 o) = O'f . In the GARCH(p,q)

model, the conditional variance is parameterized as a distributed lag of past
squared innovations and past conditional variances,

q P
2 2 2
ol =c+) ael +Y.07,

i=1 j=1

“4)

=w+a(B)e’ + B(B)o’, (%)

where B denotes the backshift (lag) operator, i.e., B’ V=Y,

This model is usually estimated by maximum likelihood (QML) assuming
that the distribution of one observation conditionally to the past is normal. The
QML estimate based on a normal likelihood is very sensitive to the presence of a
few outliers in the sample. Several authors proposed robust estimates for
GARCH(p,q) models (see Muller and Yohai (2007)). The main part of the
propositions however is based on the predictors of the conditional variance
which are very sensitive to large outliers. We propose a strategy based on two
statistical depth functions and standard ARMA-based method of identification of
the GARCH(p,q) model. We can use our proposition in the case of analysing
several time series generated by the same model. Some part of the time series
may be outliers and/or each time series may contain AO outliers. In our opinion
our simple depth based proposition could be an alternative to latent variables
approaches, which generally need very long time series or to a BM-estimators
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proposed by Muller and Yohai (2007). First it is worth noticing that rearranging
the terms in (5), we obtain

[1-a(B)- B(B)le] = w+[1- B(B)ly, (6)

where v, =&’ — o’ . Since E, (v,)=0, and the GARCH(p,q) formulation in (6)
we can estimate process as an ARMA(max{p,q},p) model for the squared
innovation process {&’}.

PROPOSITION 2: Let

V(0= 1O = 7 e v (0 = 0 )
denote k- time series generated by the same GARCH(p,q) process. We obtain an
estimate of the underlying process in a two-step procedure.

STEP 1: We choose the deepest time series from the k- considered time
series as a sample median induced by Lopez-Pintado and Romo generalized
band depth.

STEP 2: We apply the first proposition to the standard ARMA-based
identification of the GARCH(p,q) process.
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Fig 1. Kernel density estimation of the Fig. 2: Kernel density estimation of the
proposed parameters estimators of the proposed parameters estimators of the
ARMA(L,1) with ¢, =0.7,6, =-0.5, GARCH(1,1) with ¢, =0.2, S, =0.7.
o =1. Each of the simulated trajectories Two of each five of the simulated trajectories

contained 5\% of the additive outliers. contained 10% of the additive outliers.
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V. SIMULATION EVIDENCE

To investigate the behavior of our first proposition we ran simulations with
100 samples of sizes 200 generated by a stationary normal one-dimensional
AR(1) with ¢ =0.7 and two-dimensional AR(1,1) with ¢ =0.7, 6,=-0.5
models, both with o, =1 and y =0, (scale of the innovations and the intercept).
We considered situations when instead of data point one actually observes (AO
model) y, =x,+v,, where the processes X, and v, are assumed to be

independent of one another. We assumed v, has a normal mixture distribution
v, ~(1-¢)N(0,1)+&N(0,100) where & =0%,5%,10%,20%. Table 1 shows the
results for the maximal regression depth regression estimate for AR(1)
parameters where & =0%,5%,10%,20%. of the AO outliers. Table 2 shows the
results the maximal regression depth estimate for AR(1,1) parameters with
& ==0%,5%,10%,20%. of the AO outliers. It is easily seen that the conditional
least squares (similarly LAD, LTS) estimate is much affected by AO outliers in
both situations. Note that the proposed estimate performs better than classical
M-estimate for AR parameters. We also ran also simulations of sizes n=500
from ARMA(1,1) model with ¢ =09, 6 =-05, u=0, o,=1. Figure 1
shows kernel density estimation of the proposed parameters estimators of the
ARMAC(1,1). Each of the simulated trajectories contained 5% of the additive
outliers. These results seem to be rather promising. In order to examine the

performance of the second proposition we ran simulations of five time series
generated by GARCH(1,1) model with ¢ =0.2, f=0.7. Each of the simulated

five time series was of size n=500 observations. Two of the simulated five time
series contained 10% of the AO outliers. Figure 2 shows results of kernel
estimation of the densities of parameters proposed estimators. The results show
very good properties of the proposition in terms of robustness to the AO outliers.
Note that the first part of the second proposition (Pintado-Lopez & Romo
median) also performs well also in cases of several ARMA time series or real
data examples.

Tab 1. Percent of the additive outliers in a simulated trajectories from
AR(1) model with ¢ = 0.7 vs. mean of the first proposition estimates

OUTLIERS % é
0 0.692
5 0.615
10 0.575
15 0.478
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Tab 1. Percent of the additive outliers in a simulated trajectories
from AR(2) model with ¢ =0.7, ¢, =0.2 vs. mean

of the first proposition estimates

OUTLIERS % é é,
0 0.776 —0.492
5 0.631 —0.335
10 0.489 —0.234
15 0.268 —0.075
VI. CONCLUSIONS

In our opinion the proposed strategy for ARMA(p,q) model estimation is an
attractive approach to robust estimation of the real economic processes'
parameters. Simulation studies show that our approach is not only more robust
than conditional least squares or least absolute deviations estimators but also
than some new promising propositions as M- or S- estimators (see Marona et al.
(2006), and procedures based on robust filters. Note that our proposition
performs well also in situations where data does not contain outliers.
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Daniel Kosiorowski
STRATEGIE ODPORNEJ ESTYMACJI PARAMETROW MODELU ARIMA

W pracy badamy kilka strategii odpornej estymacji parametrow modeli ARIMA i GARCH.
Poréwnujemy migdzy innymi podejscia wykorzystujace statystyczne funkcje glebi: wykorzy-
stujace koncepcje glebi odnoszaca si¢ do funkcji a zaproponowana przez Lopez-Pintado i Romo
(2005) oraz wiasne propozycje wykorzystujace glebie regresyjna.



