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Abstract. Survival analysis is concerned with studying the time between entry to
a study and a subsequent event. Time-to-event is considered as a continuous variable.
When the outcome of a study is the time between one event and another, a number of
problems can occur, such as: the distribution of the variable tends to be unknown,
observed distributions are strongly skewed, more over we lost to follow up some entities
(right censoring).

The assessment of overall homogeneity of survival curves is a key element in
survival analysis. Recently there have been developed several tests that compare survival
at two or more cohorts e.g. most popular log-rank test and tests of Gehan, Tarone-Ware,
Peto-Peto, Harrington-Fleming, Renyi-type. Nevertheless a little attention is drawn to
comparison of applicability of these tests.

The main goal of this paper is to examine a small-sample characteristics of above
tests. There were made a variety of situations by means of Monte Carlo simulations.
With the assumption that survival curve has Weibull distribution, there were taken into
consideration different share of censored observations (randomly appeared due to
uniform distribution) and the ability of these test to detect overall differences between
crossing survival curves.
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I. INTRODUCTION

The comparison of time-to-event distributions, particularly with censored

data is one of the most common tasks in survival analysis. There were proposed
several tests for two or more survival curves. Only a few of them were
implemented in statistical software [mainly log-rank and Gehan] which makes
their applications routine in most problems. However the power of these tests
differs in particular situations, so in some applications one of the other weight

function may be more appropriate.

* PhD, Department of Statistics, University of Gdansk, jurkiewicz@wzr.ug.edu.pl.
* PhD, Department of Statistics, University of Gdansk, wycinka@wzr.ug.edu.pl.

[107]



108 Tomasz Jurkiewicz, Ewa Wycinka

The aim of this article is a comparison of the power of some two sample
tests most recommended in literature. We focused on four situations that very
often occur in real data studies and in which the power and other characteristics
of compared tests can differ:

Problem 1: comparison of small sample properties of two sample tests
(sample size)

Problem 2: the effect of increasing number of censored observations on
properties of tests

Problem 3: the ability of tests to detect overall differences between non-
crossing survival curves

Problem 4: the ability of tests to detect overall differences between crossing
survival curves when the crossing point changes

To evaluate the performance of the compared tests, Monte Carlo simulations
were carried out to study the statistical power and type I error under a variety
situations.

II. LITERATURE STUDIES

It is stressed in literature that the log-rank test has optimal local power to
detect differences in the hazard rates, when the hazard rates are proportional
[Klein, Moeschberger 1997, p. 2001; Siu and all 2004, p. 259]. When this test is
applied to samples from populations where the hazard rate cross, these tests have
little power because early differences in favor of one group are canceled out by
late differences in favor of the other treatment. Schumacher (1984) and Fleming
(1987) conducted simulations and concluded that for non proportional or
crossing hazards the Renyi test seems to perform much better than usual log-
rank test for light censoring [Stablein, Koutrouvelis 1985]. Cramer von Misses
test and t-test were proposed as ones with greater power to detect crossing
hazard rates than Wilcoxon type tests [Klein, Moeschberger 1997, p. 214].

III. TESTS FOR TWO SURVIVAL CURVES

We compared the power of four groups of tests for two survival curves. In
these tests the null and alternative hypothesis are formulated as:

Ho: 21(6) = A(f) = ... = Ax(¢f) forallt<

Hy: A(t) # A(f) foranyt<r
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First group were Wilcoxon type tests (Wilcox [-X), they are based on
26,
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weighted comparisons of the hazard rates in two groups: Z° =

Value of the statistic and subsequently the characteristics of the test depends
on the kind of the chosen weight function [Blossweld, Golsch, Rohwer 2007,
p. 79-81]. Selection of different weights leads to (see table 1): log-rank test
(Wilcoxon 1), Gehan test (Wilcoxon 2), Tarone-Ware test (Wilcoxon 3), Peto-
Peto test (Wilcoxon 4), modified Peto-Peto test (Wilcoxon 5), Harrington-
Fleming test with p=0 and q=1 (Wilcoxon 6), Harrington-Fleming test with p=1
and q=0 (Wilcoxon 7), Harrington-Fleming test with p=1 and q=1 (Wilcoxon 8),
Harrington-Fleming test with p=0,5 and gq=0,5 (Wilcoxon 9), Harrington-
Fleming test with p=0,5 and qg=2 (Wilcoxon 10) [Suciu and all (2004)].

Second group of tests are Renyi type tests (Renyi 11-20) that are censored-
data analogous of the Kolmogorov-Smirnov statistics. O = sup{|Z/, t < 7}/0(7),

g byl b —d
Where Z[ = ZW(tk)(dkl _lkl l_k], O-Z(T) = ZW(ZI()Z%% /} _lk dk .
fo<r k t <t k k k

The value of the statistics also depends on the chosen weight function. The
set of the weight functions is the same as for the Wilcoxon type tests.

Table 1. Weight functions for Wilcoxon and Renyi type tests

No Test Weight (1))

I XI Log-Rank 1

11 XII Gehan I;

I XIII Tarone — Ware "

IV XVI  |Peto-Peto S(t;) where S(1;)= H(l ‘/,%]
1<t

vV XV Modified Peto — Peto S L /(L +1)

VI XVI Harrington-Fleming p =0, g =1 1- ASA’(II»,I)

VII XVII |Harrington-Flemingp=1,¢g=0 S -1

VIII XVIII |Harrington-Flemingp=1,¢=1 SA'(tl-fl) 1- SA'(ti,l) )

IX XIX |Harrington-Fleming p = 0.5, 4= 0.5 St " (1 =S

X XX Harrington-Fleming p = 0.5, ¢ =2 S'(ti,l )O'5 (1- 5(1‘1-,1) )2

Source: Blossweld, Golsch, Rohwer 2007, p. 79-81.
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Moreover we took into consideration Cramer von Misses test (CramMises)
and t-Student generalized test (t-Stud). Cramer von Misses test is based on the
integrated, squared difference between the two empirical survival functions:

sznz

t;<t

i [y - a, ),

1+nS%(1;)

R d., d.
where: A (1) =Y —L,8%(t,)=Y —L—, A(t;)) = nS*(t)/(1 + nSX(1))),
;1) Zl HO) ;l,-j(ly—b (1) = nS(@)/(1 + nS'(1))
S(t) = Si’(t) + (1)
The t-Student test is a censored data version of the test for the difference in
sample means between the two populations:

Z = WKM s
O,
where:
. Dol . R
Wi =" 3 =)0 -]
i=1

D-1 2 A A
o2, = Z 4 mG (1) + G, (1)

~ ~ ~ ~ [gl,Z(li—l)_gl,Z(ti)],
TS, @)S (5 ) NGt )G, ()

N

D-1

4= [tk+] —I ]W(tk)gl,z(tk) .

k=i

This test is based on Kaplan-Meier estimators in two samples, the population
means are calculated by the area under the Kaplan-Meier curves [Klein,
Moeschberger 1997, p. 191-220].

IV. PROCEDURE OF THE MONTE CARLO ANALYSIS

The performance of the compared tests was evaluated on the basis of
pseudorandom data (PRNGs) generated by inversion method from Weibull
distribution with different parameters. In each of 100.000 simulation
experiments two random independent samples of size n; = n, were generated. On
the basis of a generated samples values of test statistics and p-values for
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statistics ware calculated. The estimated statistical power was calculated as the
fraction of samples in which we reject the null hypothesis at 0.01, 0.05 and 0.10
significance level.

We use following sets of parameters in simulations:

For problem 1: distributions — Ist Weibull(1;1), 2nd Weibull(1;1) (null
hypothesis true); samples size: 15, 20, 30, 40, ..., 100 completed + 20%
censored.

For problem 2: distributions — 1st Weibull(1;1), 2nd Weibull(2; {.6, 1, 1.4})
(null hypothesis false); samples size 30 completed + 20%, 40%, 60%, 80%,
100%, 150%, 200% censored.

For problem 3: distributions — 1st Weibull(1;1), 2nd Weibull({1, 1.1, ...,
2.5}; 1) (null hypothesis from true to false); samples size 30 completed + 20%
censored.

For problem 4: distributions — 1st Weibull(1;1), 2nd Weibull(2; {.3, .5, ...,
3.1}) (null hypothesis false); samples size 30 completed + 20% censored.

V. EMPIRICAL STUDY RESULTS

Firstly we generated observations for two samples with the same distribution
(Weibull(1,1)) and observed the changes in the difference between observed and
expected p-value in a situation that sample size grows with the fixed share of
censored data. The best characteristics for small samples had Wilcoxon tests
(with weights 1-5), Wilcoxon test with weights 6—10 were quickly improving
their characteristics with the growth of sample size. Other tests revealed to have
much worse characteristics. In this matter our observations were consistent with
other empirical studies. Subsequently we examined the power of tests in
a situation that we drown samples from two different populations (Weibull (1,1)
and Weibull (2,0.6) where real survival curves cross in their beginnings. The
greatest power for small samples had both Wilcoxon and Renyi tests with
weights number 6 and 10, so we can conclude that in this situation most
important factor in the test statistic is kind of weight function. Wilcoxon tests
II-V do not improve their power even if the number of items in the sample
increases. Rest of the examined tests were improving their characteristics as the
sample size were growing only by addition of censored observations (Figure 1).

In the situation that two curves cross close to the median value all of the
tests (except Cramer von Misses test) had the comparable power and react with
the same rate for increase in number of censored observations (figure 2).

When two survival curves cross close to the end of the curve the best
predictive power have Wilcoxon tests and Renyi test with weights 1-5 and 7, the
weakest abilities had tests with weight 6 and 10 (Figure 3).
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Figure 1. Power of the tests for comparison of the two samples drew from Weibull(1,1)
and Weibull(2, 0.6) (a=0,01)
Source: own elaboration.
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Figure 2. Power of the tests for comparison of the two samples drew from Weibull(1,1)
and Weibull(2, 1) (0=0,01)
Source: own elaboration.
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Figure 3. Power of the tests for comparison of the two samples drew from Weibull(1,1)
and Weibull(2, 1.4) (a=0,01)
Source: own elaboration.
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Finally we compared tests for the ability of detection of differences between
non crossing survival functions. To obtain this result we drew samples from two
Weibull distributions with the same shape parameter and different scale
parameter. In this situation the greatest power had Wilcoxon test with weight 1
and the poorest one Cramer von Misses test (figure 4).
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Figure 4. Power of the tests for comparison of the two samples drew from Weibull(1,1)
and Weibull(x, 1) (a=0,01)
Source: own elaboration.

VI. CONCLUSIONS

As we could expect for proportional hazard populations best performance
had Wilcoxon type tests, especially those with weights 1-5. These tests loose
their power in the situation of crossing survival curves. Crossing point has great
influence on the power of particular tests. Wilcoxon and Renyi test (4,6,10)
have the greatest power to detect early time crossings and Cramer, Renyi (3,7)
have the greatest power to detect late crossings. All of the analyzed tests had
comparable power in a situation of crossing point around the median value.
From results of simulations it can be drawn the conclusion that the choice of
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weight function has the great influence on the test power in particular situation.
Appropriate use of tests for two survival curves require prior recognition of
a type of differences, i.e. by plotting Kaplan-Meier survival curves [compare:
Suciu and all, 2004, p. 2600-261].
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TESTY ISTOTNOSCI ROZNIC DWOCH KRZYZUJACYCH SIE KRZYWYCH
PRZEZYCIA W MALYCH PROBACH

Analiza przezycia to zespo6l metod stuzacych do modelowania czasu trwania kohorty, ktorej
jednostki sa obserwowane od zdefiniowanego momentu poczatkowego do zdefiniowanego
zdarzenia koncowego. Czas trwania jest traktowany jako zmienna losowa ciagla. Specyfika metod
analizy przezycia zwigzana jest z wystgpowaniem obserwacji cenzurowanych (ucigtych) oraz tym,
iz funkcje gestosci obserwowanej zmiennej sa czg¢sto nieznane, a rozktady silnie asymetryczne, co
uniemozliwia stosowanie metod klasycznej statystyki.

Podstawowa funkcja stosowana w analizie przezycia jest funkcja dalszego trwania
wyrazajaca prawdopodobienstwo, ze jednostka nie doswiadczy zdarzenia koncowego przed
czasem t. Metoda oceny, czy pewne zmienne maja wplyw na zréznicowanie czasu trwania
jednostek, jest przeprowadzanie testow porownujacych krzywe przezycia na podstawie dwoch
(lub wigcej prob). Znaczna liczba tych testow zostata zaproponowana w ostatnich latach, w tym
testy: Log-rank, bedacy jednym z lub najpopularniejszym, test Gehana, Tarone-Ware, Peto-Peto,
Harringtona-Fleminga, testy typu Renyi. W literaturze mato uwagi poswigca si¢ jednakze
poréwnaniu wlasnosci tych testow.

W ponizszym opracowaniu przeprowadzono, przy wykorzystaniu metody Monte Carlo,
analiz¢ porownawcza mocy predykcyjnej testow dla dwoch krzywych przezycia w matych
probach z réznym udziatem jednostek cenzurowanych. Losowano proby z populacji o zatozonym
rozktadzie Weibulla przy réznych proporcjach jednostek kompletnych i cenzurowanych (o losowe;j
kolejnosci pojawiania si¢ ustalanej w oparciu o rozktad jednostajny) w celu okreslenia efektywnej
wielkosci prob dla poszczegdlnych testow. Szczegdlng wage poswigcono problemowi
krzyzowania si¢ krzywych przezycia i zdolnosci testéw do wykrywania réznic miedzy krzywymi
przezycia w takiej sytuacji.



