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THE WAVELET TRANSFORM IN REGRESSION

A bstract

The wavelet transform was introduced in the 1980’s and it was developed as an alternative to the 

short time Fourier transform. The wavelets theory is very popular in signal processing and pattern 

recognition and its applications are still growing.

This paper presents the wavelet transform in nonparametric regression. The use o f wavelets 

in statistical applications was pioneered by D. Donoho and I. Johnstone. Here we discuss their 

methodology -  wavelet shrinkage. The wavelet transform is compared with another nonparametric 

regression method -  splines.
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1. Introduction

The subject of the regression analysis is a set o f observations:

U = {(x„y,):i =

We look for a function f  which describes the connection between the 

response Y and the predictor X :

Y = f ( X )  + s  ( 1)

where e is an error rate (noise).

There are many ideas for solving the problem. Among them there is a 

fast developing group o f methods called nonparametric methods of 

regression. In these methods we do not have to make any assumptions about

$



the distribution o f a variable X.  They produce models which are often better 

fitted to the data than functions obtained by the least squares method. 

Nonparametric models are more robust and resistant against outliers. The 

wavelet estimation methodology is one of the nonparametric methods of 

regression.

Wavelets are applied in a diverse set of fields, such as signal processing, 

pattern recognition, data compression, and numerical analysis. This 

methodology includes a wide range of tools, such as the wavelet transform, 

multiresolution analysis or wavelet decomposition.

Wavelet methods were introduced to statistics by D. D o  no  h o  and 

I. J o h n s t o n e  in 1994. They developed the procedure based on the wavelet 

transform and thresholding for approximating an unknown function / .

2. Orthonorm al basis function

In signal processing, a popular approach for approximating a univariate 

function is to use orthonormal basis functions g,(x), i.e. functions satisfying 

following condition:

o,

1, if i - j  

* j
(2)

We seek a function /  in an additive form:

f ( x )  = Y ,W j-g j(x )  

i -1

(3)

Finding this function is equivalent to estimating values o f parameters ил 

We get the values of parameters Wj by minimizing theoretical risk:

R (  w )  =  o-2 +  J f ( x ) ~ Y uwJ g j (x)

j - 1

dx (4)

w h e r e / i s  an unknown function in ( 1), and cr2 denotes the noise variance. 

Solving this problem leads to:

w j  = J’f i x )  ■ gj ix) dx for j  - 1..... m (5)



We cąnnot evaluate (5), because the target function /  is unknown. We 

estimate w . using the given training set U:

* ./= 7 7  £  Я '£ ;(* /)  for j  = (6 )
N /-i

The wavelet transform is defined as a decomposition o f the function/using 
a specified set o f orthonormal basis functions.

3. W avelets

In this section we present the construction of the set of orthonormal basis 
functions -  wavelet functions. We start with defining the mother wavelet as 
a function у/ satisfying the following conditions:

1 ) jV ( x ) r /x  =  0 ,

2) jV2(x)ifc<°o» ( ^ e Z 2(R)).

The examples o f mother wavelet functions are:
• Ilaar wavelet -  used only in theoretical examples and illustrations.
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Fig. I . Haar wavelet

• Doublets -  the first type of continuous wavelet with compact support 

introduced by Ingrid Daubechies.



Fig. 2. Three different Daublcts (with different parameter settings)

• Symmlets -  an “nearly symmetric” equivalent o f Daublets also 
constructed by Ingrid Daubechies.

Fig. 3. Four different Symmlets (with different parameter settings)

Let us assume that a set o f functions i//a h is generated from mother wavelet 
through scaling and translation:



V «

x - b  

K a J
(7)

where a > 0 is a scale factor and b > 0 is a translation parameter. When a gets 

larger, i//a b gets shorter and more spread out. Functions i//u b defined by (7) are 

called wavelet functions.

The wavelet functions y/a b are orthonormal functions in L2 (R )

( C h e r k a s s k y  et al., 1998). So we can approximate a target function f  as in 

(3) by:

f ( x )  = Y Jwj --T = -y/

j -1

x - b .

V aJ J

(8)

We can estimate the parameters of the function (8 ) by minimizing the loss 
function L ( y , f ( x ) )  over the training sample U :

(w,á, b) = arg min J  L{yt, f ( x t))
w.a.b

(9)
/“1

To solve the optimization problem (9) we can apply adaptive methods, e.g. 
the gradient descent method. Here we present a common nonadaptive 
implementation o f wavelet basis function expansion that uses a basis function 
with fixed scale and translation parameters:

Uj = 2 J where j -  0,1, ..., J  -1  

bj = к ■ 2 ~J where к  = 0 , 1, ..., 2 J - 1

Then substituting (10) into (7) we obtain:

Ya,,bl (x) = 4/ j ,Á x ) = 2 2  ■4 / ( 2 Jx - k )

The orthogonality o f y/j k is easy to check. It is apparent that: 

\y/J k (x ) - 4/ r k ,(x)dx = -

(10)

( 1 1 )

[1, if j  = j '  л к  = к \

[o, if j  Ф j ' v  к * k '
(12)

Thus the set {i//j k : j e Z , k e Z }  defines an orthonormal basis for L2(R) 
(Hastie et al., 2001).



4. The wavelet transform

Given the wavelet functions of the form (11) we obtain approximation of 
the target function / :

/ ( * )  = Ž  Ż  wjc ' 2 V (2 Jx - k )  (13)
y-0 A=0

The formula (13) defines the wavelet transform o f a function / .  

Coefficients wjk in (13) have the following form:

wjk = \ f ( x ) - ^ j , k ( x ) d x  (14)

Hence the target function /  is unknown we estimate the values of 

parameters wjk by wjk using the training set:

1 N
'Zyi-rjM (15)

/v i=i

5. The wavelet thresholding

The presence of noise in the training data set implies the values o f many 

coefficients wjk close to zero. It is connected with the problem of overfitting the

data. Donoho and Johnstone addressed the issue with wavelet thresholding. 
There are two popular approaches to it:

a) “hard" thresholding where all wavelet coefficients smaller than a certain 
threshold в  are set to zero:

™]к =™jk -I{\ wjk \> 0 ) (16)

b) “soft" thresholding, where:

w 5Jk =  sg n (  w Jk) • m a x  {0, | w y k \ -  в )  (17)

There are many ideas for choosing the value of the threshold 0 , e.g. a very 

popular formula:

0  -  < y -^ 2 \n N  (18)

where N  is the number o f observations in the data set and a  is the standard 

deviation of noise (usually estimated from the data).



Summarizing, the regression function has the form of wavelet decom-

position:

/ M  = I Z 4 ' 2 V ( 2 ' * - i )  (19)
j=0 к *0

where wsJk are adjusted coefficients given by the formula (16) or (17).

6. Exam ple o f application of wavelet transform

For the illustration of the wavelet transform and wavelet thresholding we 
conduct computation on the bev data set. This set contains the well-known 
Beveridge Wheat Price Index which gives the annual price data from 1500 to 
1869, averaged over many locations in western and central Europe. It is an 

univariate time series with 370 observations (Fig. 4).
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Fig. 4. Plot o f the bev time series

D. Donoho and I. Johnstone developed the WaveShrink procedure 
estimating an unknown function f .  WaveShrink is able to remove the noise 
from the time series while preserving the spike. Traditional noise reduction 
methods, such as splines, would result in some smoothing o f the spike.



The WaveShrink procedure can be presented as follows:
1) Apply the wavelet transform (decomposition) o f observations from the 

bev set.
2) Threshold the wavelet coefficients towards zero.
3) Use the wavelet reconstruction as an estimate / .
The process of shrinking coefficients is much like the process of keeping 

only important coefficients of wavelet decomposition.

Coefficients of wavelet transform
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Fig. 5. Coefficients o f wavelet transform for the bev series (upper plot) 

and shrinking coefficients o f wavelet transform (lower plot)

Figure 5 presents coefficients of the wavelet transform of observations from 

the bev data set and adjusted coefficients given by the “hard” thresholding 

procedure. Figure 6 displays the estimating function /  via the WaveShrink 

procedure for the bev time series.



Wavelet transform

Time

Fig. 6 . Estimating function /v ia  the wavelet transform for the bev series

Splines
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Fig. 7. Estimating function /v ia  splines for the bev series



For a comparison of the results of the wavelet transform and thresholding 
procedure other nonparametric methods for regression are presented. Here is the 
splines method. Estimating an unknown function / v i a  splines is illustrated in 
Fig. 7.

The goodness of fit o f model / ,  obtained by WaveShrink procedure, was 
measured with the use of a coefficient R 2. For a comparison purpose, R 2  is also 
calculated for the splines model. The results are collected in Table 1.

T a b l e  1

Accuracy o f the various regression models

Model Wavelet Transform Splines

R2 0.738 0.956

S o u r c e :  own study.

The model obtained with a use of the wavelet transform has lower accuracy 
than the splines model, but it preserves the spike in the bev time series.
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Zastosowanie transform acji falkowej 

do budowy modeli regresyjnych

Transformacja lalkowa zostala zaproponowana na początku lat osiemdziesiątych, jako 

alternatywa do transformacji Fouriera. Metoda ta szybko znalazła swoje zastosowanie w teorii 

sygnałów oraz w rozpoznawaniu obrazów, a zakres jej aplikacji nadal dynamicznie się rozwija.



Autorami pionierskich prac z zakresu zastosowań teorii falek w statystyce są David Donoho 

and lain Johnstone. Zaproponowali oni w roku 1994 procedurę WaveShrink wykorzystywaną do 

estymacji funkcji gęstości oraz budowy nieparametrycznych modeli regresji opartą na 

transformacji lalkowej.

W artykule przedstawione zostało zastosowanie transformacji falkowej oraz procedury 

WaveShrink do budowy modelu regresyjnego. Omawianą metodę porównano z inną 

nieparametryczną metodą regresji -  krzywymi sklejanymi.


