Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2024 | 32 | 3 | 350-367

Article title

Embracing intelligent machines: A qualitative study to explore the transformational trends in the workplace

Content

Title variants

Languages of publication

Abstracts

EN
Purpose – With Industry 4.0 and the extensive rise of smart technologies, we are seeing remarkable transformations in work practices and workplaces. Scholars report the phenomenal progress of smart technologies. At the same time, we can hear the rhetoric emphasising their potential threats. This study focusses on how and where intelligent machines are leveraged in the workplace, how humans co-working with intelligent machines are affected and what they believe can be done to mitigate the risks of the increased use of intelligent machines. Design/methodology/approach – We conducted in-depth interviews with 15 respondents working in various leadership capacities associated with intelligent machines and technologies. Using NVivo, we coded and churned out the themes from the qualitative data collected. Findings – This study shows how intelligent machines are leveraged across different industries, ranging from chatbots, intelligent sensors, cognitive systems and computer vision to the replica of the entire human being. They are used end-to-end in the value chain, increasing productivity, complementing human workers’ skillsets and augmenting decisions made by human workers. Human workers experience a blend of positive and negative emotions whilst co-working with intelligent machines, which influences their job satisfaction level. Organisations adopt several anticipatory strategies, like transforming into a learning organisation, identifying futuristic technologies and upskilling their human workers, regularly conducting social learning events and designing accelerated career paths to embrace intelligent technologies. Originality/value – This study seeks to understand the emotional and practical implications of the use of intelligent machines by humans and how both entities can integrate and complement each other. These insights can help organisations and employees understand what future workplaces and practices will look like and how to remain relevant in this transformation.

Year

Volume

32

Issue

3

Pages

350-367

Physical description

Dates

published
2024

Contributors

  • Christ University
  • Goldman Sachs India

References

  • Aghion, P., Antonin, C., & Bunel, S. (2019). Artificial intelligence, growth and employment: The role of policy. Economie et Statistique/Economics and Statistics, 150(510-511-512), 149–164. doi: 10.24187/ecostat.2019.510t.1994.
  • Agrawal, A. K., Gans, J., & Goldfarb, A. (2019). The economics of artificial intelligence: An agenda. NBER.
  • Anderson, J., Rainie, L., & Luchsinger, A. (2018). Artificial intelligence and the future of humans. Pew research center. Available from: https://www.pewresearch.org/internet/wp-content/uploads/sites/9/2018/12/PI_2018.12.10_future-of-ai_FINAL1.pdf
  • Arslan, A., Cooper, C., Khan, Z., Golgeci, I., & Ali, I. (2021). Artificial intelligence and human workers interaction at team level: A conceptual assessment of the challenges and potential HRM strategies. International Journal of Manpower, 43(1), 75–88. doi: 10.1108/IJM-01-2021-0052.
  • Atkeson, A., & Kehoe, P. J. (2001). The transition to a new economy after the second industrial revolution (Working Paper No. 8676). National Bureau of Economic Research. doi: 10.3386/w8676y.
  • Autor, D., Mindell, D. A., & Reynolds, E. B. (2022). The work of the future: Building better jobs in an age of intelligent machines. Massachusetts, Cambridge: The MIT Press. doi: 10.7551/mitpress/14109.001.0001.
  • Bahrin, M. A. K., Othman, M. F., Azli, N. H. N., & Talib, M. F. (2016). Industry 4.0: A review on industrial automation and robotic. Jurnal Teknologi, 78(6-13), 6–13. doi: 10.11113/jt.v78.9285.
  • Bauer, A., Wollherr, D., & Buss, M. (2008). Human-robot collaboration: A survey. International Journal of Humanoid Robotics, 5(1), 47–66. doi: 10.1142/S0219843608001303.
  • Beuss, F., Schmatz, F., Stepputat, M., Nokodian, F., Fluegge, W., & Frerich, B. (2021). Cobots in maxillofacial surgery – challenges for workplace design and the human-machine-interface. Procedia CIRP, 100, 488–493. doi: 10.1016/j.procir.2021.05.108.
  • Chamorro-Premuzic, T., & Akhtar, R. (2023). 3 human super talents AI will not replace. Harvard Business Review. Available from: https://hbr.org/2023/05/3-human-super-talents-ai-will-not-replace (accessed 19 August 2023).
  • Chignell, M., Wang, L., Zare, A., & Li, J. (2023). The evolution of HCI and human factors: Integrating human and artificial intelligence. ACM Transactions on Computer-Human Interaction, 30(2), 1–30. doi: 10.1145/3557891.
  • Chiou, E. K., & Lee, J. D. (2023). Trusting automation: Designing for responsivity and resilience. Human Factors, 65(1), 137–165. doi: 10.1177/00187208211009995.
  • Coombs, C., Stacey, P., Kawalek, P., Simeonova, B., Becker, J., Bergener, K., . . . Trautmann, H. (2021). What is it about humanity that we can’t give away to intelligent machines? A European perspective. International Journal of Information Management, 58, 102311. doi: 10.1016/j.ijinfomgt.2021.102311.
  • Cremer, D. D., & Kasparov, G. (2021). AI should augment human intelligence, not replace it. Harvard Business Review. Available from: https://hbr.org/2021/03/ai-should-augment-human-intelligence-not-replace-it
  • Deary, I. J., Spinath, F. M., & Bates, T. C. (2006). Genetics of intelligence. European Journal of Human Genetics, 14(6), 690–700. doi: 10.1038/sj.ejhg.5201588.
  • Gervasi, R., Mastrogiacomo, L., & Franceschini, F. (2020). A conceptual framework to evaluate human-robot collaboration. The International Journal of Advanced Manufacturing Technology, 108(3), 841–865. doi: 10.1007/s00170-020-05363-1.
  • Hennink, M., & Kaiser, B. N. (2022). Sample sizes for saturation in qualitative research: A systematic review of empirical tests. Social Science and Medicine, 292, 114523. doi: 10.1016/j.socscimed.2021.114523.
  • Hitomi, K. (1994). Automation – its concept and a short history. Technovation, 14(2), 121–128. doi: 10.1016/0166-4972(94)90101-5.
  • Howard, J. (2019). Artificial intelligence: Implications for the future of work. American Journal of Industrial Medicine, 62(11), 917–926. doi: 10.1002/ajim.23037.
  • Huang, M.-H., Rust, R., & Maksimovic, V. (2019). The feeling economy: Managing in the next generation of artificial intelligence (AI). California Management Review, 61(4), 43–65. doi: 10.1177/0008125619863436.
  • Ing, L. Y., & Zhang, R. (2023). Automation in Indonesia: Productivity, quality, and employment. In Robots and AI (pp. 275–309). Routledge.
  • Jain, L. C., Quteishat, A., & Lim, C. P. (2007). Intelligent machines: An introduction. In J. S. Chahl, L. C. Jain, A. Mizutani, & M. Sato-Ilic (Eds.), Innovations in Intelligent Machines (pp. 1–9). Springer. doi: 10.1007/978-3-540-72696-8_1.
  • James, L. (2020). Why humans and machines work better together. IT PRO. Available from: https://www.itpro.co.uk/technology/artificial-intelligence-ai/355573/why-humans-and-machines-work-better-together
  • Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organisational decision making. Business Horizons, 61(4), 577–586. doi: 10.1016/j.bushor.2018.03.007.
  • Korzynski, P., Mazurek, G., Altmann, A., Ejdys, J., Kazlauskaite, R., Paliszkiewicz, J., . . . Ziemba, E. (2023). Generative artificial intelligence as a new context for management theories: Analysis of ChatGPT. Central European Management Journal, 31(1), 3–13. doi: 10.1108/CEMJ-02-2023-0091.
  • Kumar, S. P. (2021). Why Cobots are safer and efficient than robots?. Focaloid Technologies Private Limited. Available from: https://www.focaloid.com/blog/why-cobots-are-safer-and-efficient-than-robots/
  • Legg, S., & Hutter, M. (2007). A collection of definitions of intelligence. (arXiv:0706.3639). arXiv. Available from: http://arxiv.org/abs/0706.3639
  • Li, L. (2022). Reskilling and upskilling the future-ready workforce for industry 4.0 and beyond. Information Systems Frontiers, 1–16. doi: 10.1007/s10796-022-10308-y.
  • Minsky, M. (1990). The age of intelligent machines: Thoughts about artificial intelligence. Available from: http://www.universelle-automation.de/1991_Boston.pdf
  • Plastino, E., & Purdy, M. (2018). Game changing value from artificial intelligence: Eight strategies. Strategy Leadership, 46(1), 16–22. doi: 10.1108/SL-11-2017-0106.
  • Roehl, C. (2022). Know your machine: Traditional industrial robots vs cobots. Available from: https://www.universal-robots.com/blog/know-your-machine-traditional-industrial-robots-vs-cobots/
  • Rymarczyk, J. (2020). Technologies, opportunities and challenges of the industrial revolution 4.0: Theoretical considerations. Entrepreneurial Business and Economics Review, 8(1), 185–198. doi: 10.15678/EBER.2020.080110.
  • Schank, R. C. (1991). Where’s the AI?. AI Magazine, 12(4). doi: 10.1609/aimag.v12i4.917.
  • Schippers, B. (2018). Why technology puts human rights at risk. The Conversation. Available from: http://theconversation.com/why-technology-puts-human-rights-at-risk-92087
  • Segal, D. L., Coolidge, F. L., O’Riley, A., & Heinz, B. A. (2006). 6 – structured and semistructured interviews. In M. Hersen (Ed.), Clinician’s Handbook of Adult Behavioral Assessment (pp. 121–144). Academic Press. doi: 10.1016/B978-012343013-7/50007-0.
  • Senge, P. M. (1990). The fifth discipline: The art and practice of the learning organisation. New York: Doubleday/Currency.
  • Suta, P., Lan, X., Wu, B., Mongkolnam, P., & Chan, J. H. (2020). An overview of machine learning in chatbots. International Journal of Mechanical Engineering and Robotics Research, 9(4), 502–510. doi: 10.18178/ijmerr.9.4.502-510.
  • Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 61(4), 15–42.
  • Tubaro, P., & Casilli, A. A. (2019). Micro-work, artificial intelligence and the automotive industry. Journal of Industrial and Business Economy, 46(3), 333–345. doi: 10.1007/s40812-019-00121-1.
  • Tubaro, P., Casilli, A. A., & Coville, M. (2020). The trainer, the verifier, the imitator: Three ways in which human platform workers support artificial intelligence. Big Data and Society, 7(1), 205395172091977. doi: 10.1177/2053951720919776.
  • Volkswagen Newsroom (2018). Volkswagen group news. What does a . . . robotics expert actually do at Volkswagen?. [Press Release]. Available from: https://www.volkswagen-newsroom.com/en/press-releases/what-does-a-dot-dot-dot-robotics-expert-actually-do-at-volkswagen-334 (accessed 9 November 2022).
  • Waterson, J. (2020). Microsoft sacks journalists to replace them with robots. The Guardian. Available from: https://www.theguardian.com/technology/2020/may/30/microsoft-sacks-journalists-to-replace-them-with-robots (accessed 19 August 2023).
  • Wilson, H. J., & Daugherty, P. R. (2018). Collaborative intelligence: Humans and AI are joining forces. Harvard Business Review, July–August 2018. Available from: https://hbr.org/2018/07/collaborative-intelligence-humans-and-ai-are-joining-forces
  • World Economic Forum (2020). The future of jobs report 2020. Geneva. Available from: https://www3.weforum.org/docs/WEF_Future_of_Jobs_2020.pdf (accessed 8 November 2022).
  • World Economic Forum (2021). Upskilling for shared prosperity. Geneva. Available from: https://www3.weforum.org/docs/WEF_Upskilling_for_Shared_Prosperity_2021.pdf (accessed 9 November 2022).
  • Zirar, A., Ali, S. I., & Islam, N. (2023). Worker and workplace artificial intelligence (AI) coexistence: Emerging themes and research agenda. Technovation, 124, 102747. doi: 10.1016/j.technovation.2023.102747.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
53890173

YADDA identifier

bwmeta1.element.ojs-doi-10_1108_CEMJ-03-2023-0137
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.