Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Journal

2017 | 68 | 6 | 705-710

Article title

MTS-6 detectors calibration by using ²³⁹Pu-Be neutron source

Content

Title variants

Languages of publication

Abstracts

EN
Background Thermoluminescent detectors, type MTS-6, containing isotope ⁶Li (lithium) are sensitive in the range of thermal neutron energy; the ²³⁹Pu-Be (plutonium-and-beryllium) source emits neutrons in the energy range from 1 to 11 MeV. These seemingly contradictory elements may be combined by using the paraffin moderator, a determined density of thermal neutrons in the paraffin block and a conversion coefficient neutron flux to kerma, not forgetting the simultaneous registration of the photon radiation inseparable from the companion neutron radiation. The main aim of this work is to present the idea of calibration of thermoluminescent detectors that consist of a ⁶Li isotope, by using ²³⁹Pu-Be neutron radiation source. Material and Methods In this work, MTS-6 and MTS-7 thermoluminescent detectors and a plutonium-and-beryllium (²³⁹Pu-Be) neutron source were used. Paraffin wax fills the block, acting as a moderator. The calibration idea was based on the determination of dose equivalent rate based on the average kerma rate calculated taking into account the empirically determined function describing the density of thermal neutron flux in the paraffin block and a conversion coefficient neutron flux to kerma. Results The calculated value of the thermal neutron flux density was 1817.5 neutrons/cm²/s and the average value of kerma rate determined on this basis amounted to 244 μGy/h, and the dose equivalent rate 610 μSv/h. The calculated value allowed for the assessment of the length of time of exposure of the detectors directly in the paraffin block. Conclusions The calibration coefficient for the used batch of detectors is (6.80±0.42)×10⁻⁷ Sv/impulse. Med Pr 2017;68(6):705–710

Journal

Year

Volume

68

Issue

6

Pages

705-710

Physical description

Dates

published
2017

Contributors

  • University of Lodz, Łódź, Poland (Faculty of Physics and Applied Informatics, Department of Nuclear Physics and Radiation Safety)
  • University of Lodz, Łódź, Poland (Faculty of Physics and Applied Informatics, Department of Nuclear Physics and Radiation Safety)
  • University of Lodz, Łódź, Poland (Faculty of Physics and Applied Informatics, Department of Nuclear Physics and Radiation Safety)

References

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
2164008

YADDA identifier

bwmeta1.element.ojs-doi-10_13075_mp_5893_00650
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.