Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2023 | 1 | 5-13

Article title

Role of genetic modification of the PNPLA3 gene in predicting metabolically unhealthy obesity and metabolic associated fatty liver disease in children

Content

Title variants

Languages of publication

Abstracts

EN
Introduction and aim. Single nucleotide variants (SNV) of the patatin‐like phospholipase domain‐containing protein 3 (PNP-LA3) gene play an important role in hepatic lipid remodeling and lipogenesis de novo, which is associated with the development of metabolically unhealthy obesity (MUO) and metabolic associated fatty liver disease (MAFLD). The aim of the study was to define the contribution of SNV PNPLA3 gene to the development of MUO, complicated by MAFLD in children. Material and methods. 200 obese children aged 6-18 years were examined. The main group (n=118) was represented by children with MUO. The control group (n=82) consolidated of children with metabolically healthy obesity (MHO). Whole genome sequencing (CeGat) was performed in 31 children of the main and 21 children of the control group. Results. Among obese children, 14 variants of SNV PNPLA3 (rs139051, rs34179073, rs2294918, rs139047, rs779127153, rs2076212, rs738409, rs738408, rs4823173, rs2072906, rs2076213, rs141106484, rs138736228) were identified, including SNV PNPLA3 g.44322818, not described in the dbSNP core database. The role of the following SNV PNPLA3 genotypes in the development of MUO complicated by MAFLD was revealed: rs738409 C/G (Relative risk (RR)=1.71); rs738408 C/T (RR=1.71); rs4823173 G/A (RR=1.57); rs2072906 A/G (RR=1.57) with Sensitivity (Se)=0.63 and Specificity (Sp)=0.72. Conclusion. The contribution to the development of MUO complicated by MAFLD in children is made by the linked association of genotypes: rs738409 C/G, rs738408 C/T, rs4823173 G/A and rs2072906 A/G out of 14 PNPLA3 SNVs diagnosed by us.

Year

Issue

1

Pages

5-13

Physical description

Dates

published
2023

Contributors

  • Department of Pediatrics 1 and Medical Genetics, Dnipro State Medical University, Dnipro, Ukraine
author
  • Department of Pediatrics 1 and Medical Genetics, Dnipro State Medical University, Dnipro, Ukraine

References

  • Chakravarthy MV, Neuschwander-Tetri BA. The metabolic basis of nonalcoholic steatohepatitis. Endocrinol Diabetes Metab. 2020;3(4):e00112. doi: 10.1002/edm2.112.
  • Eslam M, Sanyal AJ, George J. International Consensus Panel. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology. 2020;158(7):1999–2014.e1. doi: 10.1053/j. gastro.2019.11.312.
  • Abaturov А, Nikulina А. Taste preferences and obesity. Pediatr Pol. 2022;97(1):1-6. doi. org/10.5114/ polp.2022.11513.
  • Fagerberg L, Hallström BM, Oksvold P, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 2014;13(2):397-406. doi: 10.1074/mcp.M113.035600.
  • Johansson LE, Johansson LM, Danielsson P, et al. Genetic variance in the adiponutrin gene family and childhood obesity. PLoS One. 2009;4(4):e5327. doi: 10.1371/journal. pone.0005327.
  • Pingitore P, Romeo S. The role of PNPLA3 in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(6):900-906. doi: 10.1016/j.bbalip.2018.06.018.
  • Gloudemans MJ, Balliu B, Nachun D et al. Integration of genetic colocalizations with physiological and pharmacological perturbations identifies cardiometabolic disease genes. Genome Med. 2022;14:31. doi: 10.1186/s13073-02201036-8.
  • Vujkovic M, Ramdas S, Lorenz KM, et al. A trans-ancestry genome-wide association study of unexplained chronic ALT elevation as a proxy for nonalcoholic fatty liver disease with histological and radiological validation. medRxiv. 2021:2020-2012. doi: 10.1101/2020.12.26.20248491.
  • Eslam M, Valenti L, Romeo S. Genetics and epigenetics of NAFLD and NASH: Clinical impact. J Hepatol. 2018:68(2);268-279. doi: 10.1016/j.jhep.2017.09.003.
  • Hotta K, Yoneda M, Hyogo H, et al. Association of the rs738409 polymorphism in PNPLA3 with liver damage 12 European Journal of Clinical and Experimental Medicine 2023; 21 (1): 5–13 and the development of nonalcoholic fatty liver disease. BMC Med Genet. 2010;11:172. doi: 10.1186/1471-235011-172.
  • Gabriel-Medina P, Ferrer-Costa R, Rodriguez-Frias F, et al. Influence of Type 2 Diabetes in the Association of PNPLA3 rs738409 and TM6SF2 rs58542926 Polymorphisms in NASH Advanced Liver Fibrosis. Biomedicines. 2022;10(5):1015. doi: 10.3390/biomedicines10051015
  • Xia M, Ma S, Huang Q, et al. NAFLD-related gene polymorphisms and all-cause and cause-specific mortality in an Asian population: the Shanghai Changfeng Study. Aliment Pharmacol Ther 2022;55(6):705-721. doi: 10.1111/ apt.16772.
  • Wagner C, Hois V, Pajed L, et al. Lysosomal acid lipase is the major acid retinyl ester hydrolase in cultured human hepatic stellate cells but not essential for retinyl ester degradation. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(8):158730. doi: 10.1016/j.bbalip.2020.158730.
  • Basu Ray S. PNPLA3-I148M: a problem of plenty in non-alcoholic fatty liver disease. Adipocyte. 2019;8(1):201208. doi: 10.1080/21623945.2019.1607423.
  • Yuan S, Liu H, Yuan D, et al. PNPLA3 I148M mediates the regulatory effect of NF-kB on inflammation in PA-treated HepG2 cells. J Cell Mol Med. 2020;24(2):1541-1552. doi: 10.1111/jcmm.14839.
  • Smagris E, BasuRay S, Li J, et al. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology. 2015;61(1):108-118. doi: 10.1002/hep.27242.
  • Stasinou E, Argyraki M, Sotiriadou F, Lambropoulos A, Fotoulaki M. Association between rs738409 and rs2896019 single-nucleotide polymorphisms of phospholipase domain-containing protein 3 and susceptibility to nonalcoholic fatty liver disease in Greek children and adolescents. Ann Gastroenterol 2022;35(3):297-306. doi: 10.20524/aog.2022.070.
  • Mann JP, Pietzner M, Wittemans LB, et al. Insights into genetic variants associated with NASH-fibrosis from metabolite profiling. Hum Mol Genet. 2020;29(20):3451-3463. doi: 10.1093/hmg/ddaa162.
  • Namjou B, Lingren T, Huang Y, et al. GWAS and enrichment analyses of non-alcoholic fatty liver disease identify new trait-associated genes and pathways across eMERGE Network. BMC Med. 2019;17(1):135. doi: 10.1186/s12916019-1364-z.
  • Ragab HM, Attaby FA, El Maksoud NA, Amin MA, Abdelhakim HK, Elaziz WA. Association between rs738409 and rs139051 SNPs of the PNPLA3 gene and the presence of NAFLD. Egypt J Chem. 2022;65(9):127-137. doi: 10.21608/ejchem.2022.110164.5055.
  • Zusi C, Mantovani A, Olivieri F, et al. Contribution of a genetic risk score to clinical prediction of hepatic steatosis in obese children and adolescents. Dig Liver Dis. 2019;51(11):1586-1592. doi: 10.1016/j.dld.2019.05.029.
  • Bale G, Mitnala S, Padaki NR, et al. I148M variant of PNPLA3-gene is not associated with metabolic syndrome in patients with NAFLD in the Indian ethnicity. Hum Gene. 2022;33:201073. doi: 10.1016/j.humgen.2022.201073.
  • Lee KJ, Moon JS, Kim NY, Ko JS. Effects of PNPLA3, TM6SF2 and SAMM50 on the development and severity of non-alcoholic fatty liver disease in children. Pediatr Obes. 2022;17(2):e12852. doi: 10.1111/ijpo.12852.
  • DiStefano JK, Kingsley C, Craig Wood G, et al. Genome-wide analysis of hepatic lipid content in extreme obesity. Acta Diabetol. 2014;52(2):373-382. doi: 10.1007/s00592014-0654-3
  • Young KA, Palmer ND, Fingerlin TE, et al. Genome-Wide Association Study Identifies Loci for Liver Enzyme Concentrations in Mexican Americans: The GUARDIAN Consortium. Obesity. 2019;27(8):1331-1337. doi: 10.1002/ oby.22527.
  • Wang Z, Budhu AS, Shen Y, et al. Genetic susceptibility to hepatocellular carcinoma in chromosome 22q13.31, findings of a genome-wide association study. JGH Open. 2021;5(12):1363-1372. doi: 10.1002/jgh3.12682.
  • Cuschieri S. The STROBE guidelines. Saudi J Anaesth. 2019;13(Suppl 1):31-34. doi: 10.4103/sja.SJA_543_18.
  • Peplies J, Börnhorst C, Günther K et al. IDEFICS consortium. Longitudinal associations of lifestyle factors and weight status with insulin resistance (HOMA-IR) in preadolescent children: the large prospective cohort study IDEFICS. Int J Behav Nutr Phys Act. 2016;13(1):97. doi: 10.1186/s12966-016-0424-4.
  • American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care Jan. 2019, 42 (Suppl. 1): 13-28; doi: 10.2337/dc19-S002.
  • Elkins C, Fruh Sh, Jones L et al. Clinical Practice Recommendations for Pediatric Dyslipidemia. J Pediatr Health Care. 2019;33(4):494-504. doi: 10.1016/j.pedhc.2019.02.009.
  • Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/ AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/ NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/ American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139(25):e1082-e1143. doi: 10.1161/CIR.0000000000000625.
  • Flynn JT, Kaelber DC, Baker-Smith CM, et al. Subcommittee on screening and management of high blood pressure in children. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics. 2017;140(3):e20171904. doi: 10.1542/peds.2017-1904.
  • Alberti KG, Zimmet P, Shaw J. International Diabetes Federation: a consensus on Type 2 diabetes prevention. Diabet Med. 2007;24(5):451-463. doi: 10.1111/j.14645491.2007.02157. 13Role of genetic modi cation of the PNPLA3 gene in predicting metabolically unhealthy obesity and metabolic associated fatty liver disease…
  • Weihe P, Weihrauch-Blüher S. Metabolic Syndrome in Children and Adolescents: Diagnostic Criteria, Therapeutic Options and Perspectives. Curr Obes Rep. 2019;8(4):472-479. doi: 10.1007/s13679-019-00357-x.
  • McCarthy HD, Cole TJ, Fry T et al. Body fat reference curves for children. Int J Obes (Lond). 2006;30(4):598-602. doi: 10.1038/sj.ijo.0803232.
  • Schwandt P, von Eckardstein A, Haas G-M. Percentiles of Percentage Body Fat in German Children and Adolescents: An International Comparison. Int J Prev Med. 2012;3(12):846-852. doi: 10.4103/2008-7802.104855.
  • de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660-667. doi: 10.2471/blt.07.043497.
  • Vos MB, Abrams SH, Barlow SE, et al. NASPGHAN Clinical Practice Guideline for the Diagnosis and Treatment of Nonalcoholic Fatty Liver Disease in Children: Recommendations from the Expert Committee on NAFLD (ECON) and the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN). J Pediatr Gastroenterol Nutr. 2017;64(2):319-334. doi: 10.1097/ MPG.0000000000001482.
  • Amernia B, Moosavy SH, Banookh F, et al. FIB-4, APRI, and AST/ALT ratio compared to FibroScan for the assessment of hepatic fibrosis in patients with non-alcoholic fatty liver disease in Bandar Abbas, Iran. BMC Gastroenterol. 2021;21(1):453. doi: 10.1186/s12876-021-02038-3.
  • Yang LY, Fu J, Peng XF, et al. Validation of aspartate aminotransferase to platelet ratio for diagnosis of liver fibrosis and prediction of postoperative prognosis in infants with biliary atresia. World J Gastroenterol. 2015;21(19):58935900. doi: 10.3748/wjg.v21.i19.5893.
  • Amato MC, Giordano C, Pitrone M, Galluzzo A. Cut-off points of the visceral adiposity index (VAI) identifying a visceral adipose dysfunction associated with cardiometabolic risk in a Caucasian Sicilian population. Lipids Health Dis. 2011;10:183. doi: 10.1186/1476-511X-10-183.
  • Vizzuso S, Del Torto A, Dilillo D, et al. Visceral Adiposity Index (VAI) in Children and Adolescents with Obesity: No Association with Daily Energy Intake but Promising Tool to Identify Metabolic Syndrome (MetS). Nutrients. 2021;13(2):413. doi: 10.3390/nu13020413.
  • Hongshan J, Rong L, Shou-Wei D et al. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. In BMC Bioinformatics. 2014;15:182. doi: 10.1186/1471-2105-15-182.
  • Li H, Durbin R. Fast and accurate short read alignment with Burrows‐Wheeler transform. Bioinformatics. 2009;25(14):1754–1760. doi: 10.1093/bioinformatics/ btp324.
  • Mose LE, Wilkerson MD, Hayes DN, et al. ABRA: improved coding indel detection via assembly-based realignment. Bioinformatics. 2014;30(19):2813-2815. doi: 10.1093/bioinformatics/btu376.
  • Deelen P, Bonder MJ, van der Velde KJ, et al. Genotype harmonizer: automatic strand alignment and format conversion for genotype data integration. BMC Res Notes. 2014;7:901. doi: 10.1186/1756-0500-7-901.
  • Saverymuttu SH, Joseph AE, Maxwell JD. Ultrasound scanning in the detection of hepatic fibrosis and steatosis. Br Med J (Clin Res Ed). 1986;292(6512):13-15. doi: 10.1136/bmj.292.6512.13.
  • Mohr DL, Wilson WJ, Freund RJ. Statistical Methods. Academic Press is an imprint of Elsevier. 2022:784.
  • Murag S, Ahmed A, Kim D. Recent epidemiology of nonalcoholic fatty liver disease. Gut Liver. 2021;15:206-216. doi: 10.5009/gnl20127.
  • Kozlitina J. Genetic Risk Factors and Disease Modifiers of Nonalcoholic Steatohepatitis. Gastroenterol Clin North Am. 2020;49(1):25-44. doi: 10.1016/j.gtc.2019.09.001.
  • Luo J-, Cao H-, Yang R-, Zhang R-, Pan Q. PNPLA3 rs139051 is associated with phospholipid metabolite profile and hepatic inflammation in nonalcoholic fatty liver disease. World J Clin Cases. 2018;6(10):355-364. doi: 10.12998/WJCC.V6.I10.355.
  • Najafi M, Rafiei A, Ghaemi A, Hosseini V. Association between rs738408, rs738409 and rs139051polymorphisms in PNPLA3 gene and non-alcoholic fatty liver disease. Gene Rep. 2022;26:101472. doi: 10.1016/j.genrep.2021.101472.
  • Gerhard GS, Chu X, Wood GC, et al. Next-generation sequence analysis of genes associated with obesity and nonalcoholic fatty liver disease-related cirrhosis in extreme obesity. Hum Hered. 2013;75(2-4):144-151. doi: 10.1159/000351719.
  • Pan Q, Zhang RN, Wang YQ, et al. Linked PNPLA3 polymorphisms confer susceptibility to nonalcoholic steatohepatitis and decreased viral load in chronic hepatitis B. World J Gastroenterol. 2015;21(28):8605-8614. doi: 10.3748/wjg.v21.i28.8605.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
2207159

YADDA identifier

bwmeta1.element.ojs-doi-10_15584_ejcem_2023_1_1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.