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Abstract: The main objective of this paper was to estimate non-parametrically the quantiles of 

a conditional distribution based on the single-index model in the censorship model when the sample is 

considered as independent and identically distributed (i.i.d.) random variables. First of all, a kernel type 

estimator for the conditional cumulative distribution function (cond-cdf) is introduced. Then the paper 

gives an estimation of the quantiles by inverting this estimated cond-cdf, the asymptotic properties are  
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stated when the observations are linked with a single-index structure. Finally, a simulation study was 

carried out to evaluate the performance of this estimate. 

Keywords: censored data, functional data, kernel estimator, normality, non-parametric estimation, 

small ball probability. 

1. Introduction 

The estimation of a conditional model, because of the variety of its application 

possibilities, is an important question in statistics. This subject can (and must) be 

approached from several angles depending on the complexity of the problem posed: 

the possible presence of censorship in the observed sample (a common phenomenon 

in medical applications for example), the possible presence of dependence between the 

observed variables (e.g. a common phenomenon in seismological, and econometric 

applications), and the presence of explanatory variables. Many techniques have been 

studied in the literature to deal with these different situations, but they all only deal 

with real or multi-dimensional explanatory random variables. 

The technical progress made in the collection and storage of data make it possible 

to have more and more often functional statistical data: curves, images, tables, etc. 

These data are modeled as being the realizations of a random variable taking its values 

in an abstract space of infinite dimension, and the scientific community has naturally 

been interested in recent years in the development of statistical tools capable of 

processing this type of sample. 

Thus, the estimation of conditional models in the presence of a functional 

explanatory variable from a simple index regression model is a topical question to 

which this article proposes to provide a first element of answer. After a brief 

bibliographic overview presented in Section 1, the conditional model for a functional 

explanatory variable is presented in Section 2, to which this work proposes an 

extension of the simple index model, when considering an explanatory random 

variable with values in an infinite dimensional space. Such a model was designated 

generically by a simple functional index model. Naturally, these methods have some 

drawbacks, and to overcome these, an alternative approach is naturally provided by 

semi-parametric modelling which supposes the introduction of a parameter on the 

regressors – these models are known in the literature as simple index models, which 

have two major advantages. First it is possible to generalise existing models, and then 

to remedy the problems of the scourge of dimension. These are single revealing 

direction models (or simple functional index models), and have the advantage of 

specifying the model to a minimum. The authors used a non-parametric link function 

having previously determined linear combinations of explanatory variables which 

contain the maximum information, thus alleviating the scourge of dimension. The idea 

of these models, in the case of conditional density estimation or regression, consists in 
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reducing to covariates of a dimension smaller than the dimension of the space of 

variables, thus making it possible to overcome the problem of the scourge 

of dimension. These models make it possible to obtain a compromise between 

a parametric model, generally too restrictive, and a non-parametric model where the 

speed of convergence of the estimators deteriorates quickly in the presence of a large 

number of explanatory variables, for example, in the partially linear model one 

decomposes the quantity which one seeks to estimate, in a linear part and a functional 

part. This last quantity does not pose an estimation problem since it is expressed as 

a function of the explanatory variables of the defined dimension, thus avoiding the 

problems linked to the scourge of dimension.  

This work proposes an extension of the simple index model when considering an 

explanatory random variable with values in an infinite dimensional space. Such 

a model is generically referred to as a model with a simple functional index. The main 

contribution of this paper lies in a double generalisation of the simple index model. On 

the one hand, the authors place themselves in a framework of functional random 

variables, and on the other, introduce hypotheses on the law of the explanatory random 

variable that are less restrictive than those usually used in the vector framework. First 

point convergence results were established. The non-parametric method only 

considers regularity assumptions. Naturally, these methods have some drawbacks, 

therefore an alternative approach was provided by semi-parametric modelling which 

supposes the introduction of a parameter on the regressors, these models are known in 

the literature as simple index models, with two major advantages which, firstly makes 

it possible to generalise the already existing models, and then to remedy the problems 

of the scourge of the dimension. 

Non-parametric methods based on convolution kernel ideas, which are known to 

perform well in model estimation problems (conditional or not), are thus widely used 

in non-parametric estimation of conditional models. A wide range of literature in this 

area is provided by the bibliographic reviews of Singpurwallam and Wong (1983), 

Hassani, Sarda and Vieu (1986), Izenman (1991), Gefeller and Michels (1992) and 

Pascu and Vaduva (2003). The immediate consequence of progress in data collection 

processes is to offer statisticians the opportunity to increasingly have observations of 

functional variables. Ramsay and Silverman (2005), and Ferraty and Vieu (2006) 

proposed a wide range of statistical methods, parametric or non-parametric, recently 

developed to deal with various estimation problems involving functional random 

variables (i.e. with values in a space of infinite dimension). To date, such statistical 

developments for directionally revealing functional variables occurred rarely in this 

context, despite the obvious potential for their application. In practice, in medical 

applications in particular, one may be in the presence of censored variables. This 

problem is usually modelled by considering positive variable 𝐶 called (censorship), 

and the observed random variables. Such censoring models have been extensively 

studied in the literature on real and multidimensional random variables, and in non-

parametric frameworks, particularly in kernel techniques (see van Keilegom and 
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Veraverbeke, 2001; Lecoutre and Ould-Saïd, 1995; Padgett, 1988; Tanner and Wong, 

1983), for not a necessarily exhaustive sample of the literature in this field). 

Other authors have been interested in the estimation of conditional models from 

censored or truncated observations (see, e.g. Khardani et al., 2010, 2011, 2012; 

Lemdani, Ould-Saïd, and Poulin, 2009; Liang and Una-Álvarez, 2010; Ould Saïd and 

Tatachak, 2011; Ould Saïd and Djabrane, 2011). Many statistical applications had to 

involve a variable of duration denoted 𝑇, designating the time elapsed until the 

occurrence of the event of interest. These types of variables are observed in various 

fields such as in reliability (first failure for a machine, lifespan of a material, etc.), in 

medicine (death or remission for a patient, etc.) in economics and insurance (duration 

of unemployment, time between two successive breakdowns of a device, etc.). 

A specificity of these models is the existence of incomplete observations, for which 

the variable of interest is not completely observed for all the data in the sample. This 

work studied models where the duration is likely to be right-censored by then calling 

on techniques adapted to this type of context to take into account the censored 

observations without losing too much information on 𝑇. This study was only interested 

in the case of right-censored random data. This corresponds to the model frequently 

used in practice. For example, during a therapeutic trial this can be caused by a loss of 

sight (the patient leaves the study in progress), the stopping or the change of 

a treatment, in which case the patients are excluded from the study, or the study ends 

when some individuals have not experienced the event.  

The well-known functional regression model with scalar response postulates 

a relation between real random variable 𝑌 and functional random variable 𝑋. 

A large class of flexible and useful tools for modelling regression operator r is 

presented by the simple functional index model. This consists in putting a semi- 

-parametric dimension reduction approach on the model by introducing functional 

parameter  𝜃. The main idea was to find the direction of 𝜃 on which the projection of 

covariate X captures the most information about answer Y. The considered model was 

a single revealing direction model (or simple functional index model). This approach 

arouses various interests. Firstly, to avoid the problems due to dimensionality that can 

be encountered in the purely non-parametric approach (Ferraty and Vieu, 2002)). The 

non-parametric estimation of the regression would no longer be affected by the scourge 

of dimension since it is a dependent function of 𝜃 which is of dimension 1. Finally, the 

estimation of functional parameter 𝜃 provides an easily interpretable tool. The simple 

index approach is well-known in the standard multivariate context for its interest in its 

predictive abilities, and for its interpretability attested by various works that appeared 

over the past two decades (Härdle, Hall, and Ichumira, 1993; Xia and Härdle, 2006). 

Extensions to the functional framework of such functional semi-parametric 

methodology have been the subject of extensive study in the literature. The first work 

linking the single index model and the non-parametric regression model for functional 

variables is made (Ferraty, Peuch, and Vieu, 2003) in the case of independent 

observations, and they established almost complete convergence. Their results were 
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extended to dependent cases by (Aït-Saidi, Ferraty, and Kassa, 2005). Aït-Saidi, 

Ferraty, Kassa, and Vieu (2008) studied the case where the simple functional index is 

unknown; they proposed an estimator of this parameter based on the cross-validation 

technique. These results were extended to the multiple functional index models by 

Bouraine, Aït-Saidi, Ferraty and Vieu (2010). Ferraty, Park and Vieu (2011) proposed 

a new estimator of this parameter based on the idea of functional derivative estimation; 

the problem of the single index model to the functional data where the observations 

are censored does not seem to have been considered much in the literature, which 

makes this paper one of the more recent research work on the subject. 

Moreover, the analysis of functional data being a branch of statistics that has been 

the subject of several recent studies and developments, this paper makes it possible to 

adapt the functional conditional models to censored data based on a single functional 

index structure. 

The rest of the paper is arranged as follows: Section 2 presents the non-parametric 

estimator of the functional conditional model when the data are censored. Section 3 

poses useful assumptions for the theoretical study, after which the point-wise almost 

complete convergence and the uniform almost complete convergence of the kernel 

estimator for these models (with rates) are established. Section 5 presents a simulation 

study in order to illustrate some properties of the resulting estimator. 

In the censoring case, instead of lifetime T, the authors observed the censored 

lifetime of the items under study. That is, assuming that (𝑇𝑘)𝑘≥1 is a stationary 

sequence of lifetimes which satisfy some kind of dependency and (𝐶𝑘)𝑘≥1 is 

a sequence of i.i.d censoring rv with common unknown continuous G, where 𝑌𝑘 =
min{𝑇𝑘, 𝐶𝑘} and 𝛿𝑘 = 1𝑇𝑘≤𝐶𝑘. 

To ensure the identifiability of the model, it was supposed that (𝑇𝑘)𝑘 are 

independent of (𝐶𝑘)𝑘. Let {(𝑌𝑘 , 𝛿𝑘,𝑋𝑘)𝑘} be a sequence of strictly stationary random 

vectors where 𝑋𝑘𝑘≥1is valued in infinite dimensional semi-metric vector space, 

and  𝑌𝑘  is real valued. To follow the convention in biomedical studies and as indicated 

before, the study assumed that (𝐶𝑘)𝑘≥1 and {(𝑋𝑘 , 𝑇𝑘)𝑘≥1} are independent; this 

condition is plausible whenever the censoring is independent of the patient’s modality. 

Furthermore, this condition permits to get an unbiased Kernel estimator. 

2. The model and the estimates 

2.1. The functional nonparametric framework 

Consider a random pair (𝑋, 𝑇) where T is valued in ℝ and X is valued in some infinite 

dimensional Hilbertian space ℋwith scalar product <·, ·>, and consider that, 

given (𝑋𝑘 , 𝑇𝑘)𝑘=1,…,𝑛 is the statistical sample of pairs which are identically distributed 

like (𝑋, 𝑇), but not necessarily independent. Hence for thg, X is called a functional 
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random variable f.r.v. Let x be fixed in ℋ and let Ψ(𝜃, 𝑡, 𝑥) be the conditional 

cumulative distribution function (cond-cdf) of T given <θ, X> = <θ, x> specifically: 

∀𝑡 ∈ ℝ, Ψ (θ, t, x) = ℙ(T ≤  t| < θ, X> = <θ, x>). 

By saying that, one is implicitly assuming the existence of a regular version of the 

conditional distribution T given <θ, X> = <θ, x>. 

In this infinite dimensional purpose, the term functional nonparametric was used, 

where the word functional refers to the infinite dimensionality of the data and where 

non-parametric refers to the infinite dimensionality of the model. Such functional non-

parametric statistics can also be called doubly infinite dimensional (see Ferraty and 

Vieu, 2003). The authors also used the term operational statistics since the target 

object to be estimated (the cond-cdf  Ψ(𝜃, . , 𝑥)) can be viewed as a non-linear operator.  

2.2. The estimators 

The kernel estimator Ψ𝑛(𝜃, . , 𝑥) of  Ψ(𝜃, . , 𝑥) is presented as follows: 

Ψ𝑛(𝜃, 𝑡, 𝑥) =
∑ Γ(𝑎𝑛

−1(< 𝑥 − 𝑋𝑘 , 𝜃 >))Ω(𝑏𝑛
−1(𝑡 − 𝑇𝑘))

𝑛
𝑘=1

∑ Γ(𝑎𝑛
−1(< 𝑥 − 𝑋𝑘 , 𝜃 >))

𝑛
𝑘=1

, (2.1) 

where Γ is a kernel function, Ωa cumulative distribution function and 𝑎𝑛(resp. 𝑏𝑛) 

a sequence of positive real numbers. Note that using similar ideas, Roussas (1969) 

introduced some related estimates but in a special case when X is real, while Samanta 

(1989) produced previously an asymptotic study. 

Such an estimator is unique as soon as Ω is an increasing continuous function. This 

approach was largely used in cases where variable X is of a finite dimension (see e.g. 

Whang and Zhao (1999), Cai (2002), Zhou and Liang (2003), and Gannoun, Saracco 

and Yu (2003)). 

In practice, particularly in medical applications, one can be deal with censored 

variables. This problem is usually modelled by considering positive C variable– 

censorship, and the observed random variables are not couples (𝑇𝑘 , 𝑋𝑘), but rather 

(𝑌𝑘 , 𝛿𝑘,𝑋𝑘), where 𝑌𝑘 = min{𝑇𝑘, 𝐶𝑘} and 𝛿𝑘 = 1𝑇𝑘≤𝐶𝑘. The following calculations 

use the notations Ψ1
𝑋 and 𝜓1

𝑋to describe the conditional distribution function and 

conditional density C, knowing covariate X. 

Such censorship models have been amply studied in the literature on real and 

multi-dimensional random variables, and in non-parametric frameworks the kernel 

techniques are particularly used (see Tanner and Wong (1983), Padgett (1988), 

Lecoutre and Ould-Saïd (1995) and Van-Keilegom and Veraverbeke (2001), for a not 

necessarily exhaustive sample of literature in this field). 

The objective of this section is to adapt these ideas under functional random 

variable X, and build a kernel type estimator of conditional distribution 
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Ψ(𝜃, . , 𝑥) adapted for censored samples. Thus one can reformulate the expression (2.1) 

as follows: 

Ψ̃(𝜃, 𝑡, 𝑥) =

∑
𝛿𝑘
𝐺̅(𝑌𝑘)

 Γ(𝑎𝑛
−1(< 𝑥 − 𝑋𝑘 , 𝜃 >))Ω(𝑏𝑛

−1(𝑡 − 𝑇𝑘))
𝑛
𝑘=1

∑ Γ(𝑎𝑛
−1(< 𝑥 − 𝑋𝑘 , 𝜃 >))

𝑛
𝑘=1

. (2.2) 

In practice 𝐺̅(. ) = 1 − 𝐺(. ) is unknown, hence it is impossible to use the 

estimator (2.2). Next, the authors replaced 𝐺̅(. ) by its Kaplan and Meier (1958) 

estimate 𝐺̅𝑛(. ) given by 

𝐺̅𝑛(𝑡) = 1 − 𝐺𝑛(𝑡) = {
∏(1−

1 − 𝛿(𝑘)

𝑛 − 𝑘 + 1
)

1
{𝑌(𝑘)≤𝑡}

𝑛

𝑖=1

, 𝑖𝑓 𝑡 ≤ 𝑌(𝑛),

0, 𝑖𝑓 𝑡 ≥ 𝑌(𝑛),

 

where 𝑌(1) < 𝑌(2) < ⋯ < 𝑌(𝑛)are the order statistics of 𝑌𝑘  and 𝛿(𝑘) is the non- 

-censoring indicator corresponding to 𝑌(𝑘). 

Therfore the feasible estimator of conditional distribution function Ψ(𝜃, . , 𝑥) is 
given by 

Ψ̂(𝜃, 𝑡, 𝑥) =

∑
𝛿𝑘
𝐺̅(𝑌𝑘)

 Γ(𝑎𝑛
−1(< 𝑥 − 𝑋𝑘 , 𝜃 >))Ω(𝑏𝑛

−1(𝑡 − 𝑇𝑘))
𝑛
𝑘=1

∑ Γ(𝑎𝑛
−1(< 𝑥 − 𝑋𝑘 , 𝜃 >))

𝑛
𝑘=1

. (2.3) 

2.3. Assumptions on the functional variable 

Let Nx be a fixed neighbourhood of x in ℋ and let Bθ(x,h) be the sphere of center x and 

radius h, namely Bθ(x,h) = {f ∈ ℋ: 0 <| < x −f,θ>| < h} and 𝑆ℝis a fixed compact of ℝ+. 

For any df Λ, let 𝜏Λ ≔ 𝑠𝑢𝑝{𝑡, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 Λ(𝑡) < 1} and 𝑆ℝbe its support’s right 

endpoint. Let S be a compact set such that 𝜗𝜃(𝛾, 𝑥) ∈ 𝑆 ∪ (−∞, 𝜏], where 𝜏 <
𝑚𝑖𝑛(𝜏𝐺 , 𝜏𝐹). Assume that (𝐶𝑘)𝑘≥1 are independent and letus consider the following 

hypotheses: 

(H1): ℙ(𝑋 ∈  𝐵𝜃(𝑥, ℎ𝐾)) =:𝜑𝜃,𝑥(ℎ𝐾) > 0; 𝜑𝜃,𝑥(ℎ𝐾) ⟶  0 asℎ𝐾 →  0. 

2.4. The non-parametric model 

As usual in non-parametric estimation, it issupposed that the cond-cdf  Ψ(𝜃, . . . , 𝑥) 
verifies some smoothness constraints. Let 𝛼1and 𝛼2be two positive numbers; such that: 

(H2): ∀(𝑥1, 𝑥2) ∈ 𝑁𝑥 × 𝑁𝑥 , ∀(𝑡1, 𝑡2) ∈ 𝑆ℝ × 𝑆ℝ 

(i) |Ψ(𝜃, 𝑡1, 𝑥1) − Ψ(𝜃, 𝑡2, 𝑥2)| ≤ 𝐶𝜃,𝑥(‖𝑥1 − 𝑥2‖
𝛼1 + |𝑡1 − 𝑡2|

𝛼2), 

(ii) ∫ 𝑡𝜑(𝜃, 𝑡, 𝑥)𝑑𝑡 < ∞for all 𝜃, 𝑥 ∈ ℋ. 
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(H3): Ψ(𝜃, . , 𝑥) is l-times continuously differentiable in some neighbourhood 

of 𝜗𝜃(𝛾, 𝑥). 
(H4): ∀(𝑥1, 𝑥2) ∈ 𝑁𝑥 × 𝑁𝑥 , ∀(𝑡1, 𝑡2) ∈ 𝑆ℝ × 𝑆ℝ 

|Ψ(𝑙)(𝜃, 𝑡1, 𝑥1) − Ψ
(𝑙)(𝜃, 𝑡2, 𝑥2)| ≤ 𝐶𝜃,𝑥(‖𝑥1 − 𝑥2‖

𝛼1 + |𝑡1 − 𝑡2|
𝛼2), 

where for any positive integer l, Ψ(𝑙)(𝜃, 𝑡1, 𝑥1) denotes its l-th derivative 

(i.e .
𝜕𝑙Ψ(𝜃,𝑡,𝑥)

𝜕𝑡𝑙
|
𝑡=𝑧

). 

3. Asymptotic study  

The objective of this section was to adapt these ideas to the framework of a functional 

explanatory variable, and to construct a kernel-type estimator of conditional 

distribution function Ψ(𝜃, 𝑡, 𝑥) suitable for censored samples. The objective was to 

establish almost complete convergence1 of kernel estimator Ψ̂(𝜃, 𝑡, 𝑥) when the 

observed sample is censored. The results presented are accompanied by the data on the 

rate of convergence. In what follows C and C' denote generic strictly positive real 

constants, 𝑎𝑛 (resp. 𝑏𝑛) is a sequence which tends to 0 with 𝑛. 

3.1. Point-wise almost complete convergence 

In addition to the assumptions introduced in Section 2.4, additional conditions are 

needed. The assumptions concern the parameters of the estimator, i.e. Ω,Γ, 𝑎𝑛 and 𝑏𝑛, 

which are not very restrictive. In fact, on the one hand they are rather inherent in the 

estimation problem of  Ψ(𝜃, 𝑡, 𝑥), and on the other, they correspond to the assumptions 

usually made in the context of non-functional variables. More precisely, the authors 

introduce the following conditions which guarantee the good behaviour of estimator 

𝛹̂(𝜃, . , 𝑥): 

(H5): (i)  ∀(𝑡1, 𝑡2) ∈ ℝ
2, |Ω(𝑡1) − Ω(𝑡2)| ≤ 𝐶|𝑡1 − 𝑡2| and ∫|𝑡|𝛼2Ω(1)(𝑡)𝑑𝑡 < ∞, 

where, for all 𝑙 ∈ ℕ⋆, Ω(𝑙)(𝑡) =
𝜕𝑙Ω(𝑧)

𝜕𝑧𝑙
|
𝑧=𝑡

 and lim
𝑛→∞

𝑛𝜍𝑏𝑛 = ∞, for some 𝜍 > 0. 

(ii)  The support of Ω(1) is compact and ∀𝑙 ≥ 𝑗, Ω(𝑙) exists and is bounded. 

(H6): The restriction of Ω to the set {𝑢 ∈ ℝ,Ω(𝑢) ∈ (0,1)} is a strictly increasing 

function. 

(H7): Γ is a positive bounded function with support [0,1]: ∀𝑢 ∈ (0,1), 0 < Γ(𝑢). 

 
1 Remember that a sequence (𝑆𝑛)𝑛∈ℕ of random variables is said to converge almost completely 

to some variable S, 𝜖 > 0, where ∑ ℙ(|𝑆𝑛 − 𝑆| > 𝜖) < ∞𝑛 . This mode of convergence implies both 

almost certain and probabile convergence (see e.g. Bosq and Lecoutre, 1987). 
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Remark 3.1 

1. (H6) ensuresthe existence of  𝜗̂𝜃(𝛾, 𝑥), while (H5) ensures its uniqueness. 

2. (H1) to (H4) and (H7) are standard assumptions for the distribution conditional 

estimation in a single functional index model, adopted by Bouchentouf, 

Djebbouri, Rabhi and Sabri (2014) for i.i.d case. 
 

First observe that (2.3) can be rewritten as: 

Ψ̂(𝜃, 𝑡, 𝑥) =
Ψ̂𝑁(𝜃, 𝑡, 𝑥)

Ψ̂𝐷(𝜃, 𝑥)
. 

Theorem 3.1. Suppose that hypotheses (H1) to (H3), (H5)-(i), (H6) are satisfied 

and if 

𝑙𝑜𝑔 𝑛

𝑛𝜙𝜃,𝑥(𝑎𝑛) 𝑛→∞
→   0, 

then  

𝑠𝑢𝑝
𝑡∈𝑆ℝ

|Ψ̂(𝜃, 𝑡, 𝑥) − Ψ(𝜃, 𝑡, 𝑥)| = 𝒪(𝑎𝑛
𝛼1 + 𝑏𝑛

𝛼2) + 𝒪𝑎.𝑐𝑜. (√
𝑙𝑜𝑔 𝑛

𝑛𝜙𝜃,𝑥(𝑎𝑛)
). 

Proof. Consider now, for 𝑘 = 1,… , 𝑛, and in what follows, denote: 

Γ𝑘(𝜃, 𝑥) = Γ(𝑎𝑛
−1(< 𝑥 − 𝑋𝑘 , 𝜃 >)), Ω𝑘(𝑡) = Ω(𝑏𝑛

−1, (𝑡 − 𝑌𝑘)), 𝐺̅𝑘 = 𝐺̅(𝑌𝑘), 

Ψ̂𝑁(𝜃, 𝑡, 𝑥) =
1

𝑛𝔼(Γ1(𝜃, 𝑥))
∑

𝛿𝑘

𝐺̅𝑛(𝑌𝑘)
Γ𝑘(𝜃, 𝑥)Ω𝑘(𝑡)

𝑛

𝑘=1

, 

Ψ̃𝑁(𝜃, 𝑡, 𝑥) =
1

𝑛𝔼(Γ1(𝜃, 𝑥))
∑

𝛿𝑘

𝐺̅(𝑌𝑘)
Γ𝑘(𝜃, 𝑥)Ω𝑘(𝑡)

𝑛

𝑘=1

, 

Ψ̂𝐷(𝜃, 𝑥) =
1

𝑛𝔼(Γ1(𝜃, 𝑥))
∑ Γ𝑘(𝜃, 𝑥),

𝑛

𝑘=1

𝛥𝑘(𝜃, 𝑥) =
Γ(𝑎𝑛

−1(< 𝑥 − 𝑋𝑘 , 𝜃 >))

𝔼(Γ1(𝜃, 𝑥))
. 

The proof is based on the following decomposition, valid for any 𝑡 ∈ 𝑆ℝ: 

𝑠𝑢𝑝
𝑡∈𝑆ℝ

|Ψ̂(𝜃, 𝑡, 𝑥) − Ψ(𝜃, 𝑡, 𝑥)|  ≤
1

Ψ̂𝐷(𝜃, 𝑥)
𝑠𝑢𝑝
𝑡∈𝑆ℝ

|Ψ̂𝑁(𝜃, 𝑡, 𝑥) − Ψ̃𝑁(𝜃, 𝑡, 𝑥)| 

+
1 

Ψ̂𝐷(𝜃, 𝑥)
𝑠𝑢𝑝
𝑡∈𝑆ℝ

|Ψ̃𝑁(𝜃, 𝑡, 𝑥) − 𝔼Ψ̃𝑁(𝜃, 𝑡, 𝑥)| 

+ 
1

Ψ̂D(𝜃, 𝑥)
𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝔼Ψ̃𝑁(𝜃, 𝑡, 𝑥) − Ψ(𝜃, 𝑡, 𝑥)|  +
Ψ(𝜃, 𝑡, 𝑥)

Ψ̂D(𝜃, 𝑥)
𝑠𝑢𝑝
𝑡∈𝑆ℝ

|1 − Ψ̂D(𝜃, 𝑥)|.  

(3.1) 
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Finally, the proof of this theorem is a direct consequence of the following 

intermediate results. 
Lemma 3.1. Assume that either (H5)-(i) is satisfied together with under conditions 

(H6)-(H7) and if 

(
𝑙𝑜𝑔 𝑙𝑜𝑔𝑛

𝑛
)
1 2⁄

𝑛→∞
→   𝑜(𝜙𝜃,𝑥(𝑎𝑛)), 

then 

𝑠𝑢𝑝
𝑡∈𝑆ℝ

|Ψ̂𝑁
(𝑙)
(𝜃, 𝑡, 𝑥) − Ψ̃𝑁

(𝑙)
(𝜃, 𝑡, 𝑥)| = 𝒪𝑎.𝑠. (

𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛

𝑛
) ,  for  𝑙 ≥ 0 . 

Proof. Let 

|Ψ̂𝑁
(𝑙)
(𝜃, 𝑡, 𝑥) − Ψ̃𝑁

(𝑙)
(𝜃, 𝑡, 𝑥)| ≤ 

𝑏𝑛
−𝑙

𝑛𝔼(𝛤1(𝜃, 𝑥))
∑ |

𝛿𝑘

𝐺̅𝑛(𝑌𝑘)
Γ𝑘(𝜃, 𝑥)Ω𝑘

(𝑙)(𝑡) −
𝛿𝑘

𝐺̅(𝑌𝑘)
Γ𝑘(𝜃, 𝑥)Ω

(𝑙)(𝑡)|

𝑛

𝑘=1

≤
𝑏𝑛
−𝑙

𝑛𝔼(Γ1(𝜃, 𝑥))
∑|𝛿𝑘Γ𝑘(𝜃, 𝑥)Ω𝑘

(𝑙)(𝑡)| |
1

𝐺̅𝑛(𝑌𝑘)
−

1

𝐺̅(𝑌𝑘)
|

𝑛

𝑘=1

 ≤
𝑏𝑛
−𝑙

𝑛𝜙𝜃,𝑥(𝑎𝑛)

𝐶

𝐺̅𝑛(𝜏𝐹)𝐺̅(𝜏𝐹)
𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝐺̅𝑛(𝑡) − 𝐺̅(𝑡)|
1

𝑛
∑𝛿𝑘|Γ𝑘(𝜃, 𝑥)Ω𝑘

(𝑙)(𝑡)|

𝑛

𝑘=1

.

 

In conjunction with the SLLN and the LIL on the censoring law (see Deheuvels and 

Einmahl, 2000), hypotheses (H1), (H6) and (
𝑙𝑜𝑔 𝑙𝑜𝑔𝑛

𝑛
)
1 2⁄
= 𝑜(𝜙𝜃,𝑥(𝑎𝑛)) complete the 

proof. 

The following lemma shows the asymptotic bias term of Ψ̃𝑁(𝜃, 𝑡, 𝑥) and Ψ̂D(𝜃, 𝑥) 
as 𝑛 tends to infinity. 

Lemma 3.2. Under hypotheses (H1), (H3) and (H5)-(i), and 𝑛 → ∞ 

𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝔼[Ψ̃𝑁(𝜃, 𝑡, 𝑥)] − Ψ(𝜃, 𝑡, 𝑥)| = 𝒪(𝑎𝑛
𝛼1 + 𝑏𝑛

𝛼2). 

Proof. The asymptotic behaviour of bias term is standard; hypotheses (H1), (H6) 

and (
𝑙𝑜𝑔 𝑙𝑜𝑔𝑛

𝑛
)
1
2⁄
= 𝑜(𝜙𝜃,𝑥(𝑎𝑛)) complete the proof. 

𝔼[Ψ̃𝑁(𝜃, 𝑡, 𝑥)] − Ψ(𝜃, 𝑡, 𝑥) =
1

𝔼(Γ1(𝜃, 𝑥))
𝔼(

𝛿𝑘

G̅(𝑌𝑘)
Γk(𝜃, 𝑥)Ω𝑘(𝑡)) − Ψ(𝜃, 𝑡, 𝑥)

=
1

𝔼(Γ1(𝜃, 𝑥))
𝔼(

𝛿𝑘

𝐺̅(𝑌𝑘)
Γ𝑘(𝜃, 𝑥)[𝔼(Ω𝑘(𝑡)|<  𝜃, 𝑋1 >)]) −Ψ(𝜃, 𝑡, 𝑥),

 (3.2) 
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integrating by parts, and using the fact that Ω is cdf and the use a double conditioning 

with respect to 𝑇1, one can easily obtain 

𝐼 =  𝔼(
𝛿𝑘

G̅(𝑌𝑘)
Ω𝑘(𝑡)|<  𝜃, 𝑋1 >) =  𝔼(𝔼 [

1𝑇1≤𝐶1
G̅(𝑇1)

Ω (
𝑡 − 𝑇1
𝑏𝑛

) |<  𝜃, 𝑋1 >,𝑇1])

 =  𝔼 (
1

G̅(𝑇1)
Ω (
𝑡 − 𝑇1
𝑏𝑛

)𝔼 [1𝑇1≤𝐶1
|𝑇1] |<  𝜃, 𝑋1 >)

=  𝔼(Ω(
𝑡 − 𝑇1
𝑏𝑛

) |<  𝜃, 𝑋1 >) = ∫ Ω(
𝑡 − 𝑢

𝑏𝑛
)𝜓(𝜃, 𝑢, 𝑋1)𝑑𝑢

ℝ

 

= ∫ Ω(
𝑡 − 𝑢

𝑏𝑛
)dΨ(𝜃, 𝑢, 𝑋1)

ℝ

= ∫ Ω(1) (
𝑡 − 𝑢

𝑏𝑛
)Ψ(𝜃, 𝑢, 𝑋1)𝑑𝑢

ℝ

= ∫Ω(1)(𝑣)Ψ(𝜃, 𝑡 − 𝑣𝑏𝑛, 𝑋1)𝑑𝑣
ℝ

= ∫ Ω(1)(𝑣)(Ψ(𝜃, 𝑡 − 𝑣𝑏𝑛, 𝑋1) − Ψ(𝜃, 𝑡, 𝑥))𝑑𝑣 +Ψ(𝜃, 𝑡, 𝑥)∫Ω
(1)(𝑣)𝑑𝑣

ℝ

,
ℝ

 

hence, because of (H2) and (H5)-(i): 

𝐼 ≤ 𝐶𝜃,𝑥∫Ω
(1)(𝑣)(𝑎𝑛

𝛼1 + |𝑣|𝛼2𝑏𝑛
𝛼2)𝑑𝑣 + Ψ(𝜃, 𝑡, 𝑥) = 𝒪(𝑎𝑛

𝛼1 + 𝑏𝑛
𝛼2) + Ψ(𝜃, 𝑡, 𝑥)

ℝ

. 

Combining this last result with (3.2) allows achieving the proof. The following 

result deals with the variance term of the right-hand side of (3.1) which is expressed 

by 𝑠𝑢𝑝
𝑡∈𝑆ℝ

{|Ψ̃𝑁(𝜃, 𝑡, 𝑥) − 𝔼Ψ̃𝑁(𝜃, 𝑡, 𝑥)|}. For Ψ̂𝐷(𝜃, 𝑥) − 𝔼[𝛹̂𝐷(𝜃, 𝑥)] the same argu-

ments are used with a slight difference. 
 

Lemma 3.3. Under assumptions of Theorem 3.1 and if 

(
𝑙𝑜𝑔 𝑙𝑜𝑔𝑛

𝑛
)
1 2⁄

𝑛→∞
→   𝑜(𝜙𝜃,𝑥(𝑎𝑛)), 

then 

(i) 𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝛹̂𝐷(𝜃, 𝑥) − 𝔼𝛹̂𝐷(𝜃, 𝑥)| = 𝒪𝑎.𝑐𝑜. (√
𝑙𝑜𝑔𝑛

𝑛𝜙𝜃,𝑥(𝑎𝑛)
). 

(ii) 𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝛹̃𝑁(𝜃, 𝑡, 𝑥) − 𝔼𝛹̃𝑁(𝜃, 𝑡, 𝑥)| = 𝒪𝑎.𝑐𝑜. (√
𝑙𝑜𝑔𝑛

𝑛𝜙𝜃,𝑥(𝑎𝑛)
). 

Proof. Using the compactness of 𝑆ℝ, one can write that 𝑆ℝ ⊂ ⋃ (𝑧𝑗 − 𝑙𝑛, 𝑧𝑗 +
𝜏𝑛
𝑗=1

𝑙𝑛) with 𝑙𝑛 and 𝜏𝑛 can be chosen such that 𝑙𝑛 = 𝐶𝜏𝑛
−1~𝐶𝑛−𝜍−1 2⁄ . Taking 

𝑗𝑡 = arg min
{𝑧1,⋯,𝑧𝜏𝑛}

|𝑡 − 𝑧𝑗|. 
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Hence the following decomposition: 

1

𝛹̂𝐷(𝜃, 𝑥)
𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝛹̃𝑁(𝜃, 𝑡, 𝑥) − 𝔼𝛹̃𝑁(𝜃, 𝑡, 𝑥)| ≤
1 

𝛹̂𝐷(𝜃, 𝑥)
𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝛹̃𝑁(𝜃, 𝑡, 𝑥) − 𝛹̃𝑁(𝜃, 𝑡𝑗 , 𝑥)|

 +
1 

𝛹̂𝐷(𝜃, 𝑥)
𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝛹̃𝑁(𝜃, 𝑡𝑗 , 𝑥) − 𝔼𝛹̃𝑁(𝜃, 𝑡𝑗 , 𝑥)|

 +
1 

𝛹̂𝐷(𝜃, 𝑥)
𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝔼𝛹̃𝑁(𝜃, 𝑡𝑗 , 𝑥) − 𝔼𝛹̃𝑁(𝜃, 𝑡, 𝑥)|

 

 ≤ 𝐵1 + 𝐵2 +𝐵3. 

As the first and the third terms can be treated in the same manner, this deals only 

with first term. Making use of (H5)-(i) one obtains 

𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝛹̃𝑁(𝜃, 𝑡, 𝑥) − 𝛹̃𝑁(𝜃, 𝑡𝑗, 𝑥)| ≤ 

1

𝑛𝔼(𝛤1(𝜃, 𝑥))
𝑠𝑢𝑝
𝑡∈𝑆ℝ

∑|
𝛿𝑘

𝐺̅(𝑌𝑘)
Ω𝑘(𝑡) −

𝛿𝑘

𝐺̅(𝑌𝑘)
Ω𝑘(𝑡𝑗)|

𝑛

𝑘=1

𝛤𝑘(𝜃, 𝑥)

 ≤
1

𝑛𝔼(𝛤1(𝜃, 𝑥))
𝑠𝑢𝑝
𝑡∈𝑆ℝ

∑|
𝛿𝑘

𝐺̅(𝑌𝑘)
Ω𝑘(𝑡) −

𝛿𝑘

𝐺̅𝑛(𝑌𝑘)
Ω𝑘(𝑡𝑗)|

𝑛

𝑘=1

𝛤𝑘(𝜃, 𝑥)

 ≤
𝐶

𝑛𝔼(𝛤1(𝜃, 𝑥))
𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝑡 − 𝑡𝑗|

𝑏𝑛
× (∑𝛤𝑘(𝜃, 𝑥) (

1

𝐺̅(𝑌𝑘)
−

1

𝐺̅𝑛(𝑌𝑘)
)

𝑛

𝑘=1

)

 

 ≤
𝐶𝑙𝑛

𝑏𝑛𝐺̅𝑛(𝜏𝐺)𝐺̅(𝜏𝐺)
𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝐺̅𝑛(𝑡) − 𝐺̅(𝑡)| 𝛹̂𝐷(𝜃, 𝑥). 

Using 𝑙𝑛 = 𝑛
−𝜍−1 2⁄  we obtain 

𝐵1 ≤
𝐶𝑛−𝜍−1 2⁄

𝑏𝑛𝐺̅𝑛(𝜏𝐺)G̅(𝜏𝐺)
(
𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛

𝑛
)
1 2⁄

, 

and note that, because of (H6)-(i), 

𝑙𝑛
𝑏𝑛
= 𝑜(√

𝑙𝑜𝑔𝑛

𝑛𝜙𝜃,𝑥(𝑎𝑛)
). 

Thus, for n large enough, 

𝐵1 = 𝒪𝑎.𝑐𝑜. (√
𝑙𝑜𝑔𝑛

𝑛𝜙𝜃,𝑥(𝑎𝑛)
). 
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Following similar arguments, one can state that 

𝐵3 ≤ 𝐵1. 

Concerning 𝐵2, consider 𝜀 = 𝜀0√
𝑙𝑜𝑔𝑛

𝑛𝜙𝜃,𝑥(𝑎𝑛)
. Since for all 𝜀0 > 0, one has that 

ℙ(sup
𝑡∈𝑆ℝ

|𝔼𝛹̃𝑁(𝜃, 𝑡𝑗, 𝑥) − 𝔼𝛹̃𝑁(𝜃, 𝑡, 𝑥)| > 𝜀) ≤ 

ℙ( max
𝑗∈{1,⋯,𝜏𝑛}

|𝔼𝛹̃𝑁(𝜃, 𝑡𝑗, 𝑥) − 𝔼𝛹̃𝑁(𝜃, 𝑡, 𝑥)| > 𝜀)

 ≤ 𝜏𝑛 ℙ(|𝔼𝛹̃𝑁(𝜃, 𝑡𝑗 , 𝑥) − 𝔼𝛹̃𝑁(𝜃, 𝑡, 𝑥)| > 𝜀).
 

Applying Berstain’s exponential inequality to: 

𝛱𝑘 =
1

𝔼(𝛤1(𝜃, 𝑥))
[
𝛿𝑘

𝐺̅(𝑌𝑘)
𝛤𝑘(𝜃, 𝑥)Ω𝑘(𝑡𝑗) − 𝔼(

𝛿𝑘

𝐺̅(𝑌𝑘)
𝛤𝑘(𝜃, 𝑥)Ω𝑘(𝑡𝑗))]. 

Firstly, it follows from the fact that the Kernel Γ is bonded and Ω ≤ 1, then 

ℙ(|𝛹̃𝑁(𝜃, 𝑡𝑗, 𝑥) − 𝔼𝛹̃𝑁(𝜃, 𝑡𝑗, 𝑥)| > 𝜀) ≤ ℙ(
1

𝑛
|∑Π𝑘

𝑛

𝑘=1

| > 𝜀) ≤ 2𝑛−𝐶𝜀0
2
. 

Finally, by choosing 𝜀0 large enough, the proof can be concluded by the use of the 

Borel-Cantelli lemma. The result can be easily deduced. 

The proof of Theorem 3.1 was concluded by making use inequality (3.1), in 

conjunction with Lemma 3.1, Lemma 3.2 and Lemma 3.3. 

The proof of these is presented in Section 5. 

3.2. Almost complete point-wise convergencerate rate 

This part studies the rate of convergence of estimator 𝛹̂(𝜃, 𝑡, 𝑥). The main objective 

is the estimation of the conditional cumulative distribution of T given <θ,X>=<θ,x>, 

denoted by 𝛹(𝜃, . , 𝑥). 
 

Theorem 3.2. Suppose that hypotheses (H1), (H3)-(H7) are satisfied and if 

lim
𝑛→∞

𝑙𝑜𝑔 𝑛

𝑛𝑏𝑛
2𝑙−1𝜙𝜃,𝑥(𝑎𝑛)

=0, 

then  

𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝛹̂(𝑙)(𝜃, 𝑡, 𝑥) − 𝛹(𝑙)(𝜃, 𝑡, 𝑥)| = 𝒪(𝑎𝑛
𝛼1 + 𝑏𝑛

𝛼2) + 𝒪𝑎.𝑐𝑜. (√
𝑙𝑜𝑔𝑛

𝑛𝑏𝑛
2𝑙−1𝜙𝜃,𝑥(𝑎𝑛)

). 
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Proof. Thus in a classical way the announced result follows the same path as 

Theorem 3.1, and follows directly from decomposition (3.3): 

𝐿(𝜃, 𝑡, 𝑥) = 𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝛹̂(𝑙)(𝜃, 𝑡, 𝑥) − 𝛹(𝑙)(𝜃, 𝑡, 𝑥)| 

 ≤
1

𝛹̂𝐷(𝜃, 𝑥)
𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝛹̂𝑁
(𝑙)
(𝜃, 𝑡, 𝑥) − 𝛹̃𝑁

(𝑙)
(𝜃, 𝑡, 𝑥)| 

 +
1 

𝛹̂𝐷(𝜃, 𝑥)
𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝛹̃𝑁
(𝑙)
(𝜃, 𝑡, 𝑥) − 𝔼𝛹̃𝑁

(𝑙)
(𝜃, 𝑡, 𝑥)| 

 + 
1

𝛹̂𝐷(𝜃, 𝑥)
𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝔼𝛹̃𝑁
(𝑙)(𝜃, 𝑡, 𝑥) − 𝛹(𝑙)(𝜃, 𝑡, 𝑥)| 

+
𝛹(𝑙)(𝜃, 𝑡, 𝑥)

𝛹̂𝐷(𝜃, 𝑥)
𝑠𝑢𝑝
𝑡∈𝑆ℝ

|1 − 𝛹̂𝐷(𝜃, 𝑥)|. 

(3.3) 

As before, in view of decomposition (3.3), it suffices to prove that the results of 

Lemma 3.4 and Lemma 3.5 below, in conjunction with the first part of Lemma 3.3 and 

Lemma 3.1, to complete the result of Theorem 3.2. 
 

Lemma 3.4. Under hypotheses (H1) and (H4)-(H7) 

𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝛹(𝑙)(𝜃, 𝑡, 𝑥) − 𝔼 [𝛹̃𝑁
(𝑙)
(𝜃, 𝑡, 𝑥)]| = 𝒪(𝑎𝑛

𝛼1 + 𝑏𝑛
𝛼2). 

Proof. To deal with this deterministic term, the calculations performed during the 

proof of Lemma 3.2 did not use successive derivatives i.e. replacing Ψ(𝜃, 𝑡, 𝑥) 

(respectively Ψ̃(𝜃, 𝑡, 𝑥)) with Ψ(𝑙)(𝜃, 𝑡, 𝑥) (respectively 𝛹̃𝑁
(𝑙)
(𝜃, 𝑡, 𝑥)). The result of 

Lemma 3.4 therefore remains valid under the differentiability conditions (hypotheses 

(H4) and (H5)), while taking up the approach and the notations introduced during the 

proof of Lemma 3.2, one obtains: 

Ψ(𝑙)(𝜃, 𝑡, 𝑥) − 𝔼𝛹̃𝑁
(𝑙)(𝜃, 𝑡, 𝑥) = 𝒪(𝑎𝑛

𝛼1 + 𝑏𝑛
𝛼2). 

 

Lemma 3.5. Under the assumptions of Theorem 3.2 

𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝛹̃𝑁
(𝑙)(𝜃, 𝑡, 𝑥) − 𝔼 [𝛹̃𝑁

(𝑙)(𝜃, 𝑡, 𝑥)]| = 𝒪𝑎.𝑐𝑜. (√
𝑙𝑜𝑔𝑛

𝑛𝑏𝑛
2𝑙−1𝜙𝜃,𝑥(𝑎𝑛)

). 

Proof. To arrive at the asymptotic behavior of the quantity 𝛹̃𝑁
(𝑙)(𝜃, 𝑡, 𝑥) −

𝔼𝛹̃𝑁
(𝑙)(𝜃, 𝑡, 𝑥), the proof follows the same path as during the proof of Lemma 3.3, it 

suffices to replace  𝛹(𝜃, 𝑡, 𝑥) (respectively 𝛹̃𝑁(𝜃, 𝑡, 𝑥)) with Ψ(𝑙)(𝜃, 𝑡, 𝑥) 

(respectively  𝛹̃𝑁
(𝑙)
(𝜃, 𝑡, 𝑥)). 
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Note that (H5)-(ii) and (H9) permit to show that 

𝔼(
𝛿𝑘

𝐺̅(𝑌𝑘)
Ω(𝑙)(𝑏𝑛

−1(𝑡 − 𝑇𝑘))
𝛿𝑚

𝐺̅(𝑌𝑚)
Ω(𝑙)(𝑏𝑛

−1(𝑡 − 𝑇𝑚))| (𝑋𝑘 , 𝑋𝑚)) = 𝒪(𝑏𝑛
2), 

while (H4) imply that 

𝔼(
𝛿𝑘

𝐺̅(𝑌𝑘)
Ω(𝑙)(𝑏𝑛

−1(𝑡 − 𝑇𝑘))| 𝑋𝑘) = 𝒪(𝑏𝑛). 

Indeed, it can be found that 

𝛹̃𝑁
(𝑙)(𝜃, 𝑡, 𝑥) − 𝔼𝛹̃𝑁

(𝑙)(𝜃, 𝑡, 𝑥) =
1

𝑛
∑𝐴𝑘(𝜃, 𝑡, 𝑥)

𝑛

𝑘=1

, 

where 

𝐴𝑘 = 𝑏𝑛
−𝑙

𝛿𝑘

𝐺̅(𝑌𝑘)
Ω𝑘
(𝑙)
(𝑡)𝛥𝑘(𝜃, 𝑥) − 𝔼(𝑏𝑛

−𝑙
𝛿𝑘

𝐺̅(𝑌𝑘)
Ω𝑘
(𝑙)
(𝑡)𝛥𝑘(𝜃, 𝑥)), 

has zero mean and satisfies |𝐴𝑘(𝜃, 𝑡, 𝑥)| ≤ 𝐶𝑏𝑛
−𝑙𝜙𝜃,𝑥

−1(𝑎𝑛).  
Now, since Ω(𝑙) is bounded, it allows to use directly similar arguments of the 

second part by Lemma 3.3, thus 

𝛹̃𝑁
(𝑙)(𝜃, 𝑡, 𝑥) − 𝔼𝛹̃𝑁

(𝑙)(𝜃, 𝑡, 𝑥) = 𝒪𝑎.𝑐𝑜. (√
𝑙𝑜𝑔 𝑛

𝑛𝑏𝑛
2𝑙−1𝜙𝜃,𝑥(𝑎𝑛)

), 

which leads directly to the result of Lemma 3.5. 

3.3. Conditional quantile estimation 

This part studies the rate of convergence of conditional 𝜗̂𝜃(𝛾, 𝑥). 
Now, let 𝜗𝜃(𝛾, 𝑥) be the 𝛾-order quantile of the distribution of T given <θ,X>= 

<θ,x>. From the cond-cdf  𝛹(𝜃, . , 𝑥), the general definition of the 𝛾-order quantile is 

given as: 

𝜗𝜃(𝛾, 𝑥) = inf{𝑡 ∈ ℝ,𝛹(𝜃, 𝑡, 𝑥) ≥ 𝛾}. 

In order to simplify the framework and focus on the main interest of this paper (the 

functional feature of <θ,X>), it is assumed that 𝛹(𝜃, . , 𝑥) is strictly increasing and 

continuous in the neighbourhood of 𝜗𝜃(𝛾, 𝑥). Thisensures that conditional quantile 

𝜗𝜃(𝛾, 𝑥) is uniquely defined by: 

𝜗𝜃(𝛾, 𝑥) = 𝛹
−1(𝜃, 𝛾, 𝑥), ∀𝛾 ∈ (0,1). (3.4) 
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As a by-product of (3.4) and (2.1), it is easy to derive estimator 𝜗𝜃,𝑛(𝛾, 𝑥) of 

𝜗𝜃(𝛾, 𝑥): 

𝜗𝜃,𝑛(𝛾, 𝑥) = 𝛹𝑛
−1(𝜃, 𝛾, 𝑥). 

Then a natural estimator of 𝜗𝜃(𝛾, 𝑥) is given by 

𝜗̂𝜃(𝛾, 𝑥) = 𝛹̂
−1(𝜃, 𝛾, 𝑥)  = inf{𝑡 ∈ ℝ, 𝛹̂(𝜃, 𝑡, 𝑥) ≥ 𝛾},

 
 

which satisfies 

𝛹̂(𝜃, 𝜗̂𝜃(𝛾, 𝑥), 𝑥) = 𝛾. (3.5) 

Corollary 3.1. Under hypotheses of Theorem 3.1 

𝜗̂𝜃(𝛾, 𝑥) − 𝜗𝜃(𝛾, 𝑥)
𝑛→∞
→   0, 𝑎. 𝑐𝑜. 

Proof. The proof is based on the point-wise convergence of 𝛹̂(𝜃, . , 𝑥) and the 

Lipschitz property introduced in (H5)-(i) and hypothesis (H6), 𝛹̂(𝜃, 𝑡, 𝑥) is 

a continuous and strictly increasing function. Hence 

∀ 𝜖 > 0, ∃𝛿(𝜖) > 0, ∀𝑦, |𝛹̂(𝜃, 𝑡, 𝑥) − 𝛹̂(𝜃, 𝜗𝜃(𝛾, 𝑥), 𝑥)| ≤  𝛿(𝜖)  

⇒ |𝑡 − 𝜗𝜃(𝛾, 𝑥)| ≤ 𝜖. 

This leads to write ∀ 𝜖 > 0, ∃𝛿(𝜖) > 0, 

ℙ(|𝜗̂𝜃(𝛾, 𝑥) − 𝜗𝜃(𝛾, 𝑥)| >  𝜖) ≤ ℙ (|𝛹̂(𝜃, 𝜗̂𝜃(𝛾, 𝑥), 𝑥) − 𝛹̂(𝜃, 𝜗𝜃(𝛾, 𝑥), 𝑥)| ≥  𝛿(𝜖))

 = ℙ(| 𝛹(𝜃, 𝜗𝜃(𝛾, 𝑥), 𝑥) − 𝛹̂(𝜃, 𝜗𝜃(𝛾, 𝑥), 𝑥)| ≥  𝛿(𝜖)) ,
 

Since (3.4) and (3.5), implying that 

𝛹̂(𝜃, 𝜗̂𝜃(𝛾, 𝑥), 𝑥) = 𝛾 =  𝛹(𝜃, 𝜗𝜃(𝛾, 𝑥), 𝑥). 

Moreover 

| 𝛹(𝜃, 𝜗̂𝜃(𝛾, 𝑥), 𝑥) −  𝛹(𝜃, 𝜗𝜃(𝛾, 𝑥), 𝑥)| = | 𝛹(𝜃, 𝜗̂𝜃(𝛾, 𝑥), 𝑥) − 𝛹̂(𝜃, 𝜗̂𝜃(𝛾, 𝑥), 𝑥)|

 ≤ 𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝛹̂(𝜃, 𝑡, 𝑥) −  𝛹(𝜃, 𝑡, 𝑥)|.  

The consistency of 𝜗̂𝜃(𝛾, 𝑥) follows then immediately from Theorem 3.1 and the 

following inequality 

∑ℙ(|𝜗𝑛,𝜃(𝛾, 𝑥) − 𝜗𝜃(𝛾, 𝑥)| ≥  𝜖) ≤∑ℙ(sup
𝑡∈𝑆ℝ

|𝛹̂(𝜃, 𝑡, 𝑥) −  𝛹(𝜃, 𝑡, 𝑥)| ≥ 𝛿(𝜖)) .

𝑛≥1𝑛≥1

 

Naturally, obtaining these results requires more sophisticated technical 

developments than those presented previously. To ensure a good read ability of this 
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section, the authors introduced conditions related to the flatness of cond-cdf  𝛹(𝜃, . , 𝑥) 
around conditional quantile 𝜗𝜃(𝛾, 𝑥).  

(H8): {

𝛹(𝑚)(𝜃, 𝜗𝜃(𝛾, 𝑥), 𝑥) = 0, 𝑖𝑓; 1 ≤ 𝑚 < 𝑙 

𝛹(𝑙)(𝜃, . , 𝑥) is uniformly continuous on 𝑆ℝ
such that 𝛹(𝑙)(𝜃, 𝜗𝜃(𝛾, 𝑥), 𝑥) > 𝐶 > 0.

 

The focus is on the local behaviour of 𝛹(𝜃, . , 𝑥) around 𝜗𝜃(𝛾, 𝑥) via its 

derivatives, prompting to consider the successive derivatives of 𝛹̂(𝜃, . , 𝑥). 
Corollary 3.2. Under hypotheses (H1) to (H8) 

𝜗̂𝜃(𝛾, 𝑥) − 𝜗𝜃(𝛾, 𝑥) = 𝒪 ((𝑎𝑛
𝛼1 + 𝑏𝑛

𝛼2)
1
𝑙) + 𝒪𝑎.𝑐𝑜.((

𝑙𝑜𝑔 𝑛

𝑛𝜙𝜃,𝑥(𝑎𝑛)
)

1
2𝑙

). 

Proof. The proof is based on the Taylor expansion of 𝛹̂(𝜃, . , 𝑥) at 𝜗𝜃(𝛾, 𝑥) and  

on the use of (H8):  

𝛹̂(𝜃, 𝜗𝜃(𝛾, 𝑥), 𝑥) − 𝛹̂(𝜃, 𝜗̂𝜃(𝛾, 𝑥), 𝑥) = 

∑
(𝜗𝜃(𝛾, 𝑥) − 𝜗̂𝜃(𝛾, 𝑥))

𝑚−1

𝑚!

𝑙

𝑚=1

𝛹̂(𝑚)(𝜃, 𝜗𝜃(𝛾, 𝑥), 𝑥)

 +
(𝜗𝜃(𝛾, 𝑥) − 𝜗̂𝜃(𝛾, 𝑥))

𝑙

𝑙!
𝛹̂(𝑙)(𝜃, 𝜗𝜃

∗(𝛾, 𝑥), 𝑥)

 = ∑
(𝜗𝜃(𝛾, 𝑥) − 𝜗̂𝜃(𝛾, 𝑥))

𝑚−1

𝑚!

𝑙−1

𝑚=1

(𝛹̂(𝑚)(𝜃, 𝜗𝜃(𝛾, 𝑥), 𝑥)

 

 −𝛹(𝑚)(𝜃, 𝜗𝜃(𝛾, 𝑥), 𝑥)

 +
(𝜗𝜃(𝛾, 𝑥) − 𝜗̂𝜃(𝛾, 𝑥))

𝑙

𝑙!
𝛹̂(𝑙)(𝜃, 𝜗𝜃

∗(𝛾, 𝑥), 𝑥),

 

where, for all 𝑡 ∈ ℝ,  

𝛹̃(𝑙)(𝜃, 𝑡, 𝑥) =

𝑏𝑛
−𝑙 ∑

𝛿𝑘
𝐺̅(𝑌𝑘)

 𝛤(𝑎𝑛
−1(< 𝑥 − 𝑋𝑘 , 𝜃 >))Ω

(𝑙)(𝑏𝑛
−1(𝑡 − 𝑇𝑘))

𝑛
𝑘=1

∑ 𝛤(𝑎𝑛
−1(< 𝑥 − 𝑋𝑘 , 𝜃 >))

𝑛
𝑘=1

, 

𝛹̂(𝑙)(𝜃, 𝑡, 𝑥) =

𝑏𝑛
−𝑙∑

𝛿𝑘
𝐺̅𝑛(𝑌𝑘)

 𝛤(𝑎𝑛
−1(< 𝑥 − 𝑋𝑘 , 𝜃 >))Ω

(𝑙)(𝑏𝑛
−1(𝑡 − 𝑇𝑘))

𝑛
𝑘=1

∑ 𝛤(𝑎𝑛
−1(< 𝑥 − 𝑋𝑘 , 𝜃 >))

𝑛
𝑘=1

, 
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and where min (𝜗𝜃(𝛾, 𝑥), 𝜗̂𝜃(𝛾, 𝑥)) < 𝜗𝜃
∗(𝛾, 𝑥) < max(𝜗𝜃(𝛾, 𝑥), 𝜗̂𝜃(𝛾, 𝑥)). Suppose 

now that the following result is obtained. 

Due to Corollary 3.1, Theorem 3.2 and (H8) 

𝛹̂(𝑙)(𝜃, 𝜗𝜃
∗(𝛾, 𝑥), 𝑥) ⟶ Ψ(𝑙)(𝜃, 𝜗𝜃(𝛾, 𝑥), 𝑥) ≠ 0, 𝑎. 𝑐𝑜. 

Then one derives 

|𝜗𝜃(𝛾, 𝑥)) − 𝜗̂𝜃(𝛾, 𝑥)|
𝑙
= 𝒪 (𝛹̂(𝜃, 𝜗𝜃(𝛾, 𝑥), 𝑥) − Ψ(𝜃, 𝜗𝜃(𝛾, 𝑥), 𝑥))

 +𝒪(∑ (𝜗𝜃(𝛾, 𝑥) − 𝜗̂𝜃(𝛾, 𝑥))
𝑚

𝑙−1

𝑚=1

(𝛹̂(𝑚)(𝜃, 𝜗𝜃(𝛾, 𝑥), 𝑥)

 −𝛹(𝑚)(𝜃, 𝜗𝜃(𝛾, 𝑥), 𝑥))) , 𝑎. 𝑐𝑜.

 

Now, comparing the convergence rates given in Theorem 3.1 and Theorem 3.2, 

one obtains 

|𝜗𝜃(𝛾, 𝑥)) − 𝜗̂𝜃(𝛾, 𝑥)|
𝑙
= 𝒪 (𝛹̂(𝜃, 𝑡, 𝑥) −  𝛹(𝜃, 𝑡, 𝑥)) , 𝑎. 𝑐𝑜. 

Thus, the first part of Lemma 3.3 together with Lemma 3.4 and Lemma 3.5, allow 

for the claimed result. 

4. Uniform almost complete convergence and rate of convergence  

In this section the authors derive the uniform version of Theorem 3.1 and Theorem 3.2, 

which is a standard extension of the point-wise one. Undoubtedly, obtaining these results 

requires more sophisticated technical developments than those presented previously. To 

ensure a good readability of this, some additional tools and topological conditions are 

needed (see Ferraty, Laksaci, Tadj, and Vieu, 2010). Firstly, the compactness of sets 𝑆ℋ 

and Θℋrespectively allows them to be covered by 𝑑𝑛
𝑆ℋ  intervals and 𝑑𝑛

Θℋ  intervals 

disjoint respectively so that 𝑑𝑛
𝑆ℋ , 𝑑𝑛

Θℋ  are the minimal numbers of open spheres with 

radius 𝑟𝑛 in  ℋ,𝑥𝑝 (respectively 𝜃𝑞) ∈  ℋ. 

𝑆ℋ ⊂⋃𝐵𝜃

𝑑𝑛
𝑆ℋ

𝑝=1

(𝑥𝑝, 𝑟𝑛) 𝑎𝑛𝑑 Θℋ ⊂ ⋃ 𝐵𝜃

𝑑𝑛
Θℋ

𝑞=1

(𝜃𝑞 , 𝑟𝑛). 

4.1. Conditional distribution estimation 

The aim of this section is to establish almost complete uniform convergence. To be 

able to extend the results obtained above, it is necessary to introduce a topological 
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structure of the functional space of the observations and the functional character of the 

model. The asymptotic results of the paper exploit the topological structure of 

functional space for the observations. Note that all the rates of convergence are based 

on a hypothesis of the concentration of the measure of probability of the functional 

variable on the small spheres, and also on Kolmogorov’s entropy which measures the 

number of spheres necessary to cover a certain set. A natural way to do this is to 

introduce the conditions below: 
 

(A1): There exists a differentiable function 𝜙(·) such that ∀𝑥 ∈ 𝑆ℋ and ∀𝜃 ∈ Θℋ,  

0 < 𝐶𝜙(ℎ) ≤ 𝜙𝜃,𝑥(ℎ) ≤ 𝐶
′𝜙(ℎ) < ∞ and ∃𝜂0 > 0, 𝜂 < 𝜂0, 𝜙′(𝜂) < 𝐶. 

(A2): Kernel K satisfies (H3), and Lipschitz’s condition holds  

|Γ(𝑥) − Γ(𝑦)| ≤ ‖𝑥 − 𝑦‖. 

(A3): ∀(𝑡1, 𝑡2) ∈ 𝑆ℝ × 𝑆ℝ, ∀(𝑥1, 𝑥2) ∈ 𝑁𝑥 × 𝑁𝑥 , ∀𝜃 ∈ Θℋ, 

|Ψ(𝜃, 𝑡1, 𝑥1) − Ψ(𝜃, 𝑡2, 𝑥2)| ≤ 𝐶(‖𝑥1 − 𝑥2‖
𝛼1 + |𝑡1 − 𝑡2|

𝛼2). 

(A4): For some 𝜈 ∈ (0, 1), lim
𝑛→∞

𝑛𝜈𝑏𝑛 = ∞, and for 𝑟𝑛 = 𝒪 (
𝑙𝑜𝑔𝑛

𝑛
), the sequences 

𝑑𝑛
𝑆ℋ  and 𝑑𝑛

Θℋ  satisfy: 

{
  
 

  
 (𝑖)

(𝑙𝑜𝑔 𝑛)2

𝑛𝜙(𝑎𝑛)
< 𝑙𝑜𝑔 𝑑𝑛

𝑆ℋ + 𝑙𝑜𝑔𝑑𝑛
𝛩ℋ <

𝑛𝜙(𝑎𝑛)

𝑙𝑜𝑔 𝑛
,

(𝑖𝑖)∑ 𝑛
1
2𝛼2⁄ (𝑑𝑛

𝑆ℋ𝑑𝑛
𝛩ℋ)

1−𝛽
∞

𝑛=1

< ∞ for some 𝛽 > 1,

(𝑖𝑖𝑖)𝑛𝜙(𝑎𝑛) = 𝒪((𝑙𝑜𝑔 𝑛)
2).

 

 

(A5): ∀(𝑡1, 𝑡2) ∈ 𝑆ℝ × 𝑆ℝ, ∀(𝑥1, 𝑥2) ∈ 𝑁𝑥 × 𝑁𝑥 , ∀𝜃 ∈ Θℋ, 

|Ψ(𝑙)(𝜃, 𝑡1, 𝑥1) − Ψ
(𝑙)(𝜃, 𝑡2, 𝑥2)| ≤ 𝐶(‖𝑥1 − 𝑥2‖

𝛼1 + |𝑡1 − 𝑡2|
𝛼2). 

(A6): For some 𝜈 ∈ (0, 1), lim
𝑛→∞

𝑛𝜈𝑏𝑛 = ∞, and for 𝑟𝑛 = 𝒪 (
𝑙𝑜𝑔𝑛

𝑛
), the sequences 

𝑑𝑛
𝑆ℋ  and 𝑑𝑛

Θℋ  satisfy: 

{
  
 

  
 (𝑖)

(𝑙𝑜𝑔 𝑛)2

𝑛𝑏𝑛
2𝑙−1𝜙(𝑎𝑛)

< 𝑙𝑜𝑔 𝑑𝑛
𝑆ℋ + 𝑙𝑜𝑔 𝑑𝑛

𝛩ℋ <
𝑛𝑏𝑛

2𝑙−1𝜙(𝑎𝑛)

𝑙𝑜𝑔 𝑛
,

(𝑖𝑖)∑𝑛
(3𝜈+1)

2⁄ (𝑑𝑛
𝑆ℋ𝑑𝑛

𝛩ℋ)
1−𝛽

∞

𝑛=1

< ∞ 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛽 > 1,

(𝑖𝑖𝑖)𝑛𝑏𝑛
2𝑙−1𝜙(𝑎𝑛) = 𝒪((𝑙𝑜𝑔 𝑛)

2).

 

In what follows, denote 
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Υ𝑘(𝜃, 𝑥) =
1

𝑛𝜙(𝑎𝑛)
1𝐵𝜃(𝑥,ℎ)∪𝐵𝜃(𝑥𝑝(𝑥),ℎ)(𝑋𝑘),

Ξ𝑘(𝜃, 𝑥) =
1

𝑛𝜙(𝑎𝑛)
1𝐵𝜃(𝑥𝑝(𝑥),ℎ)∪𝐵𝜃𝑞(𝜃)(𝑥𝑝(𝑥),ℎ)

(𝑋𝑘),

𝛥𝑘(𝜃𝑞(𝜃), 𝑥𝑝(𝑥)) =
Γ (𝑎𝑛

−1(< 𝑥𝑝(𝑥) − 𝑋𝑘 , 𝜃𝑞(𝜃) >))

𝔼 (Γ(𝑎𝑛
−1(< 𝑥𝑝(𝑥) − 𝑋𝑘 , 𝜃𝑞(𝜃) >)))

.

 

 

Σ𝑘(𝜃, 𝑥) =
Γ (𝑎𝑛

−1(< 𝑥𝑝(𝑥) − 𝑋𝑘 , 𝜃𝑞(𝜃) >))

𝔼 (Γ (𝑎𝑛
−1(< 𝑥𝑝(𝑥) − 𝑋𝑘 , 𝜃𝑞(𝜃) >)))

𝛿𝑘

𝐺̅(𝑌𝑘)
Ω (𝑏𝑛

−1(𝑣𝑘𝑡 − 𝑇𝑘))

 −𝔼

(

 
 Γ(𝑎𝑛

−1(< 𝑥𝑝(𝑥) − 𝑋𝑘 , 𝜃𝑞(𝜃) >))

𝔼(Γ (𝑎𝑛
−1(< 𝑥𝑝(𝑥) − 𝑋𝑘 , 𝜃𝑞(𝜃) >)))

𝛿𝑘

𝐺̅(𝑌𝑘)
Ω (𝑏𝑛

−1(𝑣𝑘𝑡 − 𝑇𝑘))

)

 
 
,

 

and  

Σ𝑘
(𝑙)
(𝜃, 𝑥) =

1

𝑏𝑛
𝑙

Γ (𝑎𝑛
−1(< 𝑥𝑝(𝑥) − 𝑋𝑘 , 𝜃𝑞(𝜃) >))

𝔼(Γ (𝑎𝑛
−1(< 𝑥𝑝(𝑥) − 𝑋𝑘 , 𝜃𝑞(𝜃) >)))

𝛿𝑘

𝐺̅(𝑌𝑘)
Ω(𝑙) (𝑏𝑛

−1(𝑣𝑘𝑡 − 𝑇𝑘))

−
1

𝑏𝑛
𝑙
𝔼

(

 
 Γ(𝑎𝑛

−1(< 𝑥𝑝(𝑥) − 𝑋𝑘 , 𝜃𝑞(𝜃) >))

𝔼(Γ (𝑎𝑛
−1(< 𝑥𝑝(𝑥) − 𝑋𝑘 , 𝜃𝑞(𝜃) >)))

𝛿k

G̅(𝑌𝑘)
Ω(𝑙) (𝑏𝑛

−1(𝑣𝑘𝑡 − 𝑇𝑘))

)

 
 
.

 

Theorem 4.1. Under hypotheses (H1) and (H2), (H5) to (H7) and (A1) to (A4) 

𝑠𝑢𝑝
𝑥∈𝑆ℋ

𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝛹̂(𝜃, 𝑡, 𝑥) − 𝛹(𝜃, 𝑡, 𝑥)| = 𝒪(𝑎𝑛
𝛼1 + 𝑏𝑛

𝛼2) + 𝒪𝑎.𝑐𝑜. (√
𝑙𝑜𝑔𝑑𝑛

𝑆ℋ𝑑𝑛
𝛩ℋ

𝑛𝜙(𝑎𝑛)
). 

Proof.  Naturally, the proof of these results can be deduced from decomposition (3.3) 

and the following intermediate results which are only a uniform version of Theorem 3.2. 

Lemma 4.1. Under conditions (H1) and (H2), and (H5) to (H7) 

𝑠𝑢𝑝
𝜃∈Θℋ

𝑠𝑢𝑝
𝑥∈𝑆ℋ

𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝛹(𝑙)(𝜃, 𝑡, 𝑥) − 𝔼 [𝛹̃𝑁
(𝑙)(𝜃, 𝑡, 𝑥)]| = 𝒪(𝑎𝑛

𝛼1 + 𝑏𝑛
𝛼2). 

Proof. The proof follows the same path as during the proof of Lemma 3.4. 
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Lemma 4.2. Under assumptions of Theorem 4.1 

𝑠𝑢𝑝
𝜃∈Θℋ

𝑠𝑢𝑝
𝑥∈𝑆ℋ

|𝛹̂𝐷(𝜃, 𝑥) − 𝔼𝛹̂𝐷(𝜃, 𝑥)| = 𝒪𝑎.𝑐𝑜. (√
𝑙𝑜𝑔 𝑑𝑛

𝑆ℋ𝑑𝑛
𝛩ℋ

𝑛𝜙(𝑎𝑛)
). 

Proof. Similarly to the proof of Lemma 4.4 in (Bouchentouf, Djebbouri, Rabhi, 

and Sabri, 2014), it can be completed easily. Here the authorsomitted its proof. 

Lemma 4.3. Under assumptions of Theorem 4.1 

𝑠𝑢𝑝
𝜃∈Θℋ

𝑠𝑢𝑝
𝑥∈𝑆ℋ

𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝛹̃𝑁
(𝑙)
(𝜃, 𝑡, 𝑥) − 𝔼 [𝛹̃𝑁

(𝑙)
(𝜃, 𝑡, 𝑥)]| = 𝒪𝑎.𝑐𝑜. (√

𝑙𝑜𝑔 𝑑𝑛
𝑆ℋ𝑑𝑛

𝛩ℋ

𝑛𝑏𝑛
2𝑙−1𝜙(𝑎𝑛)

). 

Proof. For all 𝑥 ∈ 𝑆ℋ and ∀𝜃 ∈ Θℋ, it is set  

𝑝(𝑥) = arg  min
{1,⋯,𝑑𝑛

𝑆ℋ}

‖𝑥 − 𝑥𝑝‖  𝑎𝑛𝑑 𝑞(𝜃) = arg min
{1,⋯,𝑑𝑛

𝛩ℋ}

‖𝑥 − 𝜃𝑞‖, 

and by the compact property of 𝑆ℝ ⊂ ℝ, one obtains 𝑆ℝ ⊂ ⋃ (𝑣𝑝 − 𝑙𝑛, 𝑣𝑝 +
𝜏𝑛
𝑝=1

𝑙𝑛) with 𝑙𝑛, and 𝜏𝑛 can be chosen such that 𝑙𝑛 = 𝒪(𝜏𝑛
−1) = 𝒪(𝑛−(3𝜈+1) 2⁄ ). 

Taking 𝑝𝑡 = arg min
{𝑣1,⋯,𝑣𝜏𝑛}

|𝑡 − 𝑣𝑝|. 

Consider the following decomposition 

Λ̃𝑁
(𝑙)(𝜃, 𝑡, 𝑥) = 𝑠𝑢𝑝

𝜃∈Θℋ

𝑠𝑢𝑝
𝑥∈𝑆ℋ

sup
𝑡∈𝑆ℝ

{|𝛹̃𝑁
(𝑙)(𝜃, 𝑡, 𝑥) − 𝛹̃𝑁

(𝑙)
(𝜃, 𝑡, 𝑥𝑝(𝑥))|

 + |𝛹̃𝑁
(𝑙)
(𝜃, 𝑡, 𝑥𝑝(𝑥)) − 𝛹̃𝑁

(𝑙)
(𝜃𝑞(𝜃), 𝑡, 𝑥𝑝(𝑥))|

 + |𝛹̃𝑁
(𝑙)
(𝜃𝑞(𝜃), 𝑡, 𝑥𝑝(𝑥)) − 𝛹̃𝑁

(𝑙)
(𝜃𝑞(𝜃), 𝑣𝑝𝑡 , 𝑥𝑝(𝑥))|

 

 + |𝛹̃𝑁
(𝑙)
(𝜃𝑞(𝜃), 𝑣𝑝𝑡 , 𝑥𝑝(𝑥)) − 𝔼 (𝛹̃𝑁

(𝑙)
(𝜃𝑞(𝜃), 𝑣𝑝𝑡 , 𝑥𝑝(𝑥)))|

 + |𝔼 (𝛹̃𝑁
(𝑙)
(𝜃𝑞(𝜃), 𝑣𝑝𝑡 , 𝑥𝑝(𝑥))) − 𝔼(𝛹̃𝑁

(𝑙)
(𝜃𝑞(𝜃), 𝑡, 𝑥𝑝(𝑥)))|

 + |𝔼 (𝛹̃𝑁
(𝑙)
(𝜃𝑞(𝜃), 𝑡, 𝑥𝑝(𝑥))) − 𝔼(𝛹̃𝑁

(𝑙)
(𝜃, 𝑡, 𝑥𝑝(𝑥)))|

 

 + |𝔼 (𝛹̃𝑁
(𝑙)
(𝜃, 𝑡, 𝑥𝑝(𝑥))) − 𝔼(𝛹̃𝑁

(𝑙)(𝜃, 𝑡, 𝑥))|}

≤ 𝐹1 + 𝐹2 + 𝐹3 + 𝐹4 + 𝐹5 + 𝐹6 + 𝐹7,
 

where Λ̃𝑁
(𝑙)(𝜃, 𝑡, 𝑥) = 𝑠𝑢𝑝

𝜃∈Θℋ

𝑠𝑢𝑝
𝑥∈𝑆ℋ

𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝛹̃𝑁
(𝑙)(𝜃, 𝑡, 𝑥) − 𝔼 (𝛹̃𝑁

(𝑙)(𝜃, 𝑡, 𝑥))|. 

• Concerning 𝐹3 and 𝐹5 by conditions (H5)-(ii) and (A6), boundness of Γ, one 

obtains 
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|𝛹̃𝑁
(𝑙)
(𝜃𝑞(𝜃), 𝑡, 𝑥𝑝(𝑥)) − 𝛹̃𝑁

(𝑙)
(𝜃𝑞(𝜃), 𝑣𝑝𝑡 , 𝑥𝑝(𝑥))| ≤ 

1

𝑛𝑏𝑛
𝑙 𝔼(𝛤1(𝜃, 𝑥))

𝑠𝑢𝑝
𝑡∈𝑆ℝ

∑|
𝛿𝑘

G̅(𝑌k)
𝛤𝑘(𝜃𝑞(𝜃), 𝑥𝑝(𝑥))|

𝑛

𝑘=1

+ |Ω(𝑙)(𝑏𝑛
−1(𝑡 − 𝑇𝑘))

𝛿𝑚

G̅(𝑌𝑚)
Ω(𝑙) (𝑏𝑛

−1(𝑣𝑝𝑡 − 𝑇𝑘))|

≤ sup𝐶
𝑡∈𝑆ℝ

|𝑡 − 𝑣𝑝𝑡|

𝑏𝑛
𝑙+1 (

1

𝑛𝔼(Γ1(𝜃𝑞(𝜃), 𝑥𝑝(𝑥)))

 

∑𝛤𝑘(𝜃𝑞(𝜃), 𝑥𝑝(𝑥))
1

𝐺̅(𝑌𝑘)

𝑛

𝑘=1

) ≤
𝐶𝑙𝑛

𝑏𝑛
𝑙+1𝜙(𝑎𝑛)

= 𝒪 (
𝑙𝑛

𝑏𝑛
𝑙+1𝜙(𝑎𝑛)

). 

Now, the fact that lim
𝑛→∞

𝑛𝜈𝑏𝑛 = ∞, choosing 𝑙𝑛 = 𝑛
−(3𝜈+1) 2⁄ , and using the 

second part of (A6), implies that 

𝑙𝑛

𝑏𝑛
𝑙+1𝜙(𝑎𝑛)

= 𝑜 (√
𝑙𝑜𝑔 𝑛

𝑛𝑏𝑛
2𝑙−1𝜙(𝑎𝑛)

), 

as 𝑛 → ∞, therefore, it follows 

𝐹5 ≤ 𝐹3 = 𝒪𝑎.𝑐𝑜. (√
𝑙𝑜𝑔 𝑑𝑛

𝑆ℋ𝑑𝑛
𝛩ℋ

𝑛𝑏𝑛
2𝑙−1𝜙(𝑎𝑛)

). 

Concerning 𝐹4 let us consider 𝜀 = 𝜀0√
𝑙𝑜𝑔𝑑𝑛

𝑆ℋ𝑑𝑛
𝛩ℋ

𝑛𝑏𝑛
2𝑙−1𝜙(𝑎𝑛)

. Since 

ℙ(𝐹4 > 𝜀0√
𝑙𝑜𝑔 𝑑𝑛

𝑆ℋ𝑑𝑛
𝛩ℋ

𝑛𝑏𝑛
2𝑙−1𝜙(𝑎𝑛)

) ≤ ℙ( max
𝑞∈{1,⋯,𝑑𝑛

𝛩ℋ}

max
𝑝∈{1,⋯,𝑑𝑛

𝑆ℋ}

max
𝑗∈{1,⋯,𝜏𝑛}

|Σ𝑘
(𝑙)
− 𝔼Σ𝑘

(𝑙)
| > 𝜀)

 ≤ 𝜏𝑛𝑑𝑛
𝑆ℋ𝑑𝑛

𝛩ℋ  ℙ(|Σ𝑘
(𝑙)
− 𝔼Σ𝑘

(𝑙)
| > 𝜀).

 

Applying Bernstain’s exponential inequality, under (H5) and (H7), to get ∀𝑞 ≤

𝑑𝑛
𝛩ℋ , ∀𝑝 ≤ 𝑑𝑛

𝑆ℋ  and ∀𝑝𝑡 ≤ 𝜏𝑛, 

ℙ(|Σ𝑘 − 𝔼Σ𝑘| > 𝜀) ≤ 2 (𝑑𝑛
𝑆ℋ𝑑𝑛

𝛩ℋ)
−𝐶𝜀0

2

. 
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Choosing 𝜏𝑛 ≤ 𝐶𝑛
(3𝜈+1) 2⁄ , one obtains 

ℙ(𝐹4 > 𝜀) ≤ 𝐶
′(𝑑𝑛

𝑆ℋ𝑑𝑛
𝛩ℋ)

1−𝐶𝜀0
2

. 

Putting 𝐶𝜀0
2 = 𝛽 and using (A6) 

𝐹4 = 𝒪𝑎.𝑐𝑜. (√
𝑙𝑜𝑔 𝑑𝑛

𝑆ℋ𝑑𝑛
𝛩ℋ

𝑛𝑏𝑛
2𝑙−1𝜙(𝑎𝑛)

). (4.1) 

• Concerning 𝐹1 and 𝐹2 

𝑠𝑢𝑝
𝜃∈Θℋ

𝑠𝑢𝑝
𝑥∈𝑆ℋ

𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝛹̃𝑁
(𝑙)(𝜃, 𝑡, 𝑥) − 𝛹̃𝑁

(𝑙)
(𝜃, 𝑡, 𝑥𝑝(𝑥))| ≤ |𝛤𝑘(𝜃, 𝑥) − 𝛤𝑘(𝜃, 𝑥𝑝(𝑥))|

+
1

𝑛𝑏𝑛
𝑙 𝔼(𝛤1(𝜃, 𝑥))

𝑠𝑢𝑝
𝜃∈Θℋ

𝑠𝑢𝑝
𝑥∈𝑆ℋ

sup
𝑡∈𝑆ℝ

∑|
𝛿𝑘

G̅(𝑌𝑘)
| |Ω𝑘

(𝑙)(𝑡)|

𝑛

𝑘=1

≤
1

𝑛𝑏𝑛
𝑙 𝜙(𝑎𝑛)

sup
𝜃∈Θℋ

sup
𝑥∈𝑆ℋ

∑|𝛥𝑘(𝜃, 𝑥) − 𝛥𝑘(𝜃, 𝑥𝑝(𝑥))|

𝑛

𝑘=1

 

≤
1

𝑏𝑛
𝑙 𝜙(𝑎𝑛)

sup
𝜃∈Θℋ

sup
𝑥∈𝑆ℋ

1

𝑛
∑1𝐵𝜃(𝑥,ℎ)∪𝐵𝜃(𝑥𝑝(𝑥),ℎ)(𝑋𝑘)

𝑛

𝑘=1

≤
𝐶

𝑏𝑛
𝑙
sup
𝜃∈Θℋ

sup
𝑥∈𝑆ℋ

1

𝑛
∑Υ𝑘(𝜃, 𝑥)

𝑛

𝑘=1

.

 

Therefore, similar to the arguments for (4.1) 

𝐹1 = 𝒪𝑎.𝑐𝑜. (√
𝑙𝑜𝑔 𝑑𝑛

𝑆ℋ𝑑𝑛
𝛩ℋ

𝑛𝑏𝑛
2𝑙−1𝜙(𝑎𝑛)

). 

𝑠𝑢𝑝
𝜃∈Θℋ

𝑠𝑢𝑝
𝑥∈𝑆ℋ

𝑠𝑢𝑝
𝑡∈𝑆ℝ

|𝛹̃𝑁
(𝑙)(𝜃, 𝑡, 𝑥) − 𝛹̃𝑁

(𝑙)(𝜃𝑞(𝜃), 𝑡, 𝑥𝑝(𝑥))| ≤ |𝛤𝑘(𝜃, 𝑥𝑝(𝑥)) − 𝛤𝑘(𝜃𝑞(𝜃), 𝑥𝑝(𝑥))|

+
𝑏𝑛
−𝑙

𝑛𝔼(𝛤1(𝜃, 𝑥))
𝑠𝑢𝑝
𝜃∈Θℋ

𝑠𝑢𝑝
𝑥∈𝑆ℋ

sup
𝑡∈𝑆ℝ

∑|
𝛿𝑘

𝐺̅(𝑌𝑘)
| |Ω𝑘

(𝑙)(𝑡)|

𝑛

𝑘=1

≤
𝐶𝑏𝑛

−𝑙

𝜙(𝑎𝑛)
sup
𝜃∈Θℋ

sup
𝑥∈𝑆ℋ

1

𝑛
∑|𝛥𝑘(𝜃, 𝑥𝑝(𝑥)) − 𝛥𝑘(𝜃𝑞(𝜃), 𝑥𝑝(𝑥))|

𝑛

𝑘=1

 

≤
𝐶

𝑏𝑛
𝑙
sup
𝜃∈Θℋ

sup
𝑥∈𝑆ℋ

1

𝑛
∑Ξ𝑘(𝜃, 𝑥)

𝑛

𝑘=1

. 
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Similar to the deduction of (4.1), it yields 

𝐹2 = 𝒪𝑎.𝑐𝑜. (√
𝑙𝑜𝑔 𝑑𝑛

𝑆ℋ𝑑𝑛
𝛩ℋ

𝑛𝑏𝑛
2𝑙−1𝜙(𝑎𝑛)

). 

On the other hand, since 𝐹7 ≤ 𝐹1 and 𝐹6 ≤ 𝐹2, it also leads to 

𝐹6 = 𝒪𝑎.𝑐𝑜. (√
𝑙𝑜𝑔𝑑𝑛

𝑆ℋ𝑑𝑛
𝛩ℋ

𝑛𝑏𝑛
2𝑙−1𝜙(𝑎𝑛)

) and 𝐹7 = 𝒪𝑎.𝑐𝑜. (√
𝑙𝑜𝑔 𝑑𝑛

𝑆ℋ𝑑𝑛
𝛩ℋ

𝑛𝑏𝑛
2𝑙−1𝜙(𝑎𝑛)

). 

Then the proof of Lemma 4.3 can be completed. 

Corollary 4.1. Under the hypotheses of Theorem 4.1 

𝑠𝑢𝑝
𝑥∈𝑆ℋ

|𝜗̂𝜃(𝛾, 𝑥) − 𝜗𝜃(𝛾, 𝑥)|
𝑛→∞
→   0, 𝑎. 𝑐𝑜., 

and  

𝑠𝑢𝑝
𝜃∈Θℋ

𝑠𝑢𝑝
𝑥∈𝑆ℋ

|𝜗̂𝜃(𝛾, 𝑥) − 𝜗𝜃(𝛾, 𝑥)| = 𝒪 ((𝑎𝑛
𝛼1 + 𝑏𝑛

𝛼2)
1
𝑙) + 𝒪𝑎.𝑐𝑜.((

𝑙𝑜𝑔𝑑𝑛
𝑆ℋ𝑑𝑛

𝛩ℋ

𝑛𝜙𝜃,𝑥(𝑎𝑛)
)

1
2𝑙

). 

5. Simulation (see Akkal, Kadiri, and Rabhi, 2021; Kadiri, Rabhi, 

and Bouchentouf, 2018) 

In this section the authors consider simulated data studies to assess the finite sample 

performance of the proposed estimator and compare it to its competitor. To study the 

behaviour of the estimator, this part considers a comparison of the CFSIM (2.3) model 

(functional single index model with censored data) with that of CNPFDA (5.1) 

(censored non-parametric functional data analysis), for more details refer to (Chaouch, 

Bouchentouf, Traore, and Rabhi, 2020; Kadiri, Rabhi, Khardani, and Akkal, 2021). 

𝛹̂𝑛(𝜃, 𝑡, 𝑥) =

∑
𝛿k

𝐺̅𝑛(𝑇k)
 Γ(𝑎𝑛

−1𝑑(𝑥, 𝑋𝑘))Ω(𝑏𝑛
−1(𝑡 − 𝑇𝑘))

𝑛
𝑘=1

∑ Γ(𝑎𝑛
−1𝑑(𝑥, 𝑋𝑘))

𝑛
𝑘=1

. (5.1) 

Consider the following regression model where the covariate is a curve and the 

response is a scalar: 

𝑇k = 𝑅(𝑋k) + 𝜖𝑘 , 𝑘 = 1,⋯ , 𝑛, 

where 𝜖𝑖 is the error supposed to be generated by anautoregressive model defined by 
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𝜖𝑘 =
1

2
(𝜖𝑘−1 + 𝜂𝑘), 𝑘 = 1,⋯ , 𝑛, 

with (𝜂𝑘)𝑘 a sequence of i.i.d. random variables normally distributed with a variance 

equal to 0.1. Functional covariate X is supposed to be a diffusion process defined on 
[0, 2𝜋 ⁄ 3] and generated by the following equation: 

𝑋(𝑡) = 2 − cos (𝑊 (𝑡 −
2𝜋

3
)) , 𝑡 ∈ ]0,

2𝜋

3
[ , 

where W is an 𝛼 process generated by  𝑊𝑘 =
2

9
+ 𝜖, 𝑘 = 1,⋯ , 215 and 𝜖 are 

i.i.d. 𝒩(0,1) (standard normal distribution) independently from 𝑊𝑘 (the standard 

normal 𝑊0 is independently generated). The authors carried out the simulation with 

a 215-sample of curve X represented by the following graphs (see Figure 1). Here 

a nonlinear regression function is considered such that: 

𝑅(𝑋) =
1

4
𝑒𝑥𝑝 {2 − 1

(∫ 𝑋′(𝑡)𝑑𝑡
1

0
)
2⁄ }. 

On the other hand, n i.i.d. random variables (𝐶𝑘)𝑘 aresimulated through the 

exponential distribution ℰ(1.5). 
Given X = x,𝑇 ↪ 𝒩(𝑅(𝑋), 0.2) and thus, the conditional median, the conditional 

mode and theconditional mean functions coincide and are equal to R(x) for any fixed x. 

The computation of the estimator is based on the observed data 

(𝑌𝑘 , 𝛿𝑘,𝑋𝑘)𝑘=1,⋯,𝑛,  where  𝑌𝑘 = min{𝑇k, 𝐶k} ; 𝛿𝑘 = 1{𝑇𝑘≤𝐶𝑘}  and single index 

𝜃 which is unknown and has to be estimated. 

In practice, this parameter can be selected by a cross-validation approach (see 

AitSaïdi, Ferraty, Kassa, and Vieu, 2008). 

In this section one can select the real-valued function 𝜃(𝑡) among the 

eigenfunctions of the covariance operator  𝔼[(𝑋′ − 𝔼𝑋′) < 𝑋′, . >ℋ] where 𝑋(𝑡) is 

a diffusion processes defined on arealinterval [𝑎, 𝑏] and 𝑋′(𝑡) its first derivative (see 

Attaoui and Ling, 2016). Thus for a chosen training sample ℒ, by applying the 

principal component analysis (PCA) method, the computation of the eigen vectors of 

the covariance operator estimated by its empirical covariance operator 
1

|ℒ|
∑ (𝑋𝑖

′ −𝑖∈ℒ

𝔼𝑋′)𝑡(𝑋𝑖
′ − 𝔼𝑋′) is the best approximation of functional parameter 𝜃. Now, denote 

with 𝜃∗ the first eigen functions corresponding to the first higher eigenvalue to 

replace 𝜃 during the simulation step. 

In practice, some tuning parameters have to be fixed: kernel Γ(. ) is chosen to be 

the quadratic function defined as Γ(𝑢) =
3

2
(1 − 𝑢2)1[0,1] and cumulative df Ω(𝑢) =

∫
3

4
(1 − 𝑧2)1[−1,1](𝑧)𝑑𝑧

𝑢

−∞
. Taking into account the smoothness of curves 𝑋𝑘(𝑡) 

(Figure 1), the distance in ℋ is selected as: 
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𝑑(𝜒1, 𝜒2) = (∫(𝜒1
′(𝑡) − 𝜒2

′ (𝑡))2𝑑𝑡

1

0

)

1
2⁄

, 

as semi-metric. 

 

Fig. 1. A sample of curves {𝑋𝑘(𝑡), 𝑡 ∈ [0,1]}𝑘=1,⋯,215  

Source: (Akkal, Rabhi, and Keddani, 2021). 

In the following graphs, the covariance operator for  ℒ = {1,⋯ ,215} gives the 

discretisation of the first eigenfunctions 𝜃(presented by a continuous curve), and all 

the eigenfunctions 𝜃𝑘(𝑡) (Figures 2 and 3). 

 

Fig. 2. The first three eigenfunctions (respectively, continuous, dashed and dotted lines) 

representing 𝜃𝑘(𝑡), k = 1; 2; 3  

Source: (Chaouch, Bouchentouf, Traore, and Rabhi, 2020). 
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Fig. 3. Curves 𝜃𝑘(𝑡), k = 1,⋯ , 215 

Source: own calculations. 

Next, to simplify the implementation of the applied methodology, the study takes 

the bandwidths 𝑏𝑛~𝑎𝑛 = ℎ, where his chosen by the cross-validation method on the 

k-nearest neighbours (see Ferraty and Vieu, 2006, p. 102), and denote by 𝜃∗ the first 

eigenfunction corresponding to the first higher eigenvalue of the empirical covariance 

operator 

1

|ℒ|
∑(𝑋𝑘

′ − 𝔼𝑋′)𝑡(𝑋𝑘
′ − 𝔼𝑋′)

𝑘∈ℒ

, 

and follow these steps: 

Step 1: Compute the inner product: < 𝜃∗, 𝑋1 >,...,< 𝜃∗, 𝑋215 >, generate 

independently variables 𝜀1, … , 𝜀215, then simulate the response variables 𝑌𝑘 = 
𝑟(< 𝜃∗, 𝑋𝑘 >) + 𝜀𝑘, where 𝑟(< 𝜃∗, 𝑋𝑘 >)  =  exp(10(< 𝜃

∗, 𝑋𝑘 > −0.05)) and 

generate independently variables 𝜀1, … , 𝜀215. 
Step 2: For each k in the test sample ℐ = 161,⋯ , 215, one computes 

𝑌̂𝑘 = 𝜗̂𝜃∗(𝛾, 𝑋𝑘) and 𝑌̂𝑘 = 𝜗̂(𝛾, 𝑋𝑘), where 𝜗𝜃(𝛾, 𝑥) = inf{𝑦 ∈ 𝑅,𝛹
𝜒(𝑦) ≥ 𝛾} and  

𝛹̂𝜒(𝑦) =
∑  Γ(ℎ−1𝑑(𝑥, 𝑋𝑘))Ω(ℎ

−1(𝑦 − 𝑌𝑘))
𝑛
𝑘=1

∑ Γ(ℎ−1𝑑(𝑥, 𝑋𝑘))
𝑛
𝑘=1

, ∀𝑦 ∈ ℝ. 

Step 3: Finally, the authors present the results by plotting the predicted values 

versus the true values and compute the mean squared error (MSE): 

𝑀𝑆𝐸 =
1

|ℐ|
∑(𝑌𝑗 − 𝑌̂𝑗)

2

𝑗∈ℐ

. 
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Then using the learning sample to compute the estimator of 𝑌̂𝑘 = 𝜗̂𝜃∗(𝛾, 𝑥) and 

𝑌̂𝑛𝑘 = 𝜗̂(𝛾, 𝑥) for 𝑗 = {161,⋯ , 215}. Lastly, the results are shown by plotting the true 

values versus the predicted values for the MSE under censored data for both estimators 

with different censored rate (CR) (2.3) and (5.1) which are defined as 

𝐶𝐹𝑆𝐼𝑀.𝑀𝑆𝐸 =
1

55
∑ (𝑌𝑗 − 𝑌̂𝑘)

2, 𝐶𝑁𝑃𝐹𝐷𝐴.𝑀𝑆𝐸 =
1

55
∑ (𝑌𝑗 − 𝑌̂𝑛𝑘)

2

215

𝑘=161

215

𝑘=161

. 

 

Fig. 4. Comparison between CNPFDA and CFSIM with 𝐶𝑅~3% 

Source: own calculations. 

 

Fig. 5. Comparison between CNPFDA and CFSIM with 𝐶𝑅~18% 

Source: own calculations. 
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One can see that the sum of mean square error (MSE) of the method (Censored- 

-Single-Index-Method) is less than that of the Censored Non-Parametric Functional 

Data Analysis (CNPFDA). This is confirmed by the following graphs comparing the 

conditional quantile by censored single index methods (CFSIM) against the 

conditional quantile by censored non-parametric functional data analysis (CNPFDA). 

Hence the estimator is acceptable. 

6. Conclusion 

This paper focused on the non-parametric estimation of a conditional quantile for 

independent data under random censorship. Both the almost complete convergence 

(with rates), and the resulting estimator were shown to be asymptotically normally 

distributed under some regularity conditions. Naturally, the plug-in rules were used to 

obtain an estimator of the asymptotic variance term. The authors point out that here it 

is possible to prove that the variance estimator is almost completely consistent, using 

analogous ideas. 

The proofs are based on a combination of the existing techniques. The author’s 

prime aim was to improve the performance of this model for the conditional quantile 

with the censored response variable. The simulations experiments in this paper show 

that this methodology can be easily implemented and works very well for both 

simulated and real data. It is well known that the kernel choice does not affect 

substantially the quality of the estimator. By contrast, the bandwidth choice is very 

crucial in non-parametric estimation. In addition, in order to explore the effectiveness 

of this method in real situations, the authors applied the CNPFDA estimator to data 

constituting hourly electricity demand for the Rocky Mountain region of the United 

States, as well as spectrometric data. 

This paper examines conditional distribution based on the single-index model in 

the censorship model when the sample is considered as an independent and identically 

distributed (i.i.d.) random variables. The asymptotic properties such as point-wise 

almost complete consistency, and the uniform almost complete convergence of the 

kernel estimator with rates, are presented under some mild conditions. In this case, the 

asymptotic properties of the estimation of the conditional hazard function and the 

asymptotic normality of the conditional quantile in the single functional index model 

are being investigated in other works by these authors. 
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REGRESJA KWANTYLOWA 

POJEDYNCZEGO WSKAŹNIKA FUNKCJONALNEGO 

DLA NIEZALEŻNYCH DANYCH FUNKCJONALNYCH 

Z CENZUROWANIEM PRAWOSTRONNYM 

Streszczenie: Głównym celem artykułu jest prezentacja nieparametrycznej estymacji kwantyli 

rozkładu warunkowego na podstawie modelu jednoindeksowego w modelu cenzury, gdy próba jest 

traktowana jako niezależne zmienne losowe o identycznym rozkładzie. Przede wszystkim 

wprowadzono estymator jądrowy dla funkcji skumulowanego rozkładu warunkowego (cond-cdf). 

Następnie podano oszacowanie kwantyli przez odwrócenie oszacowanego cond-cdf. Właściwości 

asymptotyczne są określane, gdy obserwacje są połączone ze strukturą jednoindeksową. Na koniec 

przeprowadzono badanie symulacyjne, aby ocenić skuteczność tego oszacowania. 

Słowa kluczowe: dane cenzurowane, estymator jądrowy, normalność, estymacja nieparametryczna, 

prawdopodobieństwo small ball. 
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