Slovakia Ivana Martinková Slovakia # SMARTS Programme and Pupils' Metacognitive Abilities – A Pilot Study DOI: 10.15804/tner.2022.67.1.01 #### **Abstract** The presented paper focuses on the impact of intervention with the application of the SMARTS program on students' metacognitive abilities. The metacognitive program SMARTS, which is a product of RILD¹ (Research Institute for Learning and Development, Lexington, Massachusetts, the author Lynn Meltzer), was translated, adapted, and pilot-tested in the Slovak educational context conditions. In the form of qualitative intervention case studies, the paper analyses (1) the diagnostic potential of SMARTS revealing deficits in students' metacognitive abilities (organisationorganization and prioritisation-prioritization), (2) an intervention to improve a student's specific metacognitive ability, (3) outcome (stagnation/progress/regression) of the intervention. The results obtained by direct participatory observation applied in the intervention point to a possible positive impact of the SMARTS program on the observed metacognitive abilities of students. **Keywords:** *metacognitive skills, metacognitive intervention, metacognitive program SMARTS, BRIEF, D-KEFS, case study.* ¹ The authors of the article completed training for the SMARTS application; training organized and completed at the Research Institute for Learning and Development, Lexington, USA. #### Introduction The concept of metacognition and metacognitive abilities havehas often been referred to in literature in the context of pupils' school achievement (Bryce et al., 2015; Lawson & Farah, 2017). Insufficiently developed metacognitive abilities can be observed in pupils' reduced self-regulation, lack of the ability to plan, think strategically, look for alternative solutions, apply effective metacognitive strategies in the task-solving process. Targeted interventions can correct deficits in pupils' metacognitive behaviour Deficits in pupils' metacognitive behaviour can be corrected by targeted interventions. The need for the development of metacognition or metacognitive strategies (Susantini, Indana, & Isnawati, 2018) and effective learning strategies used by pupils (Rodek, 2019) and teachers (Petlák & Schachtl, 2019) has been discussed in the professional literature. #### Metacognition Metacognition contributes to persons'effective learning (e. g. Flavell, 1979; Lane, 2009). It is defined as a person's ability to plan, monitor, assess processes s/he uses when learning and acquiring knowledge. Research has confirmed that metacognitive strategies can be acquired by practice, step-by-step learning and training (Diamond & Lee, 2011). #### Programs for development of pupils' metacognitive strategies Metacognitive strategies can be learnt in two ways: 1) intuitively by one's own or mediated experience; 2) explicitly by systematic training. Research in this area (Veenman et al., 2006; Bannert & Mengelkamp, 2008) suggests that pupils' metacognitive strategies are not spontaneously developed toin the extent allowing their independent and automatic use when solving various school or out-of-school tasks. Educational and stimulation programmes for the development of metacognitive functioning haveare of various characteristicscharacters. Kovalčíková (2017) distinguishes two programme lines. One line includes programmes characterised-characterized by extracurricular approaches unrelated to the content of a specific school subject. They aim to teach generally applicable principles and forms of thinking. In the professional literature, stimulation programmes of this group are referred to as domain-general. They include, e.g., Bright Start, COGNET, Peer Mediation with Young Children Programme. The other line includes context-oriented approaches developing specific cognitive aspects in curricular domains (e.g., Slovak Language, Mathematics, Science, etc.). These domain-specific approaches include, e.g., Cognitive Assault Strategy, and Connecting Mathematics Concepts (Engelmann & Carnine, 1991; Miles & Forcht, 1995). In Slovakia, domain-specific programmes includethe category of domain-specific programmes includes a cognitive stimulation programme developed and experimentally tested in the domain of Mathematics and Slovak Language² for underachieving pupils. ## Metacognitive programme Programme SMARTS The metacognitive programme SMARTS develops a school "culture" with foundations built on the awareness of the importance of self-regulation and self-understanding in the process of learning (Meltzer et al., 2004). The programme aims The aim of the programme is to help pupils understand their strengths and weaknesses in the learningprocess, and to teach them effective use of metacognitive strategies to solve tasks. The SMARTS Programme was translated, adapted and pilot-tested in the Slovak conditions within the project VEGA 1/0254/20³. SMARTS consists of 7 units; 23 lessons target individual areas of metacognitive self-regulation. Meltzer (2014) divides SMARTS into 5 areas: 1) cognitive planning; 2) cognitive flexibility; 3) organisingorganizing and prioritisingprioritizing; 4) working memory; 5) self-monitoring and self-checking. Below, one part of the SMARTS Programme will be analysedanalysed— organisingorganizing and prioritisingprioritizing. ## OrganisingOrganizing and PrioritisingPrioritizing⁴ OrganisationOrganization or the ability to systemisesystemize and sort information reflects the quality of a person's metacognitive functioning. Prioritisation- ² Project APVV-15-0273, 2016–2019; principal investigator Prof. PhDr. Iveta Kovalčíková, PhD. ³ VEGA 1/0254/20SMARTS – Slovak adaptation and pilot testing of the programme for stimulation of executive functions and metacognitive abilities in underachieving pupils; principal investigator Prof. PhDr. Iveta Kovalčíková, PhD. ⁴ In the text, the terms prioritization and prioritizing are used as synonyms without a semantic change. Prioritization is necessary when dealing with most school but also common life obstacles. Setting The ability to set one's priorities, in the order of importance, and organising organizing time, materials, and ideas, and activities, is are important abilities for optimal school achievements. A teacher's task is to teach pupils to use organisation organization and prioritisation prioritization strategies in the areas of writing, reading, mathematicsor, and preparingation for classes (Meltzer, 2014). Strategies aimed at organising and prioritising the ability to organize and prioritize information are the basis for reading with comprehension. In order to stimulate the ability to organize and prioritize, wWe applied the following SMARTS curriculum lessons to stimulate these abilities: - 1) Purposeful Highlighting a strategy aimed at identifying identification of key information in the text and inhibiting, the ability to inhibit irrelevant information. - 2) *Triple-Note-Tote* a strategy aimed at development ofdeveloping the abilitiesy to organiseorganize and categorisecategorize information and, look for relationships and connections. - 3) *BOTEC*⁵ a strategy aimed at generating topic-related words, sorting words intoto categories, formulating a key sentence, details and a summarising-summarizing sentence. The content of the lessons was adapted to the Slovak curricular context. ## Methodology of research Research Methodology Research question: What is the impact of intervention through the metacognitive programme SMARTS on selected metacognitive abilities (organising organizing and prioritising prioritizing) of examined pupils? Research sample: The research sample consisted of pupils meeting the following criteria: pupils of primary education fourth grade (9–10-years old) manifesting deficits in metacognitive and self-regulation abilities. The research sample was selected based on identification by class teachers from a majority group of pupils not diagnosed with any learning and behavioural disorders. Administrators⁶ worked with pupils of an elementary school in Prešov. The administrationAdministration was paired, using the peer mediation principle; during the unit, the $^{^{\}rm 5}$ The acronym BOTEC – B – Brain storming, O – Organizing, T – Topic Sentences, E – Evidence, C – Conclusion ⁶ Administrators of the intervention were the authors of the article. administrator worked with a pair of pupils. Pupils participated in the research based on their parents' informed consent. Research tools and procedures. Examined pupils' data were collected by a qualitative pilot probe connected with intervention represented by a multiple case study. The impact of the experimental intervention was examined on the set of dependent variables (ability to organiseorganize, prioritiseprioritize ideas, information, time or materials). In input measurements, diagnostic tools for determination ofing pupils' executive function levels⁷ were used, including BRIEF (Behavioral Rating Inventory of Executive Function), teacher version (Gioia et al., 2002). The battery evaluates manifestations of executive and metacognitive function "functionality" in the examined person's everyday setting. Also, tests of higher cognitive (executive) functions were used – Delis-Kaplan Executive Function System (D-KEFS, Delis, Kaplan & Kramer, 2001), standardisedstandardized in the Slovak conditions. Intervention of 45–60 minutes interventions twice a week wasere carried out in 25 sessions twice a week. The sessions took place in the elementary school attended by the pupils, within an extracurricular time. Considering the programme pilot testing, the following was examined: (1) detailed processual aspects of the intervention with the emphasis on observation of pupils' behaviour when working with stimulus material; (2) interventions' influence of intervention on the dependent variables. ### **Research Results and Interpretation** Results of the input diagnostics by D-KEFS tests (Table 1) present the current level of the examined pupils' executive functioning. In line with Levin and Hanten (2005) who refer to executive functions as metacognitive and understand metacognitive abilities as an important component of a person's successful executive functioning, rResults in the input tests of a person's executive functioning are perceived as indicators also of the current level of metacognitive abilities, which complies with Levin and Hanten (2005), who referred to executive functions as metacognitive and understood metacognitive abilities as an important component of a person's successful executive functioning. The pupils' performance in the indi- ⁷ H. S. Levin & G. Hanten refer to executive functions as metacognitive, because they perceive metacognitive abilities as an important component of a person's successful executive functioning. cators examined within the input diagnostics may be assessed as under-average in relation to the average performance according to the standardisedstandardized norms. **Table 1.** Examined pupils' executive functioning level (D-KEFS) | D-KEFS test (Input measurements) | Test
Emil | Test
Vanda | Average perfor-
mance according
to the standardized
norm | |--|--------------|---------------|---| | Trail Making Test, Condition 1, Visual Scanning | 45 | 25 | 28-30 | | Trail Making Test, Condition 2, Number Sequencing | 63 | 62 | 48-53 | | Trail Making Test, Condition3, Letter Sequencing | 77 | 50 | 54-59 | | Trail Making Test, Condition 4, Letter – Number Switching | 157 | 125 | 99–109 | | Trail Making Test, Condition 5, Motor Speed | 55 | 80 | 46-54 | | Verbal Fluency Test, Subtest 1, Letter Fluency | 8 | 14 | 18-19 | | Verbal Fluency Test, Subtest 2, Category Fluency | 24 | 26 | 29-31 | | Verbal Fluency Test, Subtest 3, Category Switching | 8 | 9 | 11 | | Design Fluency Test, Condition 1, Full Dots | 8 | 7 | 7 | | Design Fluency Test, Condition 2, Empty Dots | 7 | 7 | 7 | | Design Fluency Test, Condition 3, Switching dots | 3 | 3 | 5 | | Colour-Word Interference Test, Subtest 1, Namecolours | 52 | 48 | 40-42 | | Colour-Word Interference Test, Subtest 2, Read words | 47 | 43 | 33-34 | | Colour-Word Interference Test, Subtest 3, Inhibition | 148 | 95 | 75-80 | | Colour-Word Interference Test, Subtest 4, Inhibition/
Switching | 120 | 80 | 80–86 | | Tower Test – total resulting score | 16 | 14 | 16 | Source: Own processing Legend: - Under-average performance according to standardisedstandardized norms - Average performance according to standardisedstandardized norms Above-average performance according to standardisedstandardized norms Similar results were produced by the observation procedure BRIEF represented by behavioural evaluation of the examined pupils' executive functioning assessed by their class teacher (Table 2). The results reflected the extent to which examined pupils were capable of effective self-regulation in the school setting conditions. In this case, too, the pupils' performances were mostly under-average when compared with the norm for the given age category of pupils. **BRIEF** (Input measurements) T-scores T-scores Scale/Index Average performance Emil Vanda Inhibition 60 49 Shifting Attention 81 60 **Emotional Control** 45 73 RRI 70 56 Initiative 72 73 Working Memory 83 61 50 - 65Planning and organ-77 64 izing Organization of 86 46 Materials Monitoring 74 63 MI 80 64 73 GEC (BRI + MI) 68 **Table 2.** Examined pupils' executive functioning level (BRIEF) Source: Own processing) #### Legend: Under-average performance according to standardisedstandardized norms - Average performance according to standardisedstandardized norms – Above-average performance according to standardisedstandardized norms T-scores – linear transformations of the scale raw scores. T-scores give information about individuals' results in relation to the results of respondents in the standardised group. BRI – Behaviour Regulation Index – represents the pupil's ability to shift attention, modulate emotions and behaviour through adequate inhibition. MI – Metacognition Index – represents the pupil's ability to begin, plan, organise, organize and retain in working memory. GEC – Global Executive Composite – summarisessummarizes all eight clinical scales of the BRIEF method (Gioia, Isquith, Guy & Kenworthy, 2011). ### Selection from pupils' Pupils' case Case Sstudies #### **Case study Study Emil** Before intervention. Based on interviews and observations of the pupil, the level of his self-confidence and motivation could be assessed as reduced. His family perceived Emil as a poorer pupil without a potential to complete, e.g., a university (source: an interview with the pupil). During intervention: Emil was observed deficits in the processes of organising organizing and prioritising prioritizing – the inability to *identify key information* and distinguish it from details of the text, create a title for the paragraph based on the content of the paragraph. To eliminate the observed manifestations of reduced functionality of the monitored processes, the following was applied: a) intervention usingby means of the above mentioned SMARTS stimulating units; b) strong verbal stimulation of the pupil to pay attention to solving tasks using the "think aloud" method. After intervention. There was progress, manifest in the improved ability to identify key information in the text, distinguish it from details and to create a graphic text to memorisememorize the textcaption. As said Emil himself: "I used a strategy of my own named "picture" (his modification of the "Triple-Note-Tote, Double-Note-Tote") which I used at Homeland and Nature Study, and Natural Science. I always drew what I did not understand in order to understand it. The pupil was able to internalise internalize the learnt strategies for organisingorganizing and prioritising prioritizing, however, but still required intense leading and scaffolding by the administrator. His preparation for classes was failing mainly in the home setting. #### **Case Study Vanda** Before intervention. Vanda's writing was neat, but with manya large number of spelling and grammar errors. Her reading was slow, lacking fluency, with manya number of mistakes. Her speech was slow, calm and diffident. Her working pace could be considered slow. Vanda had difficulty presentingto present outcomes of her thinking both verbally and in writing. During intervention. During sessions, an effort to solve assigned tasks was observed, but adversely affected by the pupil's low self-confidence (e.g., when asked why she frequently copied off of her school-mate, she answered: "Because I am not sure about the answer"). Observation during the stimulating units revealed the following significant difficulties of the pupil: reading with comprehension, the inability to identify key information in the text, difficulty to paraphrase sentences and categorisecategorize information. Also, difficulties with mastering concepts and vocabulary were observed, whichthat can be considered the predictor of the ability to read with comprehension. The difficulty to decode individual words in the text affected working memory capacitythe capacity of working memory. The pupil had problems retainingto retain information in memory, which subsequently caused problems in the area of inferential thinking and, indirectly, problems arose with comprehension of the text. In result of the cascade of deficits, the pupil was not capable of metacognitive monitoring of her own text comprehension linked with connecting individual thoughts of the text. She had difficulties applyingto apply metacognitive strategies to check her own interpretations of the text'stext meaning. To eliminate the observed manifestations of reduced functionality of executive functioning processes (organisingorganizing, prioritisingprioritizing), the following was applied: a) *intervention method* – stimulating units "Purposeful Highlighting", "Triple-Note-Tote/Double-Note-Tote"; b) *intervention by the administrator* – the administrator produced her own task solving examples and systematically applied metacognitive questions for the pupil to arrive at the correct solution of the task on her own. After intervention. At the final stage of the stimulating sessions, significant progress in metacognitive and cognitive processes was observed in the pupil, this in the abilities: reading with comprehension, paraphrasing sentences, identifying key information and distinguishing it from details in the text, creating titles for analyse-danalysed paragraphs. **Table 3.** Summary outcomes of the intervention process | Stimulation phase (Outcomes) | | Intervention process outcomes | | |---|---|-------------------------------|----------| | Metacognitive abilities | Observed problem | Emil | Vanda | | Prioritizing,
Organizing,
Flexibility | Problem to read with comprehension | | Progress | | | Problem to paraphrase the text | | Progress | | | Problem to identify key information and details in the text | Progress | Progress | | | Problem to create paragraphs and their titles | Progress | Progress | Source: Own processing) On the basis of Based on the outcomes obtained by observation and interviews, the impact of the intervention on the pupils' metacognitive abilities can be assessed as positive (Table 3). Following the termination of the intervention, the pupils' behavioural manifestations in the educational process were also evaluated evaluated also by their class teachers. The author's assessment sheet consisted of 20 scaled items representing indicators of the pupil's metacognitive behaviour. Teachers assessed the level of manifest metacognitive behaviour before intervention and after the intervention. Both examined pupils progressed pupils made progress in more than 15 items/indicators out of 20. ## Discussion, conclusion Conclusions, and recommendations Recommendations The pilot research carried out has certain benefits and limitations. The benefit of the qualitative research design can be seen in the comprehensive evaluation of the pupil, his/her cognitive dispositions, experiencing, emotions; the possibility to observe detailed processual aspects of emerging metacognitive abilities. Moreover, the qualitative study is necessary in case of the new programme adapted to the conditions of the Slovak context. On the other hand, the small research sample (3 pairs of pupils; 1 pair analysedanalysed in the article) does not allow even approximating to generalisationgeneralization of the outcomes. However, it should be emphasised emphasized that only understanding relations and connections within qualitative research can converge to future experimental testing of the intervention within a quantitative research design. The results of the input measurements and outcomes of the intervention phase may have been influenced by intervening variables (the school setting, pupil's current emotional situation, administrator's competencies, time of interventions, etc.). The original design of the quasi-experimental approach (pre-test – intervention – post-test) was not fully complied with, due to the current epidemiological (COVID-19) situation. It would be good to examine the impact of the SMARTS Programme over a wider time frame. The research pilot-tested more of the stimulating units of the SMARTS curriculum, which could subsequently subsequently could be formed into a set of stimulating units according to pupils' individual needsof a pupil. The findings of our research suggest possibilities to implement SMARTS at two levels: (1) Stimulating programmes (domain-general) – based on the SMARTS programme principles and strategies applied in the form of "tutoring" the whole class, a group or a pair of pupils, or individual tutoring; (2) Instruction programmes (domain-specific) – SMARTS principles implemented in curricula of specific subjects (mostly Language, Mathematics, Natural Science, Homeland and Nature Study) and applied by teachers as part of instruction; e.g., outcomes of an experimentally tested domain-specific programme are analysedanalysed by Kovalčíková et al. (2021). The presented research results indicate the potential of intervention's potential to effectively influence the ability to work with the (factual) texteffectively. The visible progress of the pupils was registered most of all in the pupils' motivation to learn new concepts and ideas, improved ability to read with comprehension, paraphrase the text, identify key words and information and details in the text, create paragraphs and their titles, categorisecategorize information obtained from the text, create a graphic text as an aid to memorisememorize information. This method of learning a text, e.g., from Natural Science and Homeland and Nature Study, reduces learning the word for word, influences retention of knowledge in long-term memory. The intervention process pointed out also indicated the administrator's to competencies and experience of the administrator as the key determinant of pupils' behaviour in the programme testing process. We assume that it is necessary to further examine and define the competencies the metacognitive stimulation administrators need to successfully implement the interventionbe successful in the intervention implementation. The pilot testing shows that, as stateSusantini, Indana & Isnawati (2018), knowing pupils' cognitive equipment, understanding the thinking and information processing process is necessary, as Susantini, Indana, and Isnawati (2018) stated. This equipment allows the administrator/teacher to work with the programme so that s/he can flexibly respond to a pupil's cognitive needs. Interventions of a similar type cannot be administered mechanically without understanding possible reasons forof a pupil's failures when working with a specific learning material. In this connection, the following questions can be formulated: How to motivate teachers to apply the principles of similar programmes to instruction? How can the stimulation of a pupil's metacognitive competencies and strategies be implemented into the teaching-learning process? The suggested questions may be a direction of further basic and applied research in the area of cognitive pedagogy. #### Acknowledgements The article is an output of the project VEGA 1/0254/20. #### References Bannert, M., & Mengelkamp, Ch. (2008). Assessment of metacognitive skills by means of instruction to think aloud and reflect when prompted. Does the verbalisation method affect learning? *Metacognition and Learning*, *3*, 39–58. doi: 10.1007/s11409-007-9009-6 Bryce, D., Whitebread, D., & Szücs, D. (2015). The relationship among executive functions, metacognitive skills and aducational educational achievement in 5 and 7 years-old children. *Metacognition and Learning*, 10(2), 181–198. doi: 10.1007/s11409-014-9120-4 Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). *The Delis-Kaplan executive function system*. San Antonio: The Psychological Corporation. Diamond, A., & Lee, K. (2011). Interventions Shown to Aid Executive Function Development in Children 4 to 12 Years Old. *Science*, 333, 959–964. doi: 10.1126/science.1204529 Engelmann, S., & Carnine, D. (1991). *Theory of instruction: Principles and applications*. Eugene, OR: ADI Press. - Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. *American Psychologist*, *34*(10), 906–911. doi:10.1037/0003-066X.34.10.906. - Gioia, G. A. (2002). Confirmatory factor analysis of the Behavior Rating Inventory of Executive Function (BRIEF) in clinical sample. *Child Neuropsychology*, 8, 249–257. doi: 10.1076/chin.8.4.249.13513. - Gioia, G. A., Isquith, P. K., Guy, S. C., & Kenworthy, L. (2011). BRIEF Škála hodnotenia exekutívnych funkcií u detí [The Behavior Rating Inventory of Executive Functions in children]. Autor českej verzie [Author of the Czech version] R. Ptáček. Praha: Hogrefe Testcentrum. - Kovalčíková, I. (2017). Kognitívna pedagogika 1 [Cognitive Pedagogy 1]. Prešov: Vydavateľstvo Prešovskej univerzity v Prešove. - Kovalčíková, I., Veerbeek, J., Vogelaar, B., Prídavková, A., Ferjenčík, J., Šimčíková, E., & Tomková, B. (2021). Domain-Specific Stimulation of Executive Functioning in Low-Performing Students with a Roma Background: Cognitive Potential of Mathematics, *Education Sciences*, 11(6), 285–200. doi: 10.3390/educsci11060285 - Lane, H. C. (2009). Promoting Metacognition in Immersive Cultural Learning Environments. In Jacko, (Ed.), *Human-Computer Interaction. Interacting in Various Application Domains* (pp. 129–139). Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-02583-9 15 - Lawson, G. M., & Farah, M. J. (2017). Executive Function as a mediator between SES and academic achievement throughout childhood. *International Journal of Behavioral Development*, 41(1), 94–104. doi: 10.1177/0165025415603489 - Levin, H. S., & Hanten, G. (2005). Executive functions after traumatic brain injury in children. *Pediatric Neurology*, 33(2), 79–93. doi: 10.1016/j.pediatrneurol.2005.02.002 - Meltzer, L., Katzir, T., Miller, L., Reddy, R., & Roditi, B. (2004). Academic self-perceptions, effort, and strategy use in students with learning disabilities: Changes over time. *Learning Disabilities Research and Practice*, *19*(2), 99–108. doi: 10.1111/j.1540-5826.2004. 00093.x - Meltzer, L. (2014). Teaching Executive Functioning Processes: Promoting Metacognition, Strategy Use, and Effort. In S. Goldstein, & J. A. Naglieri, (Eds). *Handbook of Executive Functioning* (pp. 445–474). New York: Springer. - Miles, D., & Forcht, J. P. (1995). Mathematics strategies for secondary students with learning disabilities or mathematics deficiencies: A cognitive approach. *Intervention on School and Clinic*, *31*, 91–96. doi: 10.1177/105345129503100205 - Petlák, E., & Schachl, H. (2019). Neurodidactics and its perception by teaching in Slovakia. *The New Educational Review*, *57*(3), 161–172. doi:10.15804/tner.2019.57.3.13. - Rodek, V. (2019). Learning and its effectiveness in students' self-reflection. *The New Educational Review*, 55(1), 112–120. doi: 10.15804/tner.2019.55.1.09. - Susantini, E., Indana, S., & Isnawati (2018). Using metacognitive strategy to teach learning strategies: A study of Indonesian pre-service biology teachers. *The New Educational Review*, 52(2), 258–268. doi: 10.15804/tner.2018.52.2.20. - Veenman, M. V. J., Van Hout-Wolters, B. H. A. M., & Afflerbach, P. (2006). Metacognition and learning: conceptual and methodological considerations. *Metacognition and Learning*, 1, 3–14. doi: 10.1007/s11409-006-6893-0