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Abstract

The article has three aims. The first aim is to develop an im-
proved version of the Keynes-Metzler-Goodwin (the KMG) 
monetary growth model originally presented and analysed 
in a series of publications by Carl Chiarella, Peter Flaschel 
and Willi Semler. The improvement of the model is obtained 
by modifying some of its equations in a way which ensures 
that they reflect real macroeconomic dependencies more 
properly. The equations that have been modified describe 
final demand expectations, determinants of production de-
cisions, fixed capital accumulation, tax revenues, govern-
ment budget deficit and money demand. The second aim 
is to transform the model into an intensive form described 
by seven non-linear differential equations and determine its 
unique steady state which shows proportions between vari-
ables on the balanced growth path. The third ultimate aim 
is to present a mathematical proof that the new improved 
version of the KMG model is locally asymptotically stable.
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Introduction

The mainstream economic theory has been increasingly questioned since 
the global financial crisis of 2007–2008. This raises interest in monetary mo-
dels of economic growth which are related to Keynesian economics. Especially 
important in this regard are the works of three well known Keynesian econo-
mists: Carl Chiarella, Peter Flaschel and Willi Semmler who have been deve-
loping Keynesian economics over the last two decades. They have published 
jointly (sometimes with other co-authors) a series of books on Keynesian eco-
nomics emphasing interrelations between real and financial spheres of the 
economy. Among others, one should mention the comprehensive monograph 
The dynamics of Keynesian monetary growth (Chiarella & Flaschel, 2000) and 
the fundamental trilogy Reconstructing Keynesian macroeconomics (Chiarella 
et al., 2012, 2013, 2014), in which they make an attempt at completely rein-
terpreting and reconstructing the whole Keynesian macroeconomics.2 Other 
important works by these authors include Chiarella et al. (2000), Asada et al. 
(2003), Chiarella et al. (2005), and Charpe et al. (2011).

The most important model developed and analyzed (in various variants) by 
Chiarella, Flaschel and Semmler was named by them “the Keynes-Metzler–
Goodwin model” (abbreviated as the KMG model) to emphasize its relation-
ship to the concepts developed earlier by these economists. The KMG model 
is a disequilibrium monetary growth model which refers to ideas expressed in 
Keynes’s General theory (1936) and in Goodwin’s (1967) work on the interaction 
of growth and income distribution; these are the K and G components of the 
model. The KMG models take into account a gradual adjustment of inventories 
to its desired level. The dynamics of inventories is related also to the concept 
of expected sales, which is formulated in Metzler (1941) and constitutes the-
refore the M-component of the KMG approach. To the same extent, the KMG 
model refers also to the Keynes-Wicksell type models presented, among others, 
in Stein (1966), Rose (1966) and Fischer (1972). Besides, it is worth mentio-
ning its similarity to the Keynesian model presented in Sargent (1987, Ch. 5).

All versions of the KMG model describe the functioning of the economy 
with the use of sixth or seventh dimensional systems of non-linear differential 
equations that reflect adaptive decision-making processes. A characteristic 
feature of any KMG model is that it can be transformed into so called intensi-
ve form model, in which all original variables are replaced with new variables 
describing proportions between them. The intensive form model enables in 
turn the derivation of the steady state of the economy, which describes pro-
portions between variables of the original model maintained in the process 
of balanced growth at a certain constant rate.

 2 Another alternative and important current in economics referring to Keynes is post-
Keynesian economics (Lavoie, 2014).
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The main theoretical results which are obtained with the use of the inten-
sive form of KMG models are stability theorems showing conditions under 
which the economy converges toward the steady state, which is equivalent 
to approaching the balanced growth path.

Since the intensive form model is a system of nonlinear differential equ-
ations to prove its (local) asymptotic stability, one has to show that all of the 
eigenvalues of the Jacobian matrix of this system are either negative num-
bers or complex numbers with negative real parts. Investigating the eigenva-
lues is a standard way of proving stability, which has been applied hundreds 
of times to different dynamic models. Since eigenvalues are also roots of the 
corresponding polynomial, their analysis is quite easy if one deals with a sys-
tem of two differential equations; however, it becomes very difficult and so-
phisticated in the case of high dimensional systems such as the KMG model. 
In the latter case, probably the only way to show that the eigenvalues of a gi-
ven Jacobian matrix guarantee stability is a subsequent zeroing of appropria-
te matrix parameters, which enables a multiple Laplace expansion of the de-
terminant of the Jacobian matrix in order to obtain a sequence of matrices of 
an increasingly lower order whose eigenvalues can be more easily analysed. 
First, it is shown that the matrix of the lowest order has appropriate eigenva-
lues. Next, through a subsequent restoration of small positive values of pre-
viously zeroed parameters, it is demonstrated that also the original Jacobian 
matrix has eigenvalues which are either negative numbers or complex num-
bers with negative real parts.

The first rigorous proof of stability of the seven-dimensional KMG model 
based on the idea outlined above was presented twenty years ago in Chiarella 
et al. (2002). Other versions of the proof of stability (concerning modified 
KMG models) can be found in Asada et al. (2003) and Chiarella et al. (2006). 
In the latter publication the authors use the term cascade of stable matrices 
approach to name the general idea lying behind the proof.3

Work on the extension and modification of the KMG model is continuous. 
One example is Ogawa (2019a, 2019b, 2020), who extended the KMG mo-
del to a two-sector model. Another is Flaschel (2020), in which an extensive 
KMG model is used to analyze how taxes, transfer payments and government 
spending improve the social protection of the employee household sector. It 
is worth mentioning the most recent work by Chiarella et al. (2021), which is 
the culmination of the development of the Bielefeld school of macroecono-
mic thought. The book is authored by major representatives of this approach, 
namely Flaschel, Franke and the late Chiarella.

 3 Although the term the cascade of stable matrices approach comes from Chiarella et al. 
(2006), the idea of proving the stability hidden behind it was used independently of them by 
other authors in their proofs of stability of high dimensional dynamical systems completely 
different from the KMG model, e.g. Duménil and Lévy (1991), Kiedrowski (2018).
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An interesting variant of the KMG model with private corporate debt, aimed 
at modeling the effects of fiscal and monetary policies, has been presented 
recently by Asada et al. (2018, 2019). The authors of these publications also 
deal with the question concerning the existence of limit cycles in the KMG mo-
del. Keynesian monetary growth models similar to the KMG model in which 
limit cycles or periodic orbits may exist have also been presented recently in 
Murakami (2016, 2018, 2020) and Araujo et al. (2020).

This article has three aims. The first aim is to demonstrate a new, improved 
KMG model which differs from the versions analyzed by the aforementioned 
authors through a number of modifications. The second aim is to transform 
the model into its intensive form and determine its unique steady state. The 
most important and challenging is the third aim, which is to prove that the 
new version of the KMG model is locally asymptotically stable, which means 
that the economy described by this model has an intrinsic ability to converge 
toward the balanced growth path.

The modifications are aimed at improving the model by eliminating from 
its equations some especially simplistic, questionable elements which seem 
to have been introduced not for their economic relevance but primarily for 
their simplicity, which essentially eases a mathematical analysis of the mo-
del. The first two modifications concern equations describing determinants of 
the growth rate of fixed capital K̇/K and the growth rate of expected demand 
Ẏ e/Y e. In all the KMG models presented by Chiarella et al. above equations 
contain parameter n added simply to other components of these equations. 
Depending on the particular version of the model, n expresses either the con-
stant growth rate of labour supply or the growth rate of labuor productivity 
or the sum of these two. Adding n to these equations is very convenient sin-
ce, in the steady state, the remining components of the equations become 
zero, which implies immediately that, in the steady state, both fixed capital 
and expected demand grow at rate n. In this article, the dynamics of fixed 
capital and expected demand are much more thoroughly elaborated. In the 
equation describing K̇/K, the constant parameter n has been replaced by a 
variable expressing the growth rate of expected demand Ẏ e/Y e. At the same 
time, parameter n has been removed also from the equation for Ẏ e/Y e and 
substituted with the growth rate of the real wage as one of the two factors 
influencing Ẏ e/Y e, which is economically much more justifiable. The growth 
rate of the real wage is an endogenous variable which depends on other mo-
del variables: primarily on the growth rate of the nominal wage and the in-
flation rate. Similar in character is the third modification concerning the equ-
ation showing three factors which determine output level Y. In this case, one 
doubtful factor (component) nN d (N d – desired level of inventories) has been 
replaced with Ẏ e, i.e. the change in expected demand.

Other important modifications concern the assumption about taxes and 
real interest on bonds. In all versions of the KMG model presented by Chiarella 
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et al., in order to ease the derivation of the intensive form of the model, it is 
assumed that lump-sum real taxes net of interest are collected in such a way 
that their ratio to the capital stock remains constant. As a consequence, the 
dependence of tax revenues on tax rates imposed on labuor or capital inco-
mes is not visible. The dependency above is explicitly taken into account only 
in the present model, which allows for a more comprehensive analysis of fiscal 
policy regarding taxes and the government budget deficit. In particular and 
contrary to the previous models, the ratio of the government budget deficit 
to fixed capital ceases to be constant in time, despite the assumption about 
a constant ratio of government spending to capital.

The last modification introduced into the model concerns the money market 
and the interest rate. In the earlier versions of KMG models, a linear money de-
mand function is considered, whose values depend on expected demand and 
the deviation of the actual interest rate from the steady state interest rate, which 
is known in advance.4 As a consequence, money demand in the steady state 
is determined exclusively by the expected demand being independent of the 
value of the exogenously given steady state interest rate. This also raises some 
doubt. Therefore, in the present article, a nonlinear money demand function is 
considered which depends on expected demand and the actual, endogenously 
determined interest rate. The steady state interest rate is not known in advance.

The aforementioned improvements make the KMG model closer to reality. 
Despite the increased mathematical complexity of the modified model it is 
still possible to transform the model into its intensive form and determine its 
unique steady state which is the second aim of the article. Determination of 
the intensive form model and its steady state presented in the article opens 
the way to prove the stability of the model, i.e. to the realization of the third 
and the main aim of the article.

The proof of stability presented in the article exploits the aforementioned 
idea cascade of stable matrices approach, as named and originally applied by 
Chiarella et al. Despite this, due to at least two reasons, it is not just a re-nar-
ration of the proofs of stability of the earlier versions of the KMG model. The 
first reason is that the mathematical structure of the KMG model developed 
in the article is much more sophisticated than its earlier versions analyzed 
by Chiarella et al. This is especially visible in the intensive form of the model 
(described by seven non-linear differential equations with two additional con-
ditions) for which the Jacobian matrix in the steady state had to be determi-
ned, and whose eigenvalues had to be examined. The second reason is that 
the proof of stability is obtained under a different set of assumptions about 
model parameters. Some of these assumptions concern tax rates, which are 
not present at all in the KMG models analysed by Chiarella et al.

 4 Chiarella et. al. admit that the above assumption was introduced in order to ease the 
analysis of the model (Chiarella et al., 2000, p. 279).
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To prove stability two fundamental difficulties had to be overcome. The 
first one was the derivation of the values of partial derivatives at the steady 
state of all functions defining the dynamics of the intensive form model in 
order to examine the Jacobian matrix. The second difficulty concerned the 
question as to which parameters in the Jacobian matrix should be zeroed and 
in which sequence, to show finally that all eigenvalues of the Jacobian matrix 
are either negative or complex numbers with negative real parts. There was 
no indication as to how to deal with this crucial question. The proper way of 
proceeding was found in a laborious heuristic process by undertaking a series 
of attempts that only finally led to success.

The article consists of three parts. Section 1 is devoted to the presentation 
of the new version of the KMG model. In Section 2, the model is transformed 
into its intensive form, and the steady state is determined. Finally, in Section 3, 
the proof of the local, asymptotic stability of the steady state is presented.

1. The model

This section provides an overview of the author’s version of the KMG mo-
del, which is a modification of the KMG model considered in Chiarella and 
Flaschel (2000) as well as in Chiarella et al. (2013). The model is presented in 
the following seven sub-sections.

1.1. Consumption, wages and prices

Total final demand Y d (in real terms) is the sum of private sector consump-
tion C, private-sector gross investment I and government (public) sector de-
mand G:

 Y d = C + I + G (1)

Consumer demand is described by the following equation:

 C = (1 – τw)ωLd (2)

where ω – real wage, Ld – labor demand (by assumption equal to employ-
ment), τw – tax rate on income from work.

Despite the simplicity of Equation (2), the consumption dynamics is the 
result of a complex processes on the one hand being formed by production 
dynamics, which determines employment, and on the other hand being de-
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termined by real wage wω
p

= , (the ratio of nominal wage to price level the 

ratio of nominal wage w to price level p).
The growth rate of real wage ˆ /ω ω ω=   equals the growth rate of nominal 

wage ŵ minus inflation rate ˆπ p=  (the growth rate of the price level):

 ˆˆ ˆω w p= −  (3)

Wage and price dynamics are determined by two separate equations of 
two Phillips curves.

The rate of growth in the nominal wage is calculated according to the fol-
lowing equation of the wage Phillips curve:

 ( ) ( )ˆˆ 1 e
w w ww β V V κ p κ π n= − + + − +  (4)

where βw > 0 is a parameter of sensitivity of the nominal wage growth rate to 
the deviation of the employment rate 0 < V < 1 (employment to labor sup-
ply ratio) from natural employment rate V. It is also influenced by the labor 
productivity growth rate (n > 0) and the linear combination of the current in-
flation ˆπ p=  and the expected inflation πe (0 < κw < 1).

Inflation ˆπ p= , in turn, is described by the equation of the price Phillips 
curve

 ( ) ( ) ( )ˆ ˆ 1 e
p p pp β u u κ w n κ π= − + − + −  (5)

according to which inflation depends on the deviation of the capacity utili-
zation rate 0 ≤ u ≤ 1 from its normal level 0 < u < 1 (βp > 0 is the response 
parameter) and on the linear combination of the surplus of nominal wage 
growth rate ŵ over labour productivity growth rate and the expected infla-
tion (0 < κp < 1).5 Coefficient βp > 0 is the reaction parameter of the price level 
to deviation u – u.

The change in expected inflation eπ  depends on the difference between 
the linear combination of current inflation p̂ and its normal value π  (equal to 
inflation at steady state π  = μ – n) and expected inflation πe:

  ( )ˆ (1 )e
e e

π
π β αp α π π= + − −  (6)

where 0eπ
β >  is the adjustment parameter.6

 5 The capacity utilization rate 0 < u < 1 and the employment rate 0 < V < 1 are model vari-
ables defined in section 1.5 (Equations (22) and (25)).

 6 The basic idea of Equation (6) is borrowed from Groth (1988, p. 254). Here, the revisions 
of πe are a combination of two rules with weighting factor α, where the adjustments take place 
at a general speed of adjustment 0eπ

β >. The polar case α = 1 represents adaptive expectations. 
The other extreme case α = 0 is a regressive mechanism. 
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1.2. Capital dynamics and investment demand

Private sector investment demand I equals the sum of net investments, 
increasing the fixed capital stock K of firms, and restitution investments in-
curred to replace depreciated capital. Net investments are described by the 
derivative of capital with respect to time K , while restitution investments are 
given as δK, where 0 < δ < 1 is the capital depreciation index. Thus:

 I = K  + δK (7)

The increase in fixed capital K  is described by the following behavioural 
equation:

 ( ) ( )1 2) ˆ(e e eK i ρ r π K i u u Y K= − − + − +   (8)

where: ρe – the expected rate of return on fixed capital, r – the nominal in-
terest rate on government bonds r – πe – the expected real interest rate, 
ˆ /e e eY Y Y=   – the expected growth rate of final demand, i1 > 0 and i2 > 0 – re-

action parameters.
The expected rate of return on capital is defined as the ratio of expected pro-

fit to capital, where the expected profit is the difference between the expected 
amount of final demand Y e and the costs of labour and capital depreciation:

 
e d

e Y ωL δKρ
K

− −
=   (9)

The growth rate of expected final demand ˆ /e e eY Y Y=   is assumed to be 
shaped according to equation:

  ˆ ˆ e

d e
e

ey

Y YY ω β
Y
−

= +  (10)

where ˆ /ω ω ω=   is the real wage growth rate, (resulting from (3)–(5)), 
d e

e

Y Y
Y
−  

is the relative error in final demand expectations. Symbol 0ey
β >  denotes a re-

action parameter.
The view that an increase in the real wage increases demand expectations 

is quite obvious and expressed by many economists (e.g. Napoletano et al., 
2012). Introducing such an assumption to the KMG model is a novelty pro-
posed by the author.7

 7 In all earlier versions of the KMG model it is assumed that ˆ
e

d e
e

ey

Y YY n β
Y
−

= + , where n 

is an exogenously given constant labour growth rate or the sum of labour growth rate and the 
growth rate of labour productivity (e.g. Chiarella et al., 2013, p. 247). Such an assumption is 
quite doubtful from the economic point of view.
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According to (Equation 8), the first two factors contributing to high fixed 
capital dynamics are:

 – an excess of the real expected rate of return on fixed capital ρe over the 
expected real interest rate on bonds r – πe,

 – an excess of the capacity utilization rate over its natural level (u > u).

The third term ˆ eY K in equation (8) is another novelty introduced by the 
author.8 According to it, the growth rate of fixed capital K /K depends also 
on the expected growth rate of final demand /e eY Y . Such an assumption is 
consistent with the Keynesian theory, which emphasizes the key role of final 
demand in the economy. “The feature that is uniquely Keynesian in growth 
models, and is found in all such models, however, is the role of aggregate de-
mand as a determinant of growth” (Dutt, 2012, p. 42).

It is worth emphasizing that component ˆ eY K in Equation (8) introduces 
a new large loop into the model since, on the one hand, investments I = K  + δK 
are a component of final demand Y d = C + I + G and, on the other, they are 
dependent on final demand. The last dependence is realized directly through 
Equations (8) and (10), and indirectly by the fact that, according to (19)–(20), 
final demand influences production decisions, which in turn, through (22), 
(24)–(25) and (3)–(5), have an effect on growth in the real wage and expec-
ted demand, and ultimately on capital growth.

1.3. Government budget deficit, issuance of bonds and money 
creation

Following Sargent (1987), Asada (2011), Asada et al. (2012) and Chiarella 
et al. (2000, 2005), for the sake of simplicity, the government sector’s demand 
is assumed to be proportional to fixed capital, i.e.:

 G = gK (11)

where g is a constant ratio.
Government expenditures comprise also interest payments on bonds, 

paid to the private sector. Government expenditures are covered mainly by 
taxes. The government’s total tax income (in real terms) is the following sum:

 8 In other KMG models, fixed capital dynamics is described by a simpler equation of the 
form: ( )( ) ( )1 2

e eK i ρ r π K i u u nK= − − + − +  (e.g. Chiarella et al., 2013, p. 246). Since in the 
steady state ρe = (r – πe) and u = u, this implies immediately that, in the steady state, the 
growth rate of fixed capital K /K equals labour growth rate n. Such an equation makes it easier 
not only to derive the steady state of the model but also to prove its stability.
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 d
w c

rBT τ ωL τ ρK
p

 
= + + 

 
 (12)

where τwωLd(0 < τw < 1) are taxes on wages ωLd and c
rBτ ρK
p

 
+ 

 
 are taxes 

on capital gains imposed on profits from fixed capital ρK and profits (in real 

terms) from government bonds rB
p

 (both capital gains are taxed by the same 
capital tax rate 0 < τc < 1).9

Similarly, as in other KMG models (Asada, 2012; Asada et al., 2011; Chiarella 
et al., 2000) it is also assumed that the government budget deficit is financed 
either by the government selling new bonds to the public sector or through 
open market operations by the central bank, which buys short-term bonds 
from asset holders when issuing new money. The open market operations by 
the central bank are a unique channel through which money enters the eco-
nomy. Hence the government budget deficit equation has the form:

 B M pG rB pT+ = + −   (13)

where B denotes government fixed-price bonds in the hands of the public, B M pG rB pT+ = + −  
describes changes in bonds and B M pG rB pT+ = + −   reflects changes in the amount of money 
in the hands of the private sector. 

The central bank’s monetary policy rule is to keep a constant growth rate 
of money supply μ > 0, so:

  ˆ MM μ
M

= =


 (14)

In view of (14), changes in bonds supplied by the government B M pG rB pT+ = + −  which ap-
pear in Equation (13) are given residually.

Since the money market cannot be in disequilibrium, the constant growth 
rate of money supply necessitates an identical growth in money demand, so 
that in every moment of time:

 M = M d  (15)

where M d is money demand.

 9 Assumptions about taxes in the presented KMG model differ essentially from those made 
in its earlier original versions. Usually, in the KMG models, real taxes, net of interest, remain 

in a constant proportion to the capital stock, e.g. 
/ constnT rB p t

K
−

= = . Such an assumption, 

together with G = gK, imply that the ratio of government budget deficit G + rB – T to fixed 
capital K remains constant in time. Moreover, it eliminates both tax rates and bonds from the 
stage which makes easier derivation of intensive form model and calculation of its steady state 
(Chiarella et al., 2013, p. 247). A similar simplifying assumption can be found also in Sargent 
(1987, p. 16) and Rødseth (2000, p. 122).
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Unlike in the earlier versions of the KMG model a non-linear money de-
mand function is considered:

 
e

d pYM h
r

=  (16)

in which pY e is the nominal value of expected demand in the goods market, 
r is the interest rate on bonds and h > 0 is a reaction parameter.10

In view of (14)–(16), to enable a constant growth in money supply, the inte-
rest rate on bonds in every moment of time must satisfy the following equation:

   
epYr h

M
=  (17)

where ˆ MM μ
M

= =


 = μ.

1.4. Determinants of production decisions

To counteract the difficulty with maintaining the continuity of sales caused 
by too low levels of stocks, or the reduction in revenues resulting from too 
high levels of stocks, producers strive to maintain a desired ratio of stocks to 
expected demand. Hence the desired level of stocks N d satisfies equation:

 N d = βN dY e (18)

where βN d is the desired ratio of inventory to the expected demand.
Change in actual inventories N  equals the difference between output Y 

and demand (equivalent to sales) Y d:

 N  = Y – Y d (19)

The decision about output level is based on three factors: currently expect-
ed demand Y e, change in expected demand ( )e e d

Z nY Y β Y β N N= + + −  (resulting from Equation (10)) 
and the deviation of actual inventories from their desired level N d – N. These 
assumptions are reflected in the following behavioural equation:

 10 Money demand function in the earlier KMG models is usually a linear function of the 
form M d = h1 pY e + h2 pK(ro – r), where ro is the steady state interest rate and r is the actual 
interest rate (Chiarella et al., 2013, p. 247). Such a formula assumes that the steady state in-
terest rate is known in advance. In the present KMG model money demand depends not on 
deviations ro – r but on the actual interest rate r. Consequently, the steady state interest rate 
(denoted in the article by r ) is an endogenous variable whose value depends on the model 
parameters. 
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 ( )e e d
Z nY Y β Y β N N= + + −   (20)

where βn > 0, βZ > 0 are reaction parameters.11

1.5. Constraints of output by capital and labor resources

Production requires inputs of fixed capital K and labor L. The dynamics of 
K are described by Equation (8). Labour supply is constant in time and equal 
to L. Capital and labour are complementary, so both production factors are 
necessary in specific amounts to generate a given volume of production (no 
substitution possible). As a consequence, the production technology is de-
scribed by two coefficients: the potential capital efficiency coefficient y p and 

the labour productivity coefficient x. Coefficient y p is ratio 
p

p Yy
K

= , where Y p 

denotes potential output defined as the maximum production that can be ob-
tained with the use of fixed capital K (and sufficient labour supply). 

It is assumed that decisions on production made in line with Equation (20) 
are always feasible with respect to capital, which means that in every mo-
ment of time:

 Y ≤ Y p = y pK (21)

The utilization degree of the existing fixed capital is measured by the capa-
city utilization rate 0 ≤ u ≤ 1 representing the ratio of output Y (determined 
by (20)) to potential output Y p = y pK:

 p

Yu
Y

=  (22)

Deviations of the capacity utilization rate from its natural level 0 < u < 1 
influence price dynamics, as shown in Equation (5). (In particular, according 
to (5), if u exceeds u ̅ firms have limited possibilities of increasing output in 
a short time and then are more likely to raise prices.) By assumption, labo-
ur demand Ld never exceeds labour supply L, so labour demand is identical 

 11 The equivalent of Equation (20) in the earlier versions of the KMG models does not con-
tain component e

Zβ Y  and takes a simpler form: Y = Y e + nN d + βn(Nd – N) (e.g. Chiarella et al., 
2013, p. 247). The above equation is interpreted in such a way that output Y is designed to meet 
expected demand Y e and adjust inventories to the desired level given by Z = nN d + βn(Nd – N). 
Factor nN d however has no clear economic meaning and is probably added to ensure balanced 
growth in the steady-state.
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to employment. Hence, labour productivity coefficient x, defined as output 

per worker, is expressed as ratio d

Yx
L

= , and labuor demand equals 1dL Y
x

= .

Labour productivity x grows exogenously at a constant rate n:

 xn
x

=


 (23)

Thanks to this, despite constant labour supply L, the constraint:

 1  dL Y L
x

= ≤  (24)

is satisfied at any moment of time, even when output grows infinitely (later 
a balanced growth path, at which all quantitative variables, such as output, 
fixed capital, consumption and investments, grow at rate n will be considered).

A counterpart to capacity utilization rate in the case of labour market is the 
employment rate defined as a ratio of employment to labour supply:

 
dLV

L
=  (25)

Deviations of V from its natural level  0 1V< <  influence wage dynamics 
according to Equation (4).

1.6. Investments and savings

So far, only sources of the financing of private consumption C and govern-
ment spending G have been presented. As far as investments I = ( ) ( )1 2) ˆ(e e eK i ρ r π K i u u Y K= − − + − +  + δK are 
concerned the focus has been on the behavioural Equation (8):

( ) ( )1 2) ˆ(e e eK i ρ r π K i u u Y K= − − + − +

which presents factors determining the decision on net investments ( ) ( )1 2) ˆ(e e eK i ρ r π K i u u Y K= − − + − +  with-
out indicating sources of their financing. To fill this gap the standard identi-
ty ( ) ( )1 2) ˆ(e e eK i ρ r π K i u u Y K= − − + − +  = S will be derived below which implies that ex post net investments ( ) ( )1 2) ˆ(e e eK i ρ r π K i u u Y K= − − + − +  
equal total saving S composed of private savings Sp and government savings Sg:

 S = Sp + Sg (26)



39D. Sołtysiak, On the stability of a certain Keynes-Metzler-Goodwin monetary growth

Private savings Sp equal taxed capital income (on fixed capital and bonds) 
and are expressed by the Equation below:

 (1 )p c
rBS τ ρK
p

 
= − + 

 
 (27)

Equation (27) results from the simplifying assumption (reflected by 
Equation (2)) that, rather than saving, workers spend their whole taxed labo-
ur income entirely on consumption while capital owners do not consume at 
all, devoting their whole taxed capital income (from fixed capital and bonds) 
to savings (an assumption often found in post-Keynesian literature).

Government savings Sg (if negative—government deficit) are the differen-
ce between tax revenues and the sum of government spending on goods and 
services G and the real value of paid interest on bonds B/p:

 g
rBS T G
p

 
= − + 

 
 (28)

Equations (27)–(28) imply that:

 ( )1 c
rB rBS τ ρK T G
p p

   
= − + + − +   

   
 (29)

According to (9) the realized profit on fixed capital equals ρK = Y d – ωLd – δK. 

Taxes in view of (12) satisfy Equation d
w c

rBT τ ωL τ ρK
p

 
= + + 

 
. Substituting 

both equations into (29) results in:

 S = Y d – (1 – τw)ωLd – δK – G (30)

In view of C = (1 – τw)ωLd and I = ( ) ( )1 2) ˆ(e e eK i ρ r π K i u u Y K= − − + − +  + δK (Equations (2) and (7)) the final 
demand Y d = C + I + G equals:

 Y d = (1 – τw)ωLd + ( ) ( )1 2) ˆ(e e eK i ρ r π K i u u Y K= − − + − +  + δK + G (31)

Equations (30)–(31) imply directly that:

 ( ) ( )1 2) ˆ(e e eK i ρ r π K i u u Y K= − − + − +  ̇= S (32)

which means that ex post net investments ( ) ( )1 2) ˆ(e e eK i ρ r π K i u u Y K= − − + − +  are financed by total savings S.
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2. The steady state stability of the intensive form KMG

In this section, the KMG model is reduced to an intensive form and its steady 
state is derived. Next, a theorem about local asymptotic stability is formulated.

2.1. Derivation of the intensive form KMG model

As in the case of many other models of economic growth, an interesting 
question is whether the economy described by this version of KMG model 
can evolve sustainably along the balanced growth path. Balanced growth is 
defined as a growth in which all quantitative variables of the model grow at 
the same growth rate. This implies that, in the process of balanced growth, 
proportions between model variables remain constant. For this reason, to 
verify if balanced growth is a possible outcome in the presented model, one 
needs to find such proportions between variables of the model that allow 
for such growth. To do this, the original model must be transformed into the 
intensive form model, whose variables describe proportions between varia-
bles of the original model.

The variables of the intensive form KMG model are as follows:

real labour income ωLd per unit of output: U = ωLd/Y,
effective labour supply xL per unit of capital: l = xL/K,
real money supply M/p per unit of capital: m = M/pK,
expected final demand per unit of capital: y e = Y e/K, 
inventory stock per unit of capital: ν = N/K, 
real value of bonds B/p per unit of capital: b = B/pK,
expected inflation: π e,
final demand per unit of capital: y d = Y d/K,
output per unit of capital: y = Y/K.

To derive the intensive form KMG model the start is from the real labour 
income ωLd per unit of output: U = ωLd/Y. Ratio Y/Ld is labour productivity, 
denoted by x. Hence U = ω/x, which implies that the growth rate of U equals:

 ˆ ˆ ˆU ω x= −  (33)

The formula for the real wage ω = w/p implies that ˆˆ ˆω w p= − . According to 
(23), labour productivity grows exponentially at a constant rate n, so ˆ ˆ ˆU ω x= −  = x. 
In view of these:

 ˆ ˆˆU w p n= − −  (34)
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According to (4) and (5), the growth rate of nominal wage ˆˆ ˆω w p= − and the infla-
tion rate ˆˆ ˆω w p= −  are given by equations:

 ˆˆ (( ) 1 ) e
w w ww β V V κ p κ π n= − + + − +  (35)

 ( ) ( ) ( )ˆ ˆ 1 e
p p pp β u u κ w n κ π= − + − + −  (36)

Solving the above system of equations for and yields:

  ( ) ( )( )ˆ e
w w pw κ β V V κ β u u π n= − + − + +  (37)

  ( ) ( )( )ˆ e
p w pp κ κ β V V β u u π= − + − +  (38)

where 
1 ,   1

1 w p
w p

κ κ κ
κ κ

= ≠
−

.

Substituting (37)–(38) into (34) after simplifications results in the first equ-
ation of the intensive form model:

 ( ) ( )1ˆ 1w p p w p

y yU κ β κ V β κ u
l y

   = − − − − −        
 (39)

where , p

y yV u
l y

= = .

The formula for effective labor supply per unit of capital, l = xL/K, implies 
that:

 ˆ ˆ ˆˆl x L K= + −  (40)

According to (8), the growth rate of fixed capital is given by:

  ( )( ) ( )1 2
ˆ ˆe e eK i ρ r π i u u Y= − − + − +  (41)

where:

 
e d e d

e eY ωL δK Y ωL δKρ y Uy δ
K K K K

− −
= = − − = − −  (42)

 ˆ ˆ ˆ 1e e

d e d
e

e ey y

Y Y yY ω β ω β
Y y

 −
= + = + − 

 
 (43)

 
e epY pyr h h

M m
= =  (44)
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By assumption labor supply is constant, so ˆ 0L = . Moreover x̂ n= . Hence in 
view of (41)–(44) the second equation of the intensive form model is obtained:

ˆl n U n β i y Uy δ π i u
 

= − + + − − − − − − − −  
 

1 2
ˆ 1e

d e
e e

e py

y hy y
y m y

     
     

     
 (45)

where u = y/y p and ˆ ˆU n ω+ =  (see Equation (34)).
Now proceed to variable m = M/pK which is the real money supply M/p 

per unit of fixed capital. The growth rate of m equals:

 ˆ ˆˆm̂ M p K= − −  (46)

By assumption, the nominal money supply grows at a constant rate μ, so 
M̂ μ= . The inflation rate ˆ ˆˆm̂ M p K= − − is described by (38). The growth rate of capital ˆ ˆˆm̂ M p K= − − , 
according to (40) and Equations x̂ n= , ˆ 0L =  equals   ˆK̂ n l= − . Taking all of the-
se into account the third equation is obtained:

 ˆˆ e
p w p p

y ym μ π n κ κ β V β u l
l y

   = − − − − + − +        
 (47)

The fourth equation of the intensive form model describes changes in in-
flation expectations. It is the same as in Section 1.1, i.e.:

  ( )( )ˆ 1e
e e

π
π β αp α π π= + − −  (48)

where ˆ ˆˆm̂ M p K= − − satisfies (38).
The formula for expected demand per unit of capital implies that:

 ˆ ˆˆ e ey Y K= −  (49)

Hence, by substituting (43) and   ˆK̂ n l= −  to (48) the fifth equation is ob-
tained:

 1 ˆˆ
e

d
e e

ey

yy y U n β n l
y

  
= + + − − +     

  (50)

where   ˆK̂ n l= −  satisfies (45).
The sixth equation describes the dynamics of inventory stocks per unit of 

capital Nv
K

= . To derive its intensive form start is from Equation:

 2
ˆNK NK N N K N N K Nv vK

K K K K K K K K
−

= = − = − = −
      

  (51)
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According to (19), dN Y Y= − . Hence, by using   ˆK̂ n l= − , y = Y/K, and 
y d = Y d/K, the sixth Equation is obtained:

 ˆ( )dν y y ν n l= − − −  (52)

The seventh equation of the intensive form model reflects changes in the 

real value of bonds per unit of capital B
pK

= . The definition of b implies that:

 ( ) ( )ˆ ˆˆ ˆB B Bb K p b K p
Kp Kp Kp

= − + = − +
 

  (53)

According to (13) and (11), B pG rB pT M= + − −   and G = gK. Hence:

 ( )ˆ ˆT Mb g rb b K p
K Kp

= + − − − +


  (54)

In the next step Equations (12), (5) and B pG rB pT M= + − −   = μM and   ˆK̂ n l= −  to (54) are 
substituted which gives the final form of the seventh equation of the inten-
sive form model:

 

( )d
c wb g rb τ y Uy δ rb τ Uy μm= + − − − + − − −

ˆ e
p p wp

y yb n l κ β u κ β V π
y l

     − − + − + − +           
 (55)

where m=M/pK.
By collecting together the seven equations derived above the following 

system of seven nonlinear differential equations is obtained which describe 
the dynamics of proportions between variables of the original KMG model 
from Section 1.

 ( ) ( )1 1w p p w p

y yU Uκ β κ V β κ u
l y

   = − − − − −        
  (56)

1 2
ˆ 1e

d e
e e

e py

y hy yl l n U n β i y Uy δ π i u
y m y

        
= − + + − −+ − − − − − −                 


 – 1 2
ˆ 1e

d e
e e

e py

y hy yl l n U n β i y Uy δ π i u
y m y

        
= − + + − −+ − − − − − −                 
   (57)

 ˆe
p w p p

y ym m μ π n κ κ β V β u l
l y

    = − − − − + − +           
  (58)
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   ( )1e
e e e

p w p pπ

y yπ β α κ κ β V β u π α π π
l y

      = − + − + + − −             
  (59)

 1 ˆˆ
e

d
e e

ey

yy y U β l
y

  
= + − +     

  (60)

 
ˆ( )dν y y ν n l= − − −  (61)

 

( )
ˆ

e
c w

e
p p wp

b g rb τ y Uy δ rb τ Uy μm

y yb n l κ β u κ β V π
y l

= + − − − + − − −

     − + − + − +           



−  (62)

It should be emphasized that besides variables U, l, m, π e, y e, v, b there are 
also two additional variables which appear in Equations (56)–(62). These are 

the final demand per unit of capital 
d

d Yy
K

=  and the production per unit of 

capital Yy
K

= . To identify interrelations between the above variables it sho-

uld be noted that, according to (1) and (20), variables Y d and Y appear in the 
following equations of the original model from Section 1:

 Y d = C + I + G (63)

 ( )e e d
Z nY Y β Y β N N= + + −  (64)

By dividing both equations by the result is:

 d C I Gy
K K K

= + +  (65)

 
e d

e
Z n

Y N Ny y β β
K K K

 
= + + − 

 



  (66)

where  
e

e Yy
K

=  and v = N/K.

Substituting Equations (2), (7) and (11) into (65) and Equations (43), (18) 
into (66) results in the following system of two linear equations (variables Y d 
and Y appear on both sides of these equations):
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   1 1 1
d

p e

y y y
l y y

   
+ − − − − − + + −   

   

( ) ( )

( ) ( )

1 21

e

e
d e e

w

w p p w y

hyy τ yU i y yU δ π i u u δ g
m

κ β κ V β κ u n β

  
= − + − − − − + − + + +  

  
  
     

 (67)

( ) ( )1 1 1

d

e

e e
n nN

d
e

Z w p p w p ey

y y β β y β ν

y y yy β κ β κ V β κ u n β
l y y

= + − +

      + − − − − − + + −               
  (68)

Since variables y d and y appear also in differential Equations (56)–(62), 
Equations (67)–(68) must be taken into account in any analysis of the above 
system of differential equations. This means that the complete KMG mod-
el in intensive form is composed not only of Equations (56)–(62) but also of 
Equations (67)–(68).

2.2. The steady state

The economy described by the KMG model presented in section 1 rema-
ins in the steady state if the proportions between its variables allow for a ba-
lanced growth of the economy at a constant growth rate equal to the growth 
rate of labour productivity n.

Formally, the steady state is described by a vector ( ), , , , , , , ,e e dU l m π y υ b y y  
for which the right hand sides of all Equations (56)–(62) are equal to zero and 
additionally Equations (67)–(68) are satisfied.

By solving Equations (56)–(62) with left hand sides zeroed out and consi-
dering (67)–(68) it is easy to obtain analytically that the formulas describing 
the steady state values of the intensive form KMG model are as follows:

  

( )

( ) ( )

( ) ( )

( )   ,    ,   
1

1  ,     ,    

1 1

1 1

p p p

p
w

d e p p

p
c w

w w

p p
c

w w

γuy n δ g uy huyU l m γ
τ uy V r

γπ μ n y y γuy v uy
n

c cg τ γuy δ τ μm
τ τ

b
c cn γuy δ τ γuy δ π
τ τ





− + + = = =
− 

− = − = = =




 
− − − − −   − −  =  

− + + + − − +  − −  
 (69)
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where:

( )
( ) ( )2 , ,  
1d

p
w pn

Z n n wN

g μ τ μ n δ γuyn β
γ r c γuy n δ g

n β n β β n β τ

+ − − − ++
= = = − + +

+ + + −
( )
( ) ( )2 , ,  
1d

p
w pn

Z n n wN

g μ τ μ n δ γuyn β
γ r c γuy n δ g

n β n β β n β τ

+ − − − ++
= = = − + +

+ + + −
12

To show that proportions described by the above formulas indeed allow for 
balanced growth of the economy at the rate n the first focus is on the effec-
tive labor supply per unit of capital l = xL/K. In the steady state, the growth 
rate of l is zero, so 0ˆ ˆ ˆˆl x L K= + − = . By assumption, labour supply L is con-
stant while labour productivity x grows at rate n. Hence, in the steady state, 
the growth rate of fixed capital equals the growth rate of labour productiv-
ity, 0ˆ ˆ ˆˆl x L K= + − = = n. According: to (21) and (22), Y ≤ Y p = y p K and u=Y/Y p. In view of 
this, /puy Y K= . Since /puy Y K= is constant in time, output /puy Y K=  in the steady state 
must also grow at rate n. When examining other formulas, one can easily no-
tice that in the steady state also other quantitative variables, such as invest-
ments, consumption and government purchases, grow at rate n. Additionally, 
taking into account that in the steady state the expected inflation equals the 
actual inflation, it is easy to find that in the steady state also the growth rate 
of the real wage ˆˆ ˆω w p= − ̂ is equal to n. What seems to be interesting is that, 
according to equation ( )pc γuy n δ g= − + + , consumption per unit of capi-
tal (and thus also per unit of output) decreases in the steady state when the 
growth rate of labour productivity n (equal to the balanced growth rate) in-
creases. Moreover, an increase in n also lowers the ratio ( ), , , , , , , ,e e dU l m π y υ b y y of labor income 
to output. Finally, it is worth stressing that the only variable which depends 
in the steady state on the growth of money supply μ is inflation rate π μ n= − . 
Thus money neutrality is confirmed. 

2.3. Stability of the steady state

The main topic of the paper is the local asymptotic stability of the discussed 
KMG model starting from the formal definition of stability of the steady state 
of the KMG model in intensive form from the previous subsection.

Definition. The steady state ( , , , , , , )e eU l m π y υ b  of model (56)–(62), (67)–
(68) is locally asymptotically stable if there is such neighborhood of this steady 

 12 Due to the limited number of words imposed by the publisher, the article omits the 
derivation of Equation (69). However, this derivation as well as all other derivations and other 
details may be made available to readers by the author on request at his e-mail address.
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state that every solution of the model starting from this neighborhood, con-
verges toward it when time tends to infinity, i.e.:

   
( , , , , , , )      ( , , , , , , )e e e e

t t t t t t t t
U l m π y v b U l m π y v b

→∞
→

To prove the stability defined above the following assumptions will be used.

Assumption 1. Parameters ,  ,  , , ,  0ez n p w y
β β α β β β >  occurring in equations:

 – ( )e e d
z nY Y β Y β N N= + + −

 – ( )ˆ (1 )( )e
e e

π
π β αp α μ n π= + − − −

 – ˆ ˆ ) (1( ( )) e
p p pp β u u κ w n κ π= − + − + −

 – ˆˆ (( ) 1 ) e
w w ww β V V κ p κ π n= − + + − +

 – ˆ ˆ e

d e
e

ey

Y YY ω β
Y
−

= +

are sufficiently small.
According to Assumption 1 output is determined mainly on the basis of de-

mand expectations Y e, whose growth rate ˆ eY  depends mainly on the growth 
rate of the real wage ˆˆ ˆω w p= − .

Changes in inflation expectations eπ  are stabilized strongly by a constant 
(μ – n) factor reflecting inflation in the steady state.

Moreover, deviations of the capacity utilization rate from its normal level
u u−  weakly influence the inflation rate ˆˆ ˆω w p= − , and deviations of the employment 
rate from its natural level V V−  weakly influence the growth rate of nomi-
nal wage ˆˆ ˆω w p= −.

Assumption 2. The growth rate of the nominal money supply μ cannot ex-
ceed the sum of labour productivity growth rate n and the capital deprecia-
tion rate δ:

Assumption 3. Parameter occurring in the investment equation:

( )1 2( )( ) ˆe e eI i ρ r π K i u u K Y K δK= − − + − + +

is sufficiently large.
According to Assumption 3, investment demand is assumed to be highly 

sensitive to the difference between the expected profit from fixed capital and 
the expected real interest rate.

Assumption 4. Parameter κp, (0 < κp < 1) occurring in the price dynamics 
equation:

ˆ ˆ ) (1( ( )) e
p p pp β u u κ w n κ π= − + − + −

is sufficiently close to 1.
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According to Assumption 4, the inflation rate is more sensitive to the dif-
ference between nominal wage growth rate ˆˆ ˆω w p= − and the rate of growth in la-

bour productivity xn
x

=


 than to the expected inflation rate π e.

Assumption 5. The growth rate of money supply satisfies the inequality:

(1 )cτ r μ− <

Assumption 6. The nominal interest rate in the steady state is positive, e.g.:

0
)

)
(
(
1

p
w

w

g μ τ μ n δ γuyr
τ

+ − − − +
= >

−

It is worth noting that Assumption 5 is satisfied for a sufficiently high ca-
pital tax rate τc, while Assumption 6 is met for a sufficiently low labour inco-
me tax rate τw. 

Assumptions 1–6 allow for the proof of the main result of the paper, which 
is the following stability theorem.

Theorem 1. If Assumptions 1–6 are satisfied, then the steady state of model 
(56)–(62), (67)–(68) is locally asymptotically stable.

3. The proof of stability of the KMG model

3.1. General remarks about the proof

To prove Theorem 1, it must be shown that all of the eigenvalues (charac-
teristic roots) of the 7 × 7 Jacobian matrix J7 of model (56)–(62), (67)–(68) in 
the steady state ( ), , , , , ,e ex U l m π y v b=  are either negative numbers or com-
plex numbers with negative real parts (see Gandolfo, 1996, pp. 360–362).13

As already mentioned in the introduction, the examination of the eige-
nvalues of the Jacobian matrix J7 is based on the idea of the cascade of sta-
ble matrices approach applied originally by Chiarella, Franke, Flaschel and 
Semmler in the stability proof of their version of the KMG model (Chiarella 

 13 Examination of the eigenvalues of Jacobian matrix is a standard way of proving local as-
ymptotic stability. In most cases it is applied however to two dimensional dynamical systems 
(e.g. Filipowicz et al., 2016). The difficulties in examining eigenvalues grow very rapidly with 
the dimension of the system becoming an extremely complex matter in a case of high dimen-
sional systems like the KMG model.
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et al., 2006). The implementation of this idea in the stability proof presented 
below is realized in four steps.14

In the first step,  the Jacobian matrix J7 is determined. In the second step, 
the characteristic polynomial of Jacobian matrix J7 (considered to be determi-
nant W7(λ) = det(J7 – λI)) is reduced to the second degree polynomial W2

000 
by resetting the values of some parameters to zero. This is realized in three 
stages. The first vector of parameters β = (βn, βz, α) is reset to zero. The next 
parameter βw and finally parameter βp are also reset to zero. The third step 
consists in showing that both roots of polynomial W2

000 have negative real 
parts. In the last (fourth) step, by gradually restoring the positive values of 
the parameters previously reset to zero, it is demonstrated that all eigenva-
lues of Jacobian matrix J7 have roots with negative real parts. 

To examine the Jacobian matrix subsequent functions which appear on the 
right hand sides of Equations (56)–(62), (67)–(68) are denoted by:

Fi = Fi(X)   (i = 1, 2, …, 7)
where:

X = (x1 = U, x2 = l, x3 = m, x4 = π e, x5 = y e, x6 = v, x7 = b)

Consequently, the Jacobian matrix J7 in the steady state can be expressed 
in the following way:

 

1 1 1 1 11 1

2 2 2 2 22 2

3 3 3 3 33 3

4 4 4 4 44 47

5 4 5 5 55 5

6 6 6 6 66 6

7 7 7 7 77 7

e e

e e

e e

e e

e e

e e

e e

U l m v bπ y

U l m v bπ y

U l m v bπ y

U l m v bπ y

U l m v bπ y

U l m v bπ y

U l m v bπ y

F F F F F F F

F F F F F F F

F F F F F F F

F F F F F F FJ
F F F F F F F

F F F F F F F

F F F F F F F

 
 
 
 
 
 =  
 
 
 
  
 

 (70)

where elements of matrix J7 are derivatives of functions Fi with respect to 
model variables calculated in the steady state ( ), , , , , ,e ex U l m π y v b= , which 
means that:

  ,  ( , 1, 2, , 7)( )i
ij

j x x

FF i j
x
X

=

∂
= = …

∂

 14 It is worth emphasizing that due to many modifications introduced into the KMG model 
the proof of its stability presented in the article although based on the idea of the cascade of 
stable matrices approach differs essentially in many details from the proofs of stability of other 
versions of KMG models.
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The eigenvalues λ1, …, λ7 of matrix J7 are the roots of the following charac-
teristic equation of this matrix:

 W7(λ) = det(J7 – λI) = 0 (71)

As stated at the beginning of this section at the first stage the vector of 
three reaction parameters is zeroed: β = (βn, βz, α) = 0. This reduces derivati-

ves ( )i
ij

j x x

XFF
x

=

∂
=

∂
 (e.g. elements of Jacobian matrix J7) to derivatives:

0 ( ) ( )  0i
ij

j x x

XFF β
x

=

∂
= =

∂
, (i, j = 1, …, 7)

Similarly symbol J7(β = 0) or simply J7 is used to denote the 7 × 7 matrix of 
such derivatives.

Let Fi(X, 0), (i = 1, 2, …, 7), be functions obtained from Fi(X) by setting 
β = (βn, βz, α) = 0.

On the basis of (56)–(62), it can be easily shown that:

 0 (
, 0

  0
( )( )  )  ii

ij
j jx x x x

F XFF βX
x x

= =

∂∂
= = =

∂ ∂
,  (i, j = 1, …, 7) (72)

Equation (72) simplifies the derivation of Jacobian matrix J7 because, in-

stead of determining derivatives 
( )i

ij
j x x

XFF
x

=

∂
=

∂
 and then reducing them to 

0 ( ) )0(i
ij

j x x

FF β
x
X

=

∂
= =

∂
, one can obtain 0 ( ) )0(i

ij
j x x

FF β
x
X

=

∂
= =

∂
 more easily by nullifying the first 

parameters β = (βn, βz, α) in functions Fi(X) and then determining derivati-

ves ),0(i

j x x

F X
x

=

∂
∂

.

In particular, the derivation of Jacobian matrix J7
0 in the method described 

above reveals that some of its elements F 0ij are zeros:

 

0 0
1 1

0 0 0 0 0
2 2 2 2 2

0 0 0 0 0
3 3 3 3 3

0 00
7 4 4

0 0 0 0
5 5 5 5

0 0 0 0 0 0
6 6 6 66 6

0 0 0 0 0 0 0
7 7 7 7 77 7

0 0 0 0 0

0 0

0 0

0 0 0 0 0

0 0 0

0

e

e e

e e

e e

e e

e e

e e

l y

u l m π y

u l m π y

π y

u m π y

u l m vπ y

u l m v bπ y

F F

F F F F F

F F F F F

F FJ

F F F F

F F F F F F

F F F F F F F

 
 
 
 
 
 

=  
 
 
 
 
  
 

  (73)
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Because of the limited length of this paper, it is not possible to present all 
the formulas describing elements of J7

0. At the next stages of the proof only 
some of them will be presented where this is especially needed.

3.2. Reducing polynomials degrees

Lemma 1. Matrix J7
0 has three negative eigenvalues 0 0

1 20, 0eπ
λ β λ n= − < = − <  

and 0
3  (1 ) 0cλ τ r μ= − − < .

Proof. In view of (73), polynomial 0 0
7 7  det )( ) ( W λ J λI= −  can be expanded to 

the following form:

 0 0 0 0 0
7 7 6 44

  )( )( )( )( ) (eb vπ
W λ F λ F λ F λ W λ= − − − ⋅  (74)

where:

  

0 0
1 1

0 0 0 0
2 2 2 20 0

4 4 0 0 0 0
3 3 3 3

0 0 0
5 5 5

0

det( ) det( )

0

e

e

e

e

l y

u l m y

u l m y

u m y

λ F F

F F λ F F
W λ J λI

F F F λ F

F F F λ

 −
 

− 
 = − =

− 
 
 − 

 (75)

The first step in obtaining formula for 
0

0 7
7  b

x x

FF
b

=

∂
=

∂
 is to note that in view 

of (62) function 7 7 ), ,  , , ,(     ,e eF F U l m π y v b=  has the following form:

7

e e
e

c w
hy hyF g b τ y Uy δ b τ Uy μm
m m

 
= + − − − + − − − 

 

ˆ e
p p wp

y yb n l κ β u κ β V π
y l

     − − + − + − +           

In general, according to (72), F 0ij is a derivative of function F 0i obtained from 
function Fi by nullifying the vector of parameters β = (βn, βz, α) = 0. Function 
F7, however, does not contain the above parameters, so F7

0 = F7. Hence:
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0
7 7 ˆ

e e
e e

c w p p wp

F F hy hy y yg b τ y Uy δ b τ Uy μm b n l κ β u κ β V π
b b b m m y l

     ∂ ∂ ∂   = = + − − − + − − − − + + − + + − + =         ∂ ∂ ∂        

− 
0

7 7 ˆ
e e

e e
c w p p wp

F F hy hy y yg b τ y Uy δ b τ Uy μm b n l κ β u κ β V π
b b b m m y l

     ∂ ∂ ∂   = = + − − − + − − − − + + − + + − + =         ∂ ∂ ∂        

0
7 7 ˆ

e e
e e

c w p p wp

F F hy hy y yg b τ y Uy δ b τ Uy μm b n l κ β u κ β V π
b b b m m y l

     ∂ ∂ ∂   = = + − − − + − − − − + + − + + − + =         ∂ ∂ ∂        

0
7 7 ˆ

e e
e e

c w p p wp

F F hy hy y yg b τ y Uy δ b τ Uy μm b n l κ β u κ β V π
b b b m m y l

     ∂ ∂ ∂   = = + − − − + − − − − + + − + + − + =         ∂ ∂ ∂        
e e

c

p p wp

hy y hyτ U
m b m

y y
b bb κ β κ β

y l

 ∂
= − − + − ∂ 

∂ ∂  
  ∂ ∂– +  
     

ˆ e
w p p wp

y y yτ U n l κ β u κ β V π
b y l

   ∂  − − − + − + − + −       ∂     

It follows form Equations (68) and (20) that y does not depend on b, hence:

0y
b
∂

=
∂

This in turn implies that:

0
7 7 ˆ

e e
e

c p p wp

F F hy hy y yτ n l κ β u κ β V π
b b m m y l

   ∂ ∂  = = − − − + − + + − +       ∂ ∂     
 

0
7 7 ˆ

e e
e

c p p wp

F F hy hy y yτ n l κ β u κ β V π
b b m m y l

   ∂ ∂  = = − − − + − + + − +       ∂ ∂     
 (76)

Substituting values of the variables U, l, m, π, y, v in the steady state into 

above Equation yields the formula for the derivative 
0

7F
b

∂
∂

 in the steady state:

0
0 7

7 (1 )  
 b c c

x x

FF r τ r μ τ r μ
b

=

∂
= = − − = − −

∂

which in view of Assumption 5 implies that F 07b < 0.
Similarly it can be derived that: 0

6  vF n= −  and 0
4 e eπ π

F β= − . Hence, in view of 
(74) the polynomial 0

7  ( )W λ  has three negative roots 0 0
1 20, 0eπ

λ β λ n= − < = − <  
and 0

3  (1 ) 0cλ τ r μ= − − < , which are the eigenvalues of matrix J7
0.
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The remaining roots 0 0 0 0
4 5 6 7  ,   ,   ,  λ λ λ λ  of polynomial 0

7  ( )W λ  are also roots of 
the fourth degree polynomial W 04(λ) defined by (75).

Let be 00
4J  the matrix obtained from 00

4J  under assumption that not only 
( , , ) 0n zβ β β α= =  but also βw = 0. The characteristic polynomial of matrix 00

4J  
is given by:

 

00
1

00 00 00
2 2 200 00

4 4 00 00 00
3 3 3

00 00 00
5 5 5

0 0

det( ) det  
0

)

0

(

e

e

e

e

y

u m y

u m y

u m y

λ F

F λ F F
W λ J λI

F F λ F

F F F λ

 −
 

− 
 = − =

− 
 
 − 

 (77)

Expanding 00
4 ( )W λ  yields:

 

00
1

00 00 00 00 00 00
4 3 3 3 3 3

00 00 00
5 5 5

0

det( ) ( ( ) det)

e

e

e

y

u m y

u m y

λ F

W λ λ W λ λ J λI λ F F λ F

F F F λ

 −
 
 = ⋅ = ⋅ − = ⋅ −
 
 − 

  (78)

which implies that one of the roots 00 00 00 00
4 5 6 7,  ,   ,λ λ λ λ  of polynomial 00

4 ( )W λ  is 
zero. Suppose that:

 00
4 0λ =   (79)

Finally add to Assumptions ( , , ) 0n zβ β β α= = , βw = 0 that also βp = 0. Matrix 
000
3J  reduces then to 000

3J . The polynomial:

 000 000 000 000 000
3 3 3 3 3

000 000 000
5 5 5

( d

0 0

  et( ) d  ) et e

e

u m y

u m y

λ

W λ J λI F F λ F

F F F λ

 − 
 = − = −
 
 − 

  (80)

after expansion takes the form:

 
000 000

3 3000 000 000
3 2 2 000 000

5 5

  det( ) de( ) ( ) t
e

e

m y

m y

F λ F
W λ λ W λ λ J λI λ

F F λ

 −
 = ⋅ = ⋅ − = ⋅
 − 

  (81)

This implies that one of the roots 000 000 000
5 6 7,,  λ λ λ  of 

000 000
3 3000 000 000

3 2 2 000 000
5 5

  det( ) de( ) ( ) t
e

e

m y

m y

F λ F
W λ λ W λ λ J λI λ

F F λ

 −
 = ⋅ = ⋅ − = ⋅
 − 

 is zero. Suppose 
that:

 000 000 000
5 6 7,,  λ λ λ = 0  (82)
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Lemma 2. Both eigenvalues 000 000 000
5 6 7,,  λ λ λ and 000 000 000

5 6 7,,  λ λ λ  of matrix 
000 000

3 3000
2 000 000

5 5

e

e

m y

m y

F F
J

F F

 
 =
 
 

 are ei-

ther negative or complex numbers with negative real parts.

Proof. The characteristic equation 000
2det( ) 0 J λI− =  of matrix 

000 000
3 3000

2 000 000
5 5

e

e

m y

m y

F F
J

F F

 
 =
 
 

 can be ex-
pressed as:

 2
1 2 0λ a λ a+ + =   (83)

where:  000 000 000
1 2 3 5

  tr   ( )em y
a J F F= − = − +  (84)

 000 000 000 000 000
2 2 3 55 3

det e em my y
a J F F F F= = −   (85)

It can be verified that elements of matrix 
000 000

3 3000
2 000 000

5 5

e

e

m y

m y

F F
J

F F

 
 =
 
 

 are described by the follo-
wing formulas:

 000
3 1    

e

p

m p
y

uyF i r
uy β

 
 = −
 − 

 (86)

   000 2
13

1
1

e

e e

dp
w p yw

p p p p py y

yκ κβhuy κβ r iF V β i U
r uy y uy uy y

  −    = − + + + − − +      
 (87)

  000
1 2  5
( )e ey y

F β i δ μ n ui= − − + −  (88)

 000 21
5  m

iF r
h

= −  (89)

Assumptions 2, 3 and 6 imply that 000
3 0mF <  and 000

5
0ey

F < . Hence:

 000
1 2tr  0a J= − >   (90)

Inserting (86)–(89) into (85) after simplifications implies that:

 
1

2 1

( )( ) 2e e

e

e

p p
y y

py
y

β uy n δ g i δ μ n β uy
a i rβ

uy β

 − − + + + + − + −
 =
 − 

  (91)

Assumption 2 implies that δ – μ + n > 0. Hence, i1 > 0 if is sufficiently large 
(Assumption 3) and parameter 0ey

β >  is sufficiently small (Assumption 1), then:

 000
2 2det 0a J= >   (92)

In view of Routh-Hurwitz theorem (Gandolfo, 2005, pp. 221–222), condi-
tions (90) and (92) imply that both eigenvalues 000

6λ  and 000
7λ  of matrix 000

2J  have 
negative real parts.



55D. Sołtysiak, On the stability of a certain Keynes-Metzler-Goodwin monetary growth

3.3. Restoring positive values of reaction parameters

In the further part of the proof of Theorem 1 the positive values of tem-
porarily nullified parameters ( , , )n zβ β β α= , βw , βp will be gradually restored. 
First by restoring positive value of parameter βp and exploiting Lemma 2 
the following Lemma 3 on the eigenvalues of matrix 00 000

3 3   0when pJ J β→ → (which appears in 
Equation (78)) will be proved.

Lemma 3. Suppose that ( , , )n zβ β β α=  = 0 and βw = 0. Then, for sufficiently 
small values of parameters βp > 0 and 0ey

β > , all 00 00 00
5 6 7, ,λ λ λ  of matrix 00 000

3 3   0when pJ J β→ → are 
either negative or complex numbers with negative real parts.

Proof. The starting point are matrices:

00
1

00 00 00 00 000 000 000 000
3 3 3 3 3 33 3

00 00 00 000 000 000
5 5 5 55 5

0 0 0 0 0

and

e

e e

e e

y

u m u my y

u m u my y

F

J F F F J F F F

F F F F F F

   
   
   = =
   
   
   

and

00
1

00 00 00 00 000 000 000 000
3 3 3 3 3 33 3

00 00 00 000 000 000
5 5 5 55 5

0 0 0 0 0

and

e

e e

e e

y

u m u my y

u m u my y

F

J F F F J F F F

F F F F F F

   
   
   = =
   
   
   

Matrix 00 000
3 3   0when pJ J β→ → is obtained from 00 000

3 3   0when pJ J β→ → by nullifying parameter βp > 0 in all ele-
ments of 00 000

3 3   0when pJ J β→ →.

Moreover: 00 000
3 3   0when pJ J β→ →when00 000
3 3   0when pJ J β→ →   (93)

According to (80) and (81):

 000 000 000
3 3 2 det( ) d )) (( etW λ J λI λ J λI= − = ⋅ −   (94)

which implies that the two eigenvalues of matrix 
000 000

3 3000
2 000 000

5 5

e

e

m y

m y

F F
J

F F

 
 =
 
 

 are also eigenvalues of 
matrix 00 000

3 3   0when pJ J β→ →. Hence in view of Lemma 2 and (94) it is concluded that matrix 00 000
3 3   0when pJ J β→ → 

has one zero eigenvalue 000
5λ  = 0 and two eigenvalues 000 000

6 7 0λ λ⋅ > and 000 000
6 7 0λ λ⋅ > which are 

either negative or complex numbers with negative real parts. In both cases:

 000 000
6 7 0λ λ⋅ >   (95)

Due to the continuity of matrix 00 000
3 3   0when pJ J β→ → with respect to βp ≥ 0 (condition (93)) 

and the continuity of the eigenvalues of matrix 00 000
3 3   0when pJ J β→ → with respect to its elements 

for a sufficiently small value of βp > 0, the two eigenvalues 000 000
6 7 0λ λ⋅ >, 000 000

6 7 0λ λ⋅ > of matrix 00 000
3 3   0when pJ J β→ → 

(corresponding to 000 000
6 7 0λ λ⋅ > and 000 000

6 7 0λ λ⋅ >) are also either negative or complex numbers 
with negative real parts, satisfying inequality

 000 000
6 7 0λ λ⋅ > ∙ 000 000

6 7 0λ λ⋅ > > 0  (96)



56 Economics and Business Review, Vol. 9 (1), 2023

To complete the proof the third eigenvalue 000
5λ  corresponding to 000

5λ  = 0 
must be examined. For this purpose the determinant will be considered:

 

00
1 00 00

3 300 00 00 00 00
3 3 3 00 003 1

5 500 00 00
5 5 5

0 0

det det det

e

e e

e

y
u m

u m y y
u m

u m y

F
F F

J F F F F
F F

F F F

 
   
 = = ⋅       
 

  (97)

The determinant of any matrix equals the product of its eigenvalues. Hence:

 00 00 00 00
3 5 6 7det  J λ λ λ= ⋅ ⋅   (98)

The elements of matrix are described by the following formulas:

 
( )00

1

1
e

p w
py

β κ
F Uκ

y
− 

= −  
 

 (99)

 100 2
3 ( )

e e

e

p
wy yp

u p
y

β τ β i uyhF uy
r uy β

 − −
 = −
 − 

 (100)

 
)00

3 1

(
 

(1 ) e

p p
p

m p
w y

uy n δ g uyF i uy δ μ n
τ uy β

  − + +
  = − − − + −

  − −  
 (101)

 00 2
5 1( )p

uF uy i=  (102)

  
2

00 1
5

( )
(1 )

p
p

m
w

i uy n δ gF uy δ μ n
h τ
 − + +

= − − − + − − 
 (103)

Inserting (99)–(103) into (97) yields after simplifications:

 00 2
3 1det ( )  J i rU= −

(1 )1( ) e

e

wp w yp
p p

y

τ ββ κ
κ uy

y uy β

  −−        −    
  (104)

In view of inequalities 0 < κw < 1 and 0 < τw < 1, it follows from (60) that 
for a sufficiently small 0ey

β > :

det 00 000
3 3   0when pJ J β→ → < 0

Hence, in view of (96) and (98) it is obvious that that for a sufficiently small 
βp > 0 and βye > 0, the third eigenvalue of matrix 00 000

3 3   0when pJ J β→ → is a negative number 000
5λ  < 0. 
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Below, by restoring the positive value of parameter βw and using Lemma 3 
it will be proven Lemma 4 on the eigenvalues of the following matrix:

 

0 0
1 1

0 0 0 0
2 2 2 20

4 0 0 0 0
3 3 3 3

0 0 0
5 5 5

0 0

0

e

e

e

e

l y

u l m y

u l m y

u m y

F F

F F F F
J

F F F F

F F F

 
 
 
 =
 
 
 
 

 (105)

appearing in (73)–(74), in which ( , , ) 0n zβ β β α= =  while βp > 0 and βw > 0.

Lemma 4. Suppose that β = (βn, βz, α) = 0 and βp > 0, βw > 0. Then, under 
Assumptions 1–6 for sufficiently small values of parameters βp > 0 and βw > 0, 
all eigenvalues 0 0 0 0

4 5 6 7,  ,  ,  λ λ λ λ  of matrix 

0 0
1 1

0 0 0 0
2 2 2 20

4 0 0 0 0
3 3 3 3

0 0 0
5 5 5

0 0

0

e

e

e

e

l y

u l m y

u l m y

u m y

F F

F F F F
J

F F F F

F F F

 
 
 
 =
 
 
 
 

 are either negative or complex num-
bers with negative real parts.

Proof. The proof of Lemma 4 is similar to that of Lemma 3. The start will be 
by considering the following matrix:

00
1

00 00 00
2 2 200

4 00 00 00
3 3 3

00 00 00
5 5 5

0 0 0

0

0

0

e

e

e

e

y

u m y

u m y

u m y

F

F F F
J

F F F

F F F

 
 
 
 =
 
 
 
 

which appears in (46). Matrix 

00
1

00 00 00
2 2 200

4 00 00 00
3 3 3

00 00 00
5 5 5

0 0 0

0

0

0

e

e

e

e

y

u m y

u m y

u m y

F

F F F
J

F F F

F F F

 
 
 
 =
 
 
 
 

 is obtained from 

0 0
1 1

0 0 0 0
2 2 2 20

4 0 0 0 0
3 3 3 3

0 0 0
5 5 5

0 0

0

e

e

e

e

l y

u l m y

u l m y

u m y

F F

F F F F
J

F F F F

F F F

 
 
 
 =
 
 
 
 

 by nullifying parameter 
βw in all elements of 

00
1

00 00 00
2 2 200

4 00 00 00
3 3 3

00 00 00
5 5 5

0 0 0

0

0

0

e

e

e

e

y

u m y

u m y

u m y

F

F F F
J

F F F

F F F

 
 
 
 =
 
 
 
 

. Beside this:

 

0 0
1 1

0 0 0 0
2 2 2 20

4 0 0 0 0
3 3 3 3

0 0 0
5 5 5

0 0

0

e

e

e

e

l y

u l m y

u l m y

u m y

F F

F F F F
J

F F F F

F F F

 
 
 
 =
 
 
 
 

 → 

00
1

00 00 00
2 2 200

4 00 00 00
3 3 3

00 00 00
5 5 5

0 0 0

0

0

0

e

e

e

e

y

u m y

u m y

u m y

F

F F F
J

F F F

F F F

 
 
 
 =
 
 
 
 

 when βw → 0 (106)

According to (75):

00
1

00 00 00 00 00 00
4 4 3 3 3 3

00 00 00
5 5 5

0

d (( ) et( ) det ) det

e

e

e

y

u m y

u m y

λ F

W λ J λI λ J λI λ F F λ F

F F F λ

 −
 
 = − = ⋅ − = ⋅ −
 
 − 

 (107)

It follows from Equation (107) that matrix 

00
1

00 00 00
2 2 200

4 00 00 00
3 3 3

00 00 00
5 5 5

0 0 0

0

0

0

e

e

e

e

y

u m y

u m y

u m y

F

F F F
J

F F F

F F F

 
 
 
 =
 
 
 
 

 has three eigenvalues 00 00 00 00
3 5 6 7det  J λ λ λ= ⋅ ⋅, 00 00 00 00
3 5 6 7det  J λ λ λ= ⋅ ⋅, 

00 00 00 00
3 5 6 7det  J λ λ λ= ⋅ ⋅  which are identical to the eigenvalues of matrix 00 000

3 3   0when pJ J β→ →. As shown in the proof 
of Lemma 3, the two eigenvalues 00 00 00 00

3 5 6 7det  J λ λ λ= ⋅ ⋅ and 00 00 00 00
3 5 6 7det  J λ λ λ= ⋅ ⋅  are either negative or complex 

numbers with negative real parts. The third eigenvalue 00 00 00 00
3 5 6 7det  J λ λ λ= ⋅ ⋅ of 

00
1

00 00 00
2 2 200

4 00 00 00
3 3 3

00 00 00
5 5 5

0 0 0

0

0

0

e

e

e

e

y

u m y

u m y

u m y

F

F F F
J

F F F

F F F

 
 
 
 =
 
 
 
 

 is a negati-
ve number:
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 00 00 00 00
3 5 6 7det  J λ λ λ= ⋅ ⋅ < 0  (108)

Equation (108) also implies that the fourth eigenvalue of equals zero:

 00
4λ  = 0 (109)

Hence, in view of (106) and the continuity of the eigenvalues of matrix 0
4J  

with respect to its elements, for a sufficiently small βw > 0 the three eigenva-
lues 0 0 0

5 6 7,   ,  λ λ λ  of matrix (corresponding to 00 00 00
5 6 7,  ,λ λ λ ) are also either negative 

or complex numbers with negative real parts. What remains to be investiga-
ted is the fourth eigenvalue 0 0 0 0

4 5 6 7,  ,  ,  λ λ λ λ of 0
4J  corresponding to 00

4λ  = 0 of 00 000
3 3   0when pJ J β→ →.

For this purpose the sign of the determinant will be determined:

 0 0 0 0 0
4 4 5 6 3det J λ λ λ λ⋅= ⋅ ⋅  (110)

and use the inequalities:

 00 00 00
5 6 7   0,   0λ λ λ< ⋅ >   (111)

(the second inequality is identical to (96)).
It follows from (105) that:

 0 0 0
4 1 1 21

det el y
J F A F A= − ⋅ − ⋅   (112)

where 
2

0 0
1 1

( )1 1
1 0

)
( ,

(
) e

w p p w
l w p p p py

β κ β κVF Uκβ κ F Uκ V
uy uy y

− − 
= − − < = − 

 

0 0 0 0 0 0
2 2 2 2 2 2

0 0 0 0 0 0
1 3 3 2 3 3 33

0 00 0 0
5 55 5 5

det , det

0

e

e

e

u m y u l m

u m u l my

u mu m y

F F F F F F

A F F F A F F F

F FF F F

      
 = =  
       

Elements of determinants and have the form:

 0
2

2
1  ( )

e

e

p
y

l w p p
y

uy β
F κβ κ V

uy β

 −
 = −
 − 

 (113)
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It follows from the above formulas that the first component of determinant 
0 0 0 0 0
4 4 5 6 3det J λ λ λ λ⋅= ⋅ ⋅, is equal to 1 1( )lF A− ⋅  and converges to zero when 0 < κp < 1 converges 

to 1 (Assumption 4).
After being expanded and simplified, determinant takes the form:

 2 5 3 2 5 2 3( ) ( )u l m m u lA F F F F F F= − +  (123)

Inserting (113)–(122) into (123) yields, after simplification:
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It follows from (124) that 0ey
β >  if is sufficiently small (Assumption 1), then:

A2 > 0

At the same time, when 0 < κp < 1 converges to 1 (Assumption 4), then:
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Consequently, if 0 < κp < 1 is sufficiently close to 1 (Assumption 4) and pa-
rameters βp > 0, βw > 0, 0ey

β >  and are sufficiently small (Assumption 1), then:

 0 0 0 0 0
4 4 5 6 7det   0J λ λ λ λ= ⋅ ⋅ ⋅ >   (125)

Since 00
5 0λ < , the corresponding eigenvalue 0

5λ  of 0
4 J  for a sufficiently small 

βw > 0 can be either a negative number or a complex number with a negati-
ve real part.

If 0
5 0λ < , then, in view of the continuity of the eigenvalues of matrix 0

4 J  with 
respect to its elements, taking into account (106) and (111), for a sufficien-
tly small βw > 0:

  0 0 0
5 6 7  0λ λ λ⋅ ⋅ <  (126)

is obtained, which in view of (125) implies directly that 0
4λ  < 0.

The second possibility should be considered that when eigenvalue 0 0 0
5 6 7  0λ λ λ⋅ ⋅ < is 

a complex number with a negative real part. Then, since complex eigenvalues 
(roots of a polynomial) always appear as conjugate numbers, the fourth eige-
nvalue 0

4λ  must be the conjugate of 0 0 0
5 6 7  0λ λ λ⋅ ⋅ < having the same negative real part as 0 0 0

5 6 7  0λ λ λ⋅ ⋅ <15.
It has been demonstrated earlier that 0 0 0

5 6 7  0λ λ λ⋅ ⋅ <, 0 0 0
5 6 7  0λ λ λ⋅ ⋅ < and 0 0 0

5 6 7  0λ λ λ⋅ ⋅ < are either negative or 
complex numbers with negative real parts. Thus, the two remarks above on 

0
4λ  complete the proof of Lemma 4.


To complete the whole proof of stability Theorem 1 it should be noted 

that in view of lemmas 1 and 4 all eigenvalues 0 0 0 0 0 0 0
1 2 3 4 5 6 7,   ,   ,   ,   ,   , λ λ λ λ λ λ λ  of ma-

trix ( )0 0 0
7 7 4 

  )det( ) (1 ) ( )( )( ) (ec π
W λ J λI τ r μ λ n λ β λ W λ= − = − − − − − − − ⋅ defined by (73) are either negative or complex numbers with negative 

real parts, since:

   ( )0 0 0
7 7 4 

  )det( ) (1 ) ( )( )( ) (ec π
W λ J λI τ r μ λ n λ β λ W λ= − = − − − − − − − ⋅   (127)

Matrix ( )0 0 0
7 7 4 

  )det( ) (1 ) ( )( )( ) (ec π
W λ J λI τ r μ λ n λ β λ W λ= − = − − − − − − − ⋅ is obtained from Jacobian matrix J7 by nullifying the vector of pa-

rameters β = (βn, βz, α) > 0. It can also be verified that:

( )0 0 0
7 7 4 

  )det( ) (1 ) ( )( )( ) (ec π
W λ J λI τ r μ λ n λ β λ W λ= − = − − − − − − − ⋅ → J7 when β → 0

In view of this and the continuity of the eigenvalues of matrix with respect 
to its elements, it may be concluded that all eigenvalues 1 2 3 4 5 6 7, , , , , ,λ λ λ λ λ λ λ  
of Jacobian matrix J7 are either negative or complex numbers with negative 
real parts. This proves theorem 1 stating that the steady state of model (56)–
(62), (67)–(68) is locally asymptotically stable.



 15 The product of conjugate complex numbers 0
4λ a ib= +  and 0

5  ( )λ a ib= −  different from zero 
is always positive since (a + ib)(a – ib) = a2 + b2 > 0. Hence, in view of (65), there is 0 0

4 5 0λ λ⋅ >  
and 0 0

6 7  0λ λ⋅ > , which implies that 0 0 0 0 0
4 4 5 6 7det   0J λ λ λ λ= ⋅ ⋅ ⋅ > .
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Conclusions

In their (sometimes co-authored) books, Flaschel, Franke and Chiarella have 
contributed significantly to the development of Keynesian monetary macro-
economics. One of their main achievements is the development of the KMG 
model and a stability analysis of its various variants. Proving the stability of 
complex, high dimensional systems like the KMG model is always a complex, 
difficult task. For this reason, to make the stability analysis easier, they sim-
plified some equations of the model at the expense of its adequacy to reality.

In the present article, an attempt has been made to improve the way the 
KMG model describes the functioning of the economy by modifying some of 
its equations. The modifications introduced have resulted in the appearance 
of new loops in the model, thereby increasing its complexity. This is particu-
larly evident in the intensive form model (56)–(62) with additional Equations 
(67)–(68). What is worth emphasizing is that all of these modifications have 
been introduced in a way which retains the possibility of transforming the 
KMG model into its intensive form and deriving its steady state, which is ne-
cessary for proving the stability of the model.

The modifications of the KMG model have influenced all the results pre-
sented in the article. Firstly, they are reflected in the formulas describing va-
lues of the variables in the steady state presented in section 2.2. In particu-
lar, this is visible how tax rates (which are not present in other versions of 
the KMG model) influence the values of some variables in the steady state, 
such as the interest rate, the real labour income per unit of output, the ra-
tio of the real value of bonds to fixed capital. (On the other hand, an inte-
resting finding is that, in the steady state, the ratio of consumption to fixed 
capital does not depend on tax rates.) Secondly, the Jacobian matrix of the 
intensive form of the new KMG model differs from the Jacobian matrices of 
KMG models analysed by Chiarella et al. This meant that the proof of stabili-
ty presented in section 3, although based on the general idea of the cascade 
of stable matrices approach, differs essentially from the proofs of stability of 
other versions of KMG models. Thirdly, due to the equation’s modifications, 
the set of Assumptions 1–6 exploited in the proof also differs from that used 
by Chiarella et al. In particular, Assumptions 5 and 6, which feature tax rates 
on labour and capital incomes are completely new, as these tax rates are not 
considered at all in other versions of the KMG model.

According to the proven stability theorem, when Assumptions 1–6 are sa-
tisfied, the economy described by the modified KMG model approaches the 
balanced growth path when time goes to infinity. Since the proven stability 
theorem concerns only local stability, the convergence to the balanced growth 
path is guaranteed only if the initial structure of the economy does not dif-
fer too much from that on the balanced growth path, described by the ste-
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ady state of the intensive form model. How much the initial structure of the 
economy may depart from the steady state without losing the stability of the 
model may be verified only through computer simulations. Also, the speed 
at which the economy converges toward the balanced growth path can only 
be tested by computer experiments.

Despite these limitations, mathematical proofs of the stability of econo-
mic systems like that presented in the article are important for the develop-
ment of economic growth theory since they reveal an intrinsic ability of the 
analyzed economy to achieve a structure which allows for balanced growth. 
Lack of stability is a serious deficiency of the economy because it is equiva-
lent to the existence of a self-deepening disequilibrium mechanism leading 
to economic collapse.
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