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Abstract

This paper introduces and examines a novel realized vola-
tility forecasting model that makes use of Long Short-Term 
Memory (LSTM) neural networks and the risk metric finan-
cial turbulence (FT). The proposed model is compared to 
five alternative models, of which two incorporate LSTM neu-
ral networks and the remaining three include GARCH(1,1), 
EGARCH(1,1), and HAR models. The results of this paper 
demonstrate that the proposed model yields statistically 
significantly more accurate and robust forecasts than all 
other studied models when applied to stocks with middle-
to-high volatility. Yet, considering low-volatility stocks, it 
can only be confidently affirmed that the proposed model 
yields statistically significantly more robust forecasts rela-
tive to all other models considered. 
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Introduction
Properly determining and forecasting the volatility of securities is cru-

cial for investment institutions. Such a risk parameter is often used in port-
folio risk management, asset pricing, and portfolio construction (Gajdka & 
Pietraszewski, 2017; Latoszek & Ślepaczuk, 2020; Loang & Ahmad, 2021). 
Short-term volatility forecasts, such as on a monthly or ideally daily basis, is 
particularly advantageous for active portfolio managers. Though volatility is 
not observable during short periods, the so-called realized volatility is com-
monly used as a proxy since it is considered a reliable estimator of volatility 
(Andersen & Bollerslev, 1998). Thus, a great part of financial literature has 
been devoted to finding a proper way of measuring realized volatility and ac-
curately predicting it.

Many methods of measuring daily realized volatility have already been 
devised. The best known examples might be Parkinson’s realized volatility 
(Parkinson, 1980), Garman and Klass’ realized volatility (Garman & Klass, 
1980), Rogers and Satchell’s realized volatility (Rogers & Satchell, 1991), and 
Yang and Zhang’s realized volatility (Yang & Zhang, 2000). Among these, Yang 
and Zhang’s realized volatility stands out due to its unbiasedness in the con-
tinuous limit, drift independence, and consistency in addressing opening price 
jumps (Yang & Zhang, 2000).

Regardless of the choice of realized volatility proxy, accurately forecasting 
daily realized volatility is challenging due to its asymmetrical reaction to un-
expected news and heteroscedasticity (Black, 1986; Bollerslev, 1986; Engle, 
1982). To address this issue, a wide variety of time series models, primar-
ily known as GARCH models, have been developed (Bauwens et al., 2006). 
Some examples of these models include GARCH, EGARCH, ARCH-M, APARCH, 
and T-GARCH. The efficiency of these models in daily realized volatility fore-
casting has been extensively studied (see Borup & Jakobsen, 2019; Brandt & 
Jones, 2006; Haugom et al., 2010; Kambouroudis et al., 2016). Furthermore, 
it has been proven that they accurately capture short-term variations in the 
daily realized volatility of various stocks, yet this is not the case for long-term 
and nonlinear variations (Borup & Jakobsen, 2019; Brandt & Jones, 2006; 
Kambouroudis et al., 2016). Consequently, none of them yield a perfect fore-
casting method for daily realized volatility (Bauwens et al., 2006).

In addition to GARCH models, other linear models such as HAR models 
have also been devised to attempt to correctly forecast daily realized volatil-
ity. However, their shared drawback with GARCH models of not accurately 
capturing nonlinear and long-term trends is still present (Engle et al., 2013; 
Liu, Demirer et al., 2020). As a result, researchers have devised and employed 
a variety of nonlinear models to attempt to capture these nonlinear and long-
term patterns. Presumably, the most known and effective model of these 
models is artificial neural networks (ANNs). ANNs are excellent at forecasting 
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realized volatility as without being aware of the data generation process; this 
technique enables the approximation of a large class of linear and nonlinear 
functions arbitrarily well (Bucci, 2020).

ANNs are widely used in the financial world and literature. Their efficacy 
has already been demonstrated for forecasting many financial variables, such 
as exchange rates, probability of default, stock price, and realized volatility 
(Donaldson & Kamstra, 1996a,b; Kamijo & Tanigawa, 1990; Khan, 2011; Naidu 
& Govinda, 2018; White, 1988; Wilson & Sharda, 1994; Yan & Yang, 2021; 
Zhu et al., 2008). However, it is worth mentioning that relative to exchange 
rates and stock price predictions, research about the use of ANNs to predict 
realized volatility has been a bit less developed (Bucci, 2020). Furthermore, 
when ANNs are employed to predict realized volatility, they usually are used 
in conjunction with GARCH models (Donaldson & Kamstra, 1997; Hajizadeh 
et al., 2012; Maciel et al., 2016).

However, there are also some research papers that solely make use of ANNs. 
For instance, Hamid & Iqbal (2004) prove that by only using ANNs, one can 
outperform implied volatility forecasts. Chen and Robert (2022), on the other 
hand, make use of a Graph Neural Network (GNN), a type of ANN, to predict 
realized volatility for the next 600 seconds with a precision of 77.13%. Another 
example is the study performed by Bucci (2020) in which he shows that vari-
ous types of ANNs outperformed the famous time series models ARFIMA and 
ARFIMAX in the prediction of the monthly realized volatility of the S&P 500 
using a sample from August 1997 until December 2017.

Arguably, the most effective types of ANN in predicting realized volatility are 
Long Short-Term Memory neural network (LSTM) (Hu et al., 2020; Li, 2022; Lin 
et al., 2022; Rodikov & Antulov-Fantulin; 2022; Vidal & Kristjanpoller, 2020), 
Nonlinear Autoregressive model process with eXogenous input (NARX) (Aaltio, 
2022; Baffour et al., 2019; D’Ecclesia & Clementi, 2021), and Convolutional 
Neural Network (CNN) (Chen et al., 2022; Li, 2022; Vidal & Kristjanpoller, 2020).

Incidentally, volatility is not the sole measure of stock risk (Kritzman & Li, 
2010). One recent risk parameter that is an alternative to volatility is financial 
turbulence (FT) (Kritzman & Li, 2010). Its application in portfolio management 
has yielded promising results (Liu, Yang et al., 2021; Nystrup, Boyd et al., 2019; 
Nystrup, Madsen et al., 2018). FT is defined by Equation (1):

 ⅆt = (yt – μ) Σ–1 (yt – μ)' (1)

where ⅆt = turbulence for a particular time period t, yt = 1 × n vector of asset 
returns for period t, μ = sample average 1 × n vector of historical returns, and 
Σ = sample covariance n × n matrix of historical returns.

Similar to realized volatility, predicting FT is also challenging due to its non-
linear and long-term patterns, and its results are not as interpretable as real-
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ized volatility (Souto, 2023a,b). Nonetheless, FT can be used in the prediction 
of realized volatility. For example, Salisu et al. (2022) show that the use of FT 
can improve the out-of-sample predictive performance of stock market vola-
tility linear models over both the short and long time horizon.

Nonetheless, there is a lack of literature on the application of FT in the pre-
diction of realized volatility through the use of ANNs. Thus, this paper aims 
to investigate the use of FT in predicting realized volatility through the use of 
ANNs. The selected ANN type is LSTM with the rationale for this choice dis-
cussed in Section 1. Furthermore, this research contributes to the existing 
literature in three main ways. Firstly, to the best of our knowledge, this is the 
first paper that explores and shows that the use of FT in predicting realized 
volatility through the use of LSTM yield statistically more accurate and robust 
forecasts. Secondly, this paper employs Yang and Zhang’s realized volatility as 
the realized volatility proxy, a robust yet accessible proxy. This proxy is consid-
ered to be accessible as it only requires high, low, close and open prices to be 
estimated, which is a type of data that is easily accessible by practitioners and 
researchers. Thirdly, this research provides the code for the novel neural net-
work model as open source, allowing access to practitioners and researchers.

The rest of this paper is structured as follows: Section 1 briefly introduc-
es ANNs and LSTM. The research design used in this study and sample are 
described in Section 2. Section 3 evaluates the models’ success in terms of 
forecasting accuracy. In Section 4, a robustness check is performed to test 
the results of Section 3, and in Section 5 the conclusion and limitations of 
this paper can be found.

1. ANNs and LSTM

ANNs are a mathematical system that aims to reproduce the human brain 
in order to take one (or many) input(s) and yield one (or many) estimated 
output(s) (Donaldson & Kamstra, 1996a). ANNs are composed of intercon-
nected neurons (or nodes) arranged in ties. Their neurons can be divided into 
three types of layers: the input layer (where the inputs come), the hidden layer 
(where the calculations occur), and the output layer (where the output comes).

Such a mathematical system model makes use of weights and intercepts 
(as a linear regression), and activation functions to allow nonlinearity mod-
elling. The weights and intercepts (also commonly named as biases in the 
ANNs field) are updated at each iteration through an algorithm based on the 
gradient descent rule that has the aim of minimizing a selected error func-
tion. Generally, the chosen error function is the mean squared error (MSE) 
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of the actual and predicted values, yet other error functions are also possible 
(Donaldson & Kamstra, 1996a).

In simple words, one can think of an ANN as an aggregation of many line-
ar regressions with the addition of activation functions to capture nonlinear 
patterns, and the use of an arbitrary error function that will be the basis of 
parameters optimization. As one may already expect, the bigger the number 
of hidden layers and nodes, the better ANNs can learn complex patterns, but 
also the more time it takes to estimate the ANN’s optimal weights and biases 
(Donaldson & Kamstra, 1996a). Currently, there is some research (Sheela & 
Deepa, 2013) about possible procedures to determine the ideal quantity of 
hidden layers and nodes. Nonetheless, no widely accepted procedure cur-
rently exists (Bucci, 2020; Vujičić et al., 2016). Fortunately, a single hidden 
neural network is a universal approximator, indicating that if enough hidden 
nodes are present, the network can approximate a variety of linear and non-
linear functions (Donaldson & Kamstra, 1996b). As a consequence, this paper 
makes use of a single hidden layer network for its LSTM models.

To further understand how an ANN works, consider a three-layer neural 
network and a single output variable. This ANN example is depicted in Figure 1.

The output function of such an ANN is given as:

 0
1

, ( )  ( )
q

t t t j j
j

f x θ F β G x γ β'
=

 
= +  

 
∑  (2)

where F is the initial activation function, G is the hidden node activation func-
tion, βj is the weights from hidden node j to the output unit, xt = {x1, t, …, xh, t} 

Figure 1. ANN with a single hidden layer

Source: Own work.
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is the 1 × n vector of input variables at time t (with n = h + 1), β0 is the bias of 
the final output, γt = {γ1, j , …, γn, j} is the 1 × n vector of weights for the links 
between the inputs and the hidden neuron j, θ = {β0, …, βq, γ'1, …, γ'q} is the 
vector of all network weights, and finally q is the number of hidden nodes.

Nowadays, there is a wide variety of functions to choose for F and G. 
Generally, is an identity function and G is a logistic function (Bucci, 2020). 
However, for this paper, F is chosen to be the hyperbolic tangent function 
(tanh) in order to support the use of GPUs under the Keras framework (Keras 
Team, n.d.). G, on the other hand, is chosen to be a sigmoid function as it 
allows the network to learn more complex decision boundaries (Sheela & 
Deepa, 2013). Lastly, the optimizer algorithm used in this paper to determine 
the weights and biases is the Adam algorithm, a stochastic gradient descent 
method that is based on adaptive estimation of first-order and second-order 
moments.

The neural network exhibited in Figure 1 is usually referred to as a static 
network as such a neural network does not show any memory, even when 
sample information contains time dependence. That is why the so called 
Recurrent Neural Networks (RNN) are commonly used with time series data. 
RNNs allow internal feedback by propagating data from input to output, but 
also from later layers to earlier layers. One type of RNN is LSTM neural net-
works. The LSTM neural network is an extension of the RNN architecture by 
replacing each hidden node with a memory cell. Such a memory cell is de-
picted in Figure 2.

Each block has three multiplicative units termed input (it), forget (ft), and 
output (ot) gates as well as one cell input activation vector (c~t). Such gates 
enable the memory cells to store and retrieve data in order to choose which 

Figure 2. Basic LSTM memory cell

Source: Own work.
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data need to be permanently stored. The forget gates determine the amount 
of information from the earlier time step that will be retained and passed, 
whereas the input gates determine the amount of information from the cur-
rent time step that will be retained and passed. The outputs gates, on the 
other hand, determine the information used to estimate the prediction (ht) 
of the considered random variable (yt).

In simple words, LSTM neural networks are almost equal to the neural 
network depicted in Figure 1, but they sequence the inputs in a time series 
manner (xt – n, …, xt), and estimate the weights and biases through the param-
eters of the self-contained memory cell, and input, forget and output gates.

This system allows LSTM neural networks to keep important information 
from input signals while ignoring the pointless details. Thanks to this memory 
present in LSTM neural networks, they are the most commonly used type of 
ANN for time-series prediction (Bucci, 2020), and that is the primary reason 
for their choice in this paper. Besides their use for time-series prediction, they 
are also used in handwriting recognition (Graves et al., 2009), speech recog-
nition (Li & Wu, 2015), machine translation (Wu et al., 2016), speech activity 
detection (Sahidullah et al., 2019), robot control (Mayer et al., 2006), video 
games (Rodriguez, 2018) and healthcare (Awais et al., 2021). LSTM neural 
networks can be mathematically represented as:

 ft = σ(Wf ht – 1 + Uf xt + bf ) (3)

 it = σ(Wi ht – 1 + Ui xt + bi) (4)

 ot = σ(Wo ht – 1 + Uo xt + Vo ct + bo) (5)

 c~t = tanh(Wc ht – 1 + Uc xt + bc) (6)

 ct = ft ⨀ ct – 1 + it ⨀ c~t (7)

 ht = ot ⨀ tanh(ct) (8)

 yt = ht (9)

where Wf , Wi , Wc , Wo , Uf , Ui , Uc , and Uo respectively contain the weights of 
the input and recurrent connections. xt ∈  is the input vector to the LSTM 
unit, ft ∈ (0, 1)h is the forget gate’s activation vector, it ∈ (0, 1)h is the input 
gate’s activation vector, and ot ∈ (0, 1)h is the output gate’s activation vector. 
Additionally, ht ∈ (–1, 1)h is the output vector of the LSTM unit, ct ∈ h is the 
cell state vector, and c~t ∈ (–1, 1)h is the cell input activation vector. Finally, 
σ is the sigmoid function, tanh is the hyperbolic tangent function, and ⨀ is 
the Hadamard product.
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2. Research design

In this chapter the sample choice, realized volatility and financial turbu-
lence proxies, models selection, LSTM hyperparameters search space and the 
forecast assessment used in this paper are discussed.

2.1. Sample

The data set used in this research is composed of daily observations of the 
S&P 500 realized volatility (RV) from 01 November 2017 until 01 November 
2022, five years in total. In the chosen timeframe there exist 1,257 daily ob-
servations. The data set is divided into training data, 80% of the total data, 
and test data, 20% of the total data. The training data is used to determine 
the model parameters while the test data is used to evaluate the model 
performance. Further, 12.5% of the training data is used as validation data 
to determine the hyperparameters of the LSTM model (see Section 2.4 for 
more details).

Additionally, two data sets composed of daily RV observations of the DJIA 
and NASDAQ from 01 November 2017 until 01 November 2022 are used in 
the robustness check (see Section 4 for more details) to test the results of 
Section 5. Once again the data set is divided into training data, 80% of the 
total data, and test data, 20% of the total data. Moreover, 12.5% of the train-
ing data is used as validation data.

Lastly, the data sources used to retrieve data for the input variables of the 
studied models can be found in Appendix 1.

2.2. Realized volatility and financial turbulence proxies

As already stated, Yang and Zhang’s realized volatility is chosen as an RV 
proxy due to its robustness and accessibility. As proposed by Yang and Zhang 
(2000), RV is estimated by Equations (10), (11), (12), (13):

 σ 2 = σO
2 + k σC

2 + (1 – k) σ 2RS (10)

 2 RV σ=  (11)

where:

 2

1

1    ( )
1

n

O i
i

σ o o
n =

= −
− ∑  (12)
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with oi = opening price at time i, o = opening price mean, ci = close price at 
time i, c = close price mean, k = parameter, and σ 2RS = Rogers et al. (1994) vari-
ance estimation.

Yang & Zhang’s (2000) empirical research indicates that the best k value 
is given as:

 
0.34  11.34

1

k n
n

= +
+

−

 (14)

Regarding financial turbulence, the proxy based on Mahalanobis distance 
as proposed by Kritzman and Li (2010) is used and is defined in Equation (1) 
in Section 1. This choice is motivated by Salisu et al. (2022) as they show that 
the use of FT can improve the out-of-sample predictive performance of stock 
market volatility linear models over both the short and long-time horizon.

2.3. Models selection

The time series of S&P 500 RV training data can be seen in Figure 3. It can 
be observed that this time series is stationary, and this is confirmed in Table 1 
with the results of Augmented Dickey Fuller (ADF) test. Table 1 also shows 
the results of Breush-Godfrey (BG) test and Ljung-Box (LB) test considering 

Figure 3. S&P 500 realized volatility time series

Source: Own work.
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25 lags. These results prove that there exists a high autocorrelation persistence 
in the time series. Hence, this high persistence indicates that a long memo-
ry detecting model ought to be implemented (Rossi & Santucci de Magistris, 
2014). That is another reason for the choice of LSTM neural networks for 
this research. This high persistence and stationarity also mean that common 
volatility models, e.g. GARCH and HAR models, can be used. Therefore, be-
sides the studied LSTM models, GARCH(1,1), EGARCH(1,1) and HAR models 
are used in this study as comparison to the LSTM models.

Three different LSTM models are considered in this study. Their inputs are 
summarized below:

 – Model 1: Past values of RV;
 – Model 2: Past values of RV and FT;
 – Model 3 (Bucci’s model): Past values of RV, Dividend Yield Ratio S&P 500 

(DP), Fama-French’s Market Excess Return (MKT), Fama-French’s Short-Term 
Reversal Factor (STR), and BAA and AAA bond yields Default Spread (DEF).

Model 1 is the simplest model that can be used to predict future values of 
RV, whereas Model 2 has additional information on FT. Model 3 (Bucci’s mod-
el) is devised by Bucci (2020) through the use of the Least Absolute Shrinkage 
and Selection Operator (LASSO) regression. Bucci’s model is chosen due to 
its high accuracy forecast performance for the S&P 500 realized volatility in 
Bucci’s subsample from September 2007 until June 2009 (Bucci, 2020). It is 
important to notice that for DP and DEF, linear interpolation is used to esti-
mate their daily development given their monthly periodicity. Incidentally, 
further on in this paper, Model 4 refers to GARCH(1,1), Model 5 refers to 
EGARCH(1,1), and Model 6 refers to HAR model.

2.4. LSTM hyperparameters search space

All ANNs have certain parameters that need to be chosen by humans, 
which are known as hyperparameters. Some examples of these hyperparam-
eters are the number of hidden neurons, the error function, number of train-

Table 1. Time series statistical tests

p-values

AUF: 5.92E–6***

BG: lower than 2.03E–17*** for the first 25 lags

LB: lower than 1.00E–7*** for the first 25 lags

Source: Own work.
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ing rounds (known as epochs), etc. Currently, the best procedure for finding 
the optimal hyperparameters is separating a part of the training data, called 
the validation data, and training various ANNs with randomly chosen differ-
ent hyperparameters within the hyperparameter search space, testing them 
with the validation data, and finally choosing the hyperparameters based on 
the best forecasting accuracy results. Table 2 shows the considered hyperpa-
rameters and their respective search space for the LSTM models of this study.

Table 2. Hyperparameters search space

Hyperparameters Search space

Number of inputs [21, 63, 84, 126, 189, 252]

Number of neurons [14, 42, 56, 84, 126, 168]

Epochs [3, 5, 10, 15]

Dropouts [0, 0.2, 0.4]

Error Functions Mean Squared Errors (MSE), Root Mean 
Squared Errors (RMSE), Huber Loss

Source: Own work.

2.5. Forecast assessment

In order to assess the model forecast accuracy in the test data, RMSE and 
mean percent error (MPE) are used. RMSE is explained by Equation (15), while 
MPE is defined by Equation (16):

 

2

1

ˆ( ) 
 

T

t t
t

y y
RMSE

N
=

−
=
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=
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 (16)

Furthermore, the model’s accuracy power of a certain model is assumed 
to be equal to Equation (16):

 Moⅆel Accuracy = 1 – MPE (17)

RMSE and Model Accuracy (MA) are chosen because they give more read-
ily interpretable results than the commonly used error measure MSE. In addi-
tion, a brief statistical analysis of the models’ residuals is performed.
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Since ANNs can yield different forecast accuracy depending on where they 
start their gradient descent algorithm (Karsoliya & Azad, 2012; Vujičić et al., 
2016), ten trials are performed for each LSTM model. Further, the average and 
standard deviation of RMSE and MA are taken to compare the LSTM models’ 
forecast power. Moreover, Confidence Intervals (CI) of 95% are taken, under 
the assumption that ten means are enough to transform the means of the 
underlying random variables’ distributions into normal distributions (i.e., 
enough to fulfill the Central Limit Theorem (CLT)).

Additionally, Mann-Whitney U (MWU) tests, T-tests and F-tests with the 
RMSE and MA trials results are performed for LSTM models. MWU tests and 
T-tests are used to determine whether a pair of LSTM models yields statis-
tically significantly different forecast accuracy, with the null hypothesis (H0) 
being that there is not statistically significant difference and the alternative 
hypothesis (H1) being that there is statistically significant difference. F-tests 
are used to determine whether the variance in the forecast accuracy of a cer-
tain LSTM model is statistically significantly different to another LSTM model, 
with H0 and H1 being the same as for the aforementioned tests.

Finally, Diebold-Mariano (DM) tests are performed with the forecasts of 
the proposed LSTM model in this study (Model 2) and all other five models. 
This test is used to determine whether there exists a statistically significant 
difference in the forecasts of a pair of models (and this being H1) or that this 
difference is simply due to the specific sample choice (and this being H0). The 
choice of this test is motivated by the fact that this test makes use of fewer 
assumptions and is more robust than other commonly used statistical fore-
cast comparison tests (Diebold & Mariano, 1995; Harvey et al., 1997). Lastly, 
for DM tests, the forecasts of the first trial of the LSTM models will be used.

3. Results and discussion

After the hyperparameters search through the use of the validation data, 
the optimal hyperparameters shown in Table 3 were chosen.

Table 4 shows the error measures results of all models. It can be seen that 
Model 2 outperforms all models regarding both RMSE and MA. Model 2 also 
yields less variability in its forecasts than Model 3 for all error measures and 
Model 2 for RMSE. Additionally, considering the 95% CI, even for the upper 
bound of RMSE and lower bound of MA, Model 2 outperforms all models. This 
outperformance can be graphically seen in Figure 4. Although it seems that 
Model 4 and Model 5 are the best models when looking at Figure 4, they are 
actually almost always predicting the next time-step value as being the cur-
rent time-step value. As a result, they have the worst RMSE and MA results.
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On the other hand, Table 5 shows the results of the statistical tests for the 
LSTM models. Given the p-values in Table 5, it can be concluded that Model 2 
yields on average better forecast accuracy than Model 1 and Model 3, though 
the H0 between Model 2 and Model 3 considering RMSE cannot be rejected 
using the conservative p-value of 1%. Furthermore, the p-values of the F-tests 
indicate that Model 2 yields more robust forecasts than Model 1 and Model 3, 
besides between Model 1 and Model 2 when considering RMSE.

Table 6 and Table 7 respectively show the statistical analysis of the fore-
cast residuals and the DM test results. It can be seen in Table 6 that Model 2 
again outperforms the other models when considering the residuals 95% CI, 
though Model 2 had a slightly more extreme minimum residual value than 
Model 6. The p-values of Table 7 indicate that there exists a statistically sig-
nificant difference in the forecasts of Model 2 in respect to all other models. 
This presumably means that Model 2 yields statistically better forecasts than 
all other considered models.

Table 4. S&P 500 error measures results

Measures Model 1 
(%)

Model 2 
(%)

Model 3 
(%)

Model 4 
(%)

Model 5 
(%)

Model 6 
(%)

RMSE average 0.339 0.318 0.339 0.401 0.418 0.340

RMSE standard deviation 0.009 0.004 0.025 – – –

RMSE 95% CI
0.321
 ≤ X ≤ 
0.356

0.310
 ≤ X ≤ 
0.327

0.290 
≤ X ≤ 
0.389

– – –

MA average 70.10 72.12 68.97 61.14 58.81 66.11

MA standard deviation 0.21 0.60 2.76 – – –

MA 95% CI
69.67
 ≤ X ≤ 

70.53

70.92 
≤ X ≤ 

73.32

63.45 
≤ X ≤ 

74.48
– – –

Source: Own work.

Table 3. Optimal hyperparameters

Hyperparameters Model 1 Model 2 Model 3

Number of inputs 252 21 63

Number of neurons 56 56 56

Epochs 15 15 15

Dropouts 0.4 0.2 0.2

Error functions RMSE MSE RMSE

Source: Own work.
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Table 5. S&P 500 statistical tests for LSTM models

Model 2 Model 3

Model 1

RMSE
MWU p-value: 1.57E–4***

T-test p-value: 1.36E–5***

F-test p-value: 0.053*

MA
MWU p-value: 1.57E–4***

T-test p-value: 6.01E–7***

F-test p-value: 0.005***

RMSE
MWU p-value: 0.449
T-test p-value: 0.949

F-test p-value: 0.004***

MA
MWU p-value: 0.762
T-test p-value: 0.226

F-test p-value: 1.29E–8***

Model 2 -

RMSE
MWU p-value: 0.015**

T-test p-value: 0.027**

F-test p-value: 1.51E–5***

MA
MWU p-value:0.001***

T-test p-value: 0.006***

F-test p-value: 1.02E–4***

Source: Own work.

Table 6. S&P 500 residuals analysis

Model 1 
(%)

Model 2 
(%)

Model 3 
(%)

Model 4 
(%)

Model 5 
(%)

Model 6 
(%)

Residuals Mean 0.15 0.02 0.29 –0.01 –0.07 0.05

Residuals Standard 
Deviation 0.45 0.43 0.43 0.55 0.57 0.46

Residuals Skew  1.50  1.39  1.65  0.61  0.21  1.49

Residuals Kurtosis  4.64  4.40  5.25  2.97  2.81  4.46

Residuals max 2.56 2.29 2.72 2.59 2.49 2.61

Residuals min –0.59 –0.87 –0.48 –1.83 –2.32 –0.75

Residuals 95% (upper) 1.05 0.88 1.16 1.10 1.07 0.97

Residuals 95% (lower) –0.74 –0.84 –0.58 –1.11 –1.22 –0.87

Source: Own work.

Table 7. S&P 500 Model 2 DM Tests

Model Model 1 Model 3 Model 4 Model 5 Model 6

p-values 0.001*** 4.79E-6*** 1.09E-5*** 7.73E-5*** 0.003***

Source: Own work.
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4. Robustness check

Despite the promising results of Section 4, robust tests are still needed to 
confirm these results. Therefore, the same procedure is performed in this sec-
tion as explained in Section 3 with different stocks: DJIA and NASDAQ. DJIA 
is chosen to reflect stocks with a lower volatility than the S&P 500, whilst 
NASDAQ is chosen to reflect stocks with a higher volatility than the S&P 500.

Table 8 shows the error measures results for NASDAQ and DJIA. Regarding 
NASDAQ, the results are similar to Section 4; that is, Model 2 outperforms 
all models considering averages and the 95% CI whilst yielding less forecast 
variability than Model 3 for both measures and than Model 1 for RMSE. 
Regarding DJIA, Model 2 outperforms all models considering RMSE, apart 
from Model 1 and Model 6. On the other hand, considering MA, Model 2 
outperforms all models, albeit Model 2 yields more forecast variability than 
Model 1. Additionally, Model 2 does not outperform Model 1 regarding the 
95% CI of MA.

In addition, the p-values for the statistical tests for the LSTM models are 
found in Table 9. It can be observed that the results for NASDAQ are conver-
gent to the results in Section 3. The only exception is the F-test results be-
tween Model 1 and Model 2. The results for DJIA, on the other hand, diverge 
from Section 3. The only similarity is the F-test results between Model 2 and 
Model 3. It could be thus hypothesized that Model 2 performs relatively bet-
ter than the other considered models only when applied stocks with middle-
to-high volatility

Finally, Table 10 and Table 11 respectively show the statistical analysis of 
the forecast residuals and the DM test results. Once more, it can be seen in 
Table 10 that Model 2 outperforms the other models for both NASDAQ and 
DJIA when considering the residuals 95% CI and extreme residual values. 
Moreover, the p-values in Table 11 indicate that there exists a statistically sig-
nificant difference in the forecasts of Model 2 in respect to all other models 
besides to Model 3 when considering NASDAQ. This deviation from Section 3 
results presumably comes from the fact that only the first trial of the LSTM 
models was used for the DM tests. Hence, there exists the possibility that 
though generally Model 2 and Model 3 yield statistically significantly differ-
ent forecasts, an exception was selected and used for DM tests by chance. 
This hypothesizes is likely to be true given the results in Table 8 and Table 9.
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Table 11. S&P 500 Model 2 DM tests

Model Model 1 Model 3 Model 4 Model 5 Model 6

NASDAQ p-values 9.00E–7*** 0.913 4.50E–11*** 3.23E–11*** 4.64E–17***

DJIA p-values 5.80E–5*** 6.39E–4*** 6.80E–6*** 1.35E–4*** 5.89E–5***

Source: Own work.

Conclusions

The aim of this paper is to compare the performance of a novel volatility 
forecasting model with current commonly used models. The novel volatility 
forecasting model makes use of Long Short-Term Memory (LSTM) neural net-
works and the risk parameter financial turbulence (FT). This paper utilizes the 
robust yet simple Yang and Zhang’s realized volatility (RV) proxy and consid-
ers a total of six different models. These models and their respective inputs 
can be seen below:

 – LSTM Model 1: Inputs = past values of RV;
 – LSTM Model 2: Inputs = past values of RV and FT;
 – LSTM Model 3 (Bucci’s model): Inputs = past values of RV, Dividend Yield 

Ratio S&P 500 (DP), Fama-French’s Market Excess Return (MKT), Fama-
French’s Short-Term Reversal Factor (STR), and BAA and AAA bond yields 
Default Spread (DEF);

 – Model 4: GARCH(1,1);
 – Model 5: EGARCH(1,1);
 – Model 6: HAR.

The sample period used in this research is from 01 November 2017 until 01 
November 2022. S&P 500 daily RV observations are used as the main sample, 
yet NASDAQ and DJIA daily RV observations are also used in a robustness check 
to determine the robustness of the models’ results achieved with S&P 500 RV.

The error measures used to assess the models’ forecast accuracy are Root 
Mean Squared Error (RMSE) and Model Accuracy (MA). MA is defined as one 
minus Mean Percentage Error (MPE). Further, a simple statistical analysis of 
the models’ forecast residuals is performed to assess their distribution and 
extreme values. In addition, Diebold-Mariano (DM) tests are performed with 
the forecasts of the proposed LSTM model in this study (Model 2) and all other 
five models. This test is used to determine whether there exists a statistically 
significant difference in the forecasts of a pair of models or that this differ-
ence is simply due to the specific sample choice.
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Furthermore, to account for the fact that ANNs can yield different fore-
cast accuracy depending on where they start their gradient descent algorithm 
(Karsoliya & Azad, 2012; Vujičić et al., 2016), ten trials are performed for each 
LSTM model. The average and standard deviation of RMSE and MA are taken 
to compare the LSTM models’ forecast power and create Confidence Intervals 
(CI) of 95% under the Central Limit Theorem (CLT) assumption. Further, Mann-
-Whitney U (MWU) tests, T-tests and F-tests with the RMSE and MA trials re-
sults are performed for the LSTM models. MWU tests and T-tests are used to 
determine whether a pair of LSTM models yield statistically significantly dif-
ferent forecast accuracy. F-tests are used to determine whether the variance 
in the forecast accuracy of a certain LSTM model is statistically significantly 
different to another LSTM model.

The results of this research indicate that the proposed model (Model 2) 
yields statistically significantly more accurate and robust forecasts than all 
other studied models when applied to stocks with middle-to-high volatility. 
Yet, when considering stocks with low volatility, it can only be confidently said 
that Model 2 yields statistically significantly more robust forecast results than 
all other considered models. It could be hypothesized that Model 2 performs 
relatively better than the other considered models when applied to stocks 
with middle-to-high volatility, yet this is not the case with stocks with low 
volatility. However, more research would be needed to properly test this hy-
pothesis. Thus, the authors of this paper invite the scientific community to 
perform such a study with the proposed model.

Finally, it is important to notice that this study has its limitations. For in-
stance, the assumption that ten trials were enough to fulfill CLT conditions 
when estimating the RMSE and MA 95% CI can easily be considered a weakness 
of this study. Not exploring other sample periods and ANNs types, and only 
exploring stock indexes are also other limitations of this study. Another limi-
tation of this study is the fact that DM tests are only performed for the LSTM 
models forecasts of the first trial and not of all trials (or an average thereof). 
This limitation can be clearly seen in Section 5 where the DM test result for 
Model 2 in respect to Model 3 shows no statistically significant difference al-
though all other error measures and statistical tests results indicate the oppo-
site. Therefore, the scientific community is invited to further explore the pro-
posed model whilst partially or fully addressing the limitations of this study.
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Data availability and code

The Python code used for the proposed LSTM model plus all data, code, 
calculations and results of this research can be found on https://github.com/
hugogobato/Forecasting-Realized-Volatility-through-Financial-Turbulence-
and-Neural-Networks.git.

Appendix

Table A1. Variables description and sources

Symbol Variable Description Source

RV Yang and Zhang’s 
Realized Volatility

a robust yet simple real-
ized volatility proxy

estimated with prices re-
trieved from Compustat 
– Capital IQ

FT S&P 500 Financial 
Turbulence

risk parameter proposed 
by Kritzman & Li (2010)

estimated with prices re-
trieved from Compustat 
– Capital IQ

DP Dividend Yield Ratio S&P 
500

dividends over the past 
year relative to current 
market prices

Nasdaq Data link

MKT Market Excess Return Fama-French’s market 
factor: Return of U.S. 
stock market minus one-
-month T-Bill rate

Kenneth French’s website

STR Short-Term Reversal 
Factor

Fama-French’s STR: 
Average return on stocks 
with low prior return 
minus average return 
on stock with high prior 
return

Kenneth French’s website

DEF Default Spread measure of default risk 
of corporate bonds: dif-
ference of BAA and AAA 
bond yields

Federal Reserve Bank of 
St. Louis

Source: Adapted from (Bucci, 2020). 

https://github.com/hugogobato/Forecasting-Realized-Volatility-through-Financial-Turbulence-and-Neural-Networks.git
https://github.com/hugogobato/Forecasting-Realized-Volatility-through-Financial-Turbulence-and-Neural-Networks.git
https://github.com/hugogobato/Forecasting-Realized-Volatility-through-Financial-Turbulence-and-Neural-Networks.git
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