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Abstract

For most active investors treasury bonds (govs) provide di-
versification and thus reduce the risk of a portfolio. These 
features of govs become particularly desirable in times of 
elevated risk which materialize in the form of the flight-to-
safety (FTS) phenomenon. The FTS for govs provides a shel-
ter during market turbulence and is exceptionally beneficial 
for portfolio drawdown risk reduction. However, what if the 
unsatisfactory expected return from treasuries discourages 
higher bonds allocations? This research proposes a solution 
to this problem with Deep Target Volatility Equity-Bond 
Allocation (DTVEBA) that dynamically allocate portfolios 
between equity and treasuries. The strategy is driven by 
a state-of-the-art recurrent neural network (RNN) that pre-
dicts next-day market volatility. An analysis conducted over 
a twelve year out-of-sample period found that with DTVEBA 
an investor may reduce treasury allocation by two (three) 
times to get the same Sharpe (Calmar) ratio and overper-
forms the S&P500 index by 43% (115%).
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Introduction

Flight-to-safety (FTS) is a financial market phenomenon occurring when in-
vestors reallocate portfolios from higher-risk investments (equity) to the safer 
alternatives such as high-grade government bonds (govs). FTS occurs during 
equity market turmoil and results in a negative temporal correlation between 
long-term bonds and equities (Baur & Lucey, 2009). This unique diversifica-
tion benefit makes govs a desirable portfolio component. Unfortunately ex-
pected returns for govs are usually lower than for equities and sometimes 
even negative. The worst comes when interest rates are raised. Therefore, 
depending on investor preferences and market expectations investment in 
long-term bonds can be perceived either as an attractive asset class or as 
a cost of portfolio insurance against equity market turmoil.

This study aims to build a tactical allocation of equities and govs that si-
multaneously leverages long-term bonds’ diversification benefits and reduc-
es a bond investment costs. In other words it proposes how to reduce the 
average portfolio allocation in govs by shrinking their allocation on the sta-
ble market and increasing it during FTS periods. To achieve that the research 
concentrates on the relationship between FTS and market volatility. It is well 
documented that in times of elevated risk when investors fly to safety that the 
volatility of equity increases (Baele et al., 2020; Beber et al., 2009; Longstaff, 
2004). Therefore accurate predictions for high (low) periods of market vola-
tility can provide a signal for high (low) govs allocation.

The success of this strategy lies in the accurate prediction of market vola-
tility. Predictability becomes especially important when markets are not sta-
ble which is typical for FTS episodes (Grabowski et al., 2023). Kaczmarek et al. 
(2022) predict market volatility with a multivariate recurrent neural network 
(RNN) and define market state with volatility predictions. They show that 
govs present safe-haven characteristics in periods of elevated market volatil-
ity. This research extends this direction and introduces Deep Target Volatility 
Equity-Bond Allocation (DTVEBA) that targets the desired level of equity vola-
tility with RNN predictions and dynamically allocates portfolios between eq-
uity and bonds. With analysis conducted over a twenty year sample period it 
was found that RNN delivers sound predictions to reduce treasury allocation 
while maintaining its diversification benefits.
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The contribution of this research is twofold. First, it extends studies about 
FTS events by demonstrating how to improve portfolio mean-variance rela-
tion by exposing it to FTS events when means for govs are low. Although the 
relationship between expected returns for equity and govs is conditional on 
multiple factors the benefits of having govs in the portfolio remain constant 
because of their positive impact on portfolio returns during FTS periods. This 
study utilizes deep recurrent neural networks to predict periods of high mar-
ket volatility that may result in FTS events and allocate more heavily to govs 
only when it is necessary to provide shelter to the portfolio. Second, it con-
tributes to portfolio risk management, specifically to volatility-targeting stud-
ies. It shows that RNN-based volatility forecasts create more efficient target 
volatility portfolios and effectively detect periods of high volatility when eq-
uity allocations should be low.

To this end the DTVEBA strategy is tested with the S&P500 index with 
twelve years of daily historical prices in the out-of-sample setting. Compared 
to fixed equity bond allocation an investor using the DTVEBA strategy may 
reduce treasury weight by two (three) times to get the same Sharpe (Calmar) 
ratio. Furthermore and depending on the desired equity volatility, the strat-
egy overperforms the S&P500 index by 29%–68% or 106%–155% in terms of 
the Sharpe and Calmar ratios, respectively. Finally, the strategy delivers sub-
stantial benefits during a market stress period. During all the most significant 
drawdowns in the testing sample (2010–2021), the DTVEBA strategy overper-
forms the S&P500 index.

The article is organised as follows: Section 1 reviews the literature related 
to the role of volatility in portfolio risk management and demonstrates the 
theory that forms the basis for the DTVEBA strategy. Section 2 explains the 
model used to dynamically allocate portfolios between equity and govs based 
on predicted market volatility and demonstrates data used for the empirical 
study. In Section 3 the accuracy of volatility predictions and the performance 
of the DTVEBA strategy is discussed. The article concludes with recommenda-
tions for investors and portfolio managers, study limitations, and directions 
for further research.

1. Literature review

As evidenced by Fleming et al. (2001) volatility commands a pivotal posi-
tion in portfolio risk management. Researchers provide empirical support for 
the superior performance of short-term volatility timing strategies over static 
portfolios with identical return and volatility expectations. Put differently their 
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work attests to the substantial financial benefits that can be reaped from in-
corporating volatility forecasts into portfolio design. Moreira and Muir (2017) 
extend their findings by building volatility-managed portfolios that increase 
Sharpe ratios because of the unproportional relationship between changes 
in volatility and expected returns.

Market volatility forecasts significantly impact the performance of volatili-
ty-managed portfolios. Several widely accepted methodologies exist for non-
linear volatility modelling and prediction. ARCH models which revolve around 
daily returns are devised to gauge underlying market volatility (Bollerslev, 
1986; Glosten et al., 1993). Another technique capitalizes on implied vola-
tility which is contingent on option pricing. In this instance past returns or 
volatility are rendered unnecessary; nevertheless in selecting an appropriate 
option-pricing model becomes essential. 

The third technique involves using measures that operate on intraday re-
turns estimating unobserved integrated variance (Andersen & Bollerslev, 
1998; Hansen & Lunde, 2005). Fleming et al. (2003) demonstrate the sub-
stantial economic value of applying the realized volatility in the context of 
investment decisions. Even though Realized Variance (RV) is a widely em-
ployed measure (Będowska-Sójka, 2018) its sensitivity to jumps in the vari-
ance is a recognized limitation. Consequently Barndorff-Nielsen and Shephard 
(2004) proposed a Realized Bipower Variation (RBV) alternative metric. Like 
its predecessor this measure relies on intraday returns but presents robust-
ness against jumps. The standard approach in modelling any type of realized 
variance is to use ARFIMA models. 

Each of these methods is not devoid of limitations because they demand 
varying assumptions concerning the distribution of the data at hand (Poon & 
Granger, 2005). Therefore, an alternative approach is to apply data mining or 
machine learning techniques for financial market modelling. Recurrent neu-
ral network (RNN) models, in particular, have been found to exhibit superior 
fitting capabilities on financial data series compared to parametric models. 
This is due to their inherent ability to decipher intricate data patterns with-
out any pre-assumptions (Christensen et al., 2021; H. Y. Kim & Won, 2018; 
Y. Kim & Enke, 2018).

Kim and Enke (2016, 2018) construct a dynamic allocation strategy be-
tween equity and cash based on volatility forecasts. They compare different 
volatility prediction methods and demonstrate high economic gains in apply-
ing univariate recurrent neural networks to predict implied market volatility. 
However, Becker et al. (2015) visualize that multivariate models improve the 
volatility forecasting accuracy for portfolio allocation. Similarly in research on 
neural network-based modelling of variability H. Y. Kim and Won (2018) pro-
pose a hybrid long short-term memory (LSTM) multivariate model combining 
LSTM with various generalized autoregressive conditional heteroscedastici-
ty (GARCH)-type models. Their solution outperforms all traditional volatility 
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prediction techniques demonstrating recurrent neural networks‘ supremacy 
in predicting market volatility.

Applying market volatility forecasts to allocate a portfolio dynamically be-
tween equities and cash is an active field of research (Y. Kim & Enke, 2016, 
2018; Perchet et al., 2016). This strategy’s enhancement presents meth-
ods for reducing transaction costs through conditional allocation changes 
(Bongaerts et al., 2020; Zakamulin, 2019). Furthermore, Kaczmarek et al. 
(2022) use market volatility forecasts to determine the low and high mar-
ket volatility states. They show that out of thirteen potential safe haven as-
sets only govs demonstrate a negative correlation with equities in highly 
volatile markets and reveal safe haven properties. However, to the best of 
the authors’ knowledge none of the related studies use volatility predic-
tions to allocate portfolios between equity and govs. This study fills the gap 
by demonstrating the benefits of a dynamic allocation in both equity and 
govs conditioned on multivariate recurrent neural network predictions of 
stock market RBV. 

The literature has intensely scrutinized the correlation between the re-
turns on govs and equity. It results largely from the fact that these two assets 
are considered not only as complementary but also substitutes and both the 
level and dynamics of their return correlation are essential elements for as-
set allocation decisions (Boucher & Tokpavi, 2019). FTS periods are usually 
associated with substantial yet short-lived fluctuations in expected returns 
on equities and bonds. These changes are typically surrounded by active 
trading and/or risk transfer between different investors (Lehnert, 2022). As 
a result the demand for treasuries is growing in periods when investors, fear-
ing the increasing volatility in the market, rebuild their portfolios towards 
less risky positions.

Due to the lower expected returns on govs rather than on equity investors 
pay the opportunity cost for implementing this strategy. In addition opposing 
demand and supply generated for stocks and bonds due to active FTS trading 
(followed by a move in the opposite direction) exacerbates the differences in 
expected returns that persist under low or standard volatility in the market. 
Thus the less dynamically investors react to market condition changes and 
the slower they restore the portfolio composition to the target volatility level, 
the greater the opportunity cost may be.

Empirical applications using data for U.S. govs and the S&P500 index show 
that when yields are low the strength of FTS from stocks to bonds weakens 
(Boucher & Tokpavi, 2019). Adrian et al. (2019) suggest that the effect of the 
FTS weakens also when market volatility is high. This may indicate that the 
implementation of risk-reducing strategies by investors is limited due to the 
opportunity cost and the proposed model based on reducing this factor by 
shortening the portfolio allocation period in safe-haven assets may contrib-
ute to the optimization of the FTS strategy.
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2. Material and methods

The Deep Target Volatility Equity-Bond Allocation (DTVEBA) strategy is 
based on the target volatility (T.V.) framework supported by recurrent neural 
networks volatility predictions. The weight of equity (ωe) in the target volatil-
ity approach is expressed by:

 min ,100%p
e

e

σ
ω

σ
 

=  
 

 (1)

where σp is target volatility and σe stands for standard deviation of the risky 
asset (Hocquard et al., 2013; Perchet et al., 2016). Equation (1) says that the 
weight of a risky asset is equal to the proportion between required (target) 
monthly volatility and the predicted volatility. The higher the forecasted vola-
tility, the lower the equity weight. Typical T.V. strategy assumes that free cash 
(100% – ωe) is allocated in a risk-free instrument. To build the DTVEBA strat-
egy, this approach is modified, and equity (ωe) is combined with long-term 
government bonds position (100% – ωe). Long-term bonds are not risk-free as-
sets but rather demonstrate flight-to-safety characteristics (Kaczmarek et al., 
2022). In this way, DTVEBA is strongly (weakly) exposed to long-term bonds 
in periods of high (low) expected volatility.

The performance of T.V. strategies relies on volatility prediction accuracy. 
Kaczmarek et al. (2022) compare next-day bi-powered volatility prediction ac-
curacy for five time-series methods by including three econometric models 
(ARFIMA, GARCH, GJR-GARCH) and two recurrent neural networks (univariate 
and multivariate versions of gated recurrent units (GRU). They demonstrate 
the supremacy of the multivariate GRU method that uses six explanatory vari-
ables: bi-powered realized volatility, S&P500 index, gold, crude, U.S. 3-year 
govs, and U.S. 3-year A.A. graded corporate bonds. This research proposes an 
extension to their approach that improves prediction accuracy by adding eight 
new explanatory variables to predict next-day bi-powered volatility.3 First, it 
adds a volatility risk premium expressed with the relationship between the 
VIX index and realized volatility (Prokopczuk & Wese Simen, 2014). Second, 
the neural nets are trained with seven additional variates derived from econo-
metric forecasting methods, namely: 1) adjusted conditional volatility from 
GARCH(1,1); 2) adjusted residuals from GARCH(1,1); 3) adjusted condition-
al volatility from EGARCH; 4) leverage effect EGARCH; 5) leverage EGARCH; 

 3 Table 1 reports the DTVECA_10 strategy Sharpe ratio of 1.05 (2010–2021). Kaczmarek et 
al. (2022) reports Sharpe ratio for comparable strategy of 0.97 (Table 4, STRAT_CLEAN, 2010–
2020).
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6) adjusted conditional volatility from EWMA; and 7) adjusted residuals from 
EWMA (Hyup Roh, 2007; H. Y. Kim & Won, 2018).4

The simulation of the Deep Target Volatility Equity-Bond Allocation (DTVEBA) 
strategy is based on daily data from April 11, 2002, to December 31, 2021 
which is split for a training period (up to 2009) and an out-of-sample testing 
period (2010-2021) with the yearly extending window. The data for realized 
bipower variation (RBV) are from the Oxford-Man Institute of Quantitative 
Finance Realized Library (Heber et al., 2009) where the sample starts from 
2000. The data for explanatory variables are from Refinitiv Datastream.5

3. Results and discussion

The empirical experiment demonstrates how to dynamically allocate gov-
ernment bonds to portfolios based on predicted market volatility. The effec-
tiveness of the proposed dynamic govs’ allocation depends on the precision 
of the volatility forecasts. Therefore, firstly the quality of the applied forecast-
ing model is demonstrated. Table 1 visualizes the results of Diebold-Mariano 
(D.M.) equal forecast accuracy tests for daily volatility of SPX500PI Index meas-
ured with realized bi-powered variation (BPVSPX500) and compares predic-
tion accuracy for mean squared errors (MSE). Each row/column represents 
a different prediction method: 1) the base prediction method used to cre-
ate DTVEBA strategy with all variates (ALL-VARIATES); 2) the same prediction 
model trained without hybrid, GARCH type input variates, namely COND_
VOL_GARCH, RESID_GARCH, COND_VOL_EGARCH, LEV_EFFECT_EGARCH, 
LEV_EGARCH, COND_VOL_EWMA, RESID_EWMA (NO GARCH); 3) the same 
prediction model trained without VOL_RISK_PREM (NO RP); 4) the same pre-
diction model trained without both hybrid, GARCH type input variates and 

 4 Description of each variate and the Gated Recurrent Unit specification is available in ap-
pendix A and B, respectively.

 5 This study predicts the daily RBV of S&P500 Index. It follows variates selections for pre-
dicting realized daily market volatility after H. Y. Kim and Won (2018) who predict the next 
day volatility of KOSPI 200 stock index returns with 1) realized volatility of KOSPI 200 stock in-
dex returns, 2) KOSPI 200 INDEX log difference, 3) 3-year Korea Treasury Bond interest rate, 
4) 3-year AA-grade corporate bond interest rate, 5) gold, 6) crude oil, 7) variates derived from 
GARCH and EGARCH models. The training period of this study is limited with data available 
for the variate with the shortest history. The Oxford-Man Realized Library (Heber et al., 2009) 
delivers data for realized volatility for major stock indices from 2000. Still the training period 
is shortened due to the limitation of data for the U.S. 3-year A.A. graded corporate bonds that 
were published from April 11, 2002. The inclusion of U.S. 3-year A.A. graded corporate bonds 
reduces the data sample only by two years and 3.5 months (or around 10% of the whole data 
sample) and has no significant impact on the study results.
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VOL_RISK_PREM (NO GARCH & R.P.); and 5) naïve prediction based on the 
previous day observed realized bi-powered variation (NAÏVE).

Table 1. Diebold-Mariano (D.M.) equal forecast tests

NO GARCH NO RP NO GARCH & RP NAÏVE

ALL-VARIATES 2.4** 0.2 2.2** 3.3***

NO GARCH –2.3** 0.7 2.5***

NO RP 2.2** 3.3***

NO GARCH & RP 2.3**

∗∗∗ and ∗∗ denote a rejection of the null hypothesis at the 1% and 5% significance level—respectively.

Source: Own work.

The D.M. test show the significantly higher efficiency of neural network 
methods than NAÏVE. This is consistent with Hamid and Iqbal (2004) and 
Brooks (1998) who show significant economic benefits in using neural net-
works to forecast market volatility. Furthermore, when comparing the base 
hybrid prediction model combining GRU with GARCH (ALL-VARIATES) with 
the pure GRU model (NO-GARCH) the errors of the hybrid model are smaller 
than in the single models. It means that GRU can effectively learn temporal 
patterns of time-series data and the long-term phenomenon provided with 
input from GARCH and EGARCH models. The results from the S&P Index from 
the U.S. market supports the earlier finding of Hyup Roh (2007) and H. Y. Kim 
and Won (2018) who show a similar effect observed on the Korean market 
with the KOSPI index. 

In contrast, the explanatory power of volatility risk premium turns out to be 
limited. Although Prokopczuk and Wese Simen (2014) find volatility risk pre-
mium as an essential determinant in predicting market volatility they concen-
trate on implied volatility. This research forecasts realized volatility because it 
demonstrates higher portfolio application usage (Fleming et al., 2003).6 Thus 
the role of the risk premium in forecasting volatility is not constant and de-
pends on the type of volatility being forecasted.

Figure 1 shows how closely the predicted daily volatility tracks the real-
ized volatility. Gray shadows indicate days on which realized volatility is sig-
nificantly higher than forecasts. Nevertheless volatility forecasts still closely 
follow realized volatility.

In DTVEBA the predicted volatility is used to dynamically allocate port-
folio between equity and govs. The descriptive statistics for SPX500TR and 
USGOV10TR are demonstrated in Table A.2 in the appendix. The mean daily 
returns for SPX500TR are three times higher in the testing vs. training sample. 

 6 Also results from Table 2 demonstrate that use of realized volatility instead of implied vol-
atility increases performance of the strategy that allocates portfolio between equity and govs.
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In contrast the mean returns for USGOV10TR are constant in both periods. 
The standard deviation of both asset classes is higher in the training sample 
but the relationship between the volatility of equities and bonds is similar 
in the training and testing sample. These results demonstrate that the char-
acteristics of equity and bonds are not the same in the training and testing 
period which may negatively impact the quality of volatility predictions. On 
the other hand the relationship between the volatility of equities and bonds 
stays persistent and the trade-off between the risk in equities and bonds is 
constant over time.

Figure 2 demonstrates compounded return of DTVEBA_10 strategy that 
targets 10% market volatility (top subfigure) and DTVEBA_10 strategy equity 
weight in time (bottom subfigure).7 The compounded returns of DTVEBA_10 
are compared with five benchmarks: 1) equity-only portfolio invested in 

 7 The 10% level is typical for other studies about the target volatility strategy, e.g., Y. Kim 
and Enke (2016, 2018), Kaczmarek et al. (2022).

Figure 1. Predicted and realized daily volatility

Source: Own work.

Figure 2. DTVEBA_10 strategy cumulative performance and equity allocation

Source: Own work.
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S&P500 Total Return Index (SPX500TR); 2) target volatility strategy using cash 
instead of long-term bonds (DTVECA_10); 3) equity-bond target volatility strat-
egy based on naïve prediction from previous day observed bi-powered varia-
tion (NTVEBA_10); 4) 70/30 equity-bond fixed allocation portfolio (70/30EB); 
and 5) equity-bond target volatility strategy based on VIX index that targets 
13% implied volatility (VIX_13).

Figure 2 shows that the equity allocation in DTVEBA_10 changes dynami-
cally and varies between 10-100%. Given that the sum of the weight of equity 
and govs in the strategy is 100% the bond allocation reaches values ranging 
from 0 to 90%. Furthermore, the line plots of compounded returns visualize 
that splitting the portfolio into stocks and bonds in DTVEBA_10 lowers the cu-
mulative investment return relative to the S&P500TR Index. However, the vola-
tility of DTVEBA_10 is lower which is easily seen during the COVID-19 sell-off.

Next, Table 2 provides detailed performance measures for all investment 
strategies. DTVEBA_10 outperforms all alternatives in terms of the Calmar 
ratio. The outperformance reaches 10.2% to 115.5% for DTVECA_10 and 
SPX500TR. The differences in the Sharpe ratio are less pronounced but the 
strategy still overperforms other alternatives.

Table 2. Equity/bonds mixed strategies

SPX500TR DTVEBA 
_10

DTVECA 
_10 NTVEB_10 70/30EB VIX_13

Return 0.15 0.11 0.10 0.12 0.12 0.11
Std 0.17 0.09 0.09 0.10 0.11 0.09
Max drawdown 0.34 0.12 0.12 0.15 0.22 0.12
Max 1M loss 0.12 0.06 0.06 0.07 0.06 0.06
Sharpe 0.88 1.26* 1.06 1.21 1.06* 1.18*
Calmar 0.45 0.97 0.83 0.81 0.54 0.88
Av. equity share 1.00 0.78 0.78 0.79 0.70 0.78

The asterisk for Sharpe indicates that the difference with SPX500TR is statistically significant at the 5% level.

Source: Own work.

DTVEBA_10 and DTVECA_10 are two identical strategies, but use govs in-
stead of cash allocation. The comparison of these investment alternatives dem-
onstrates that the replacement of cash with long-term bonds is beneficial for 
overall target volatility strategy performance. Another two close cousins are 
DTVEBA_10 and NTVEBA_10. The evaluation of this pair which differs just in 
the volatility forecasting method demonstrates the benefits of RNN volatility 
predictions over the naïve approach.

70/30EB delivers a considerably lower Sharpe and Calmar ratio in relation-
ship to DTVEBA_10. Although the fixed equity-bond strategy has on average 
eight p.p. higher average bond allocation than the target volatility alterna-



170 Economics and Business Review, Vol. 9 (2), 2023

tive it still has a higher standard deviation and maximum drawdown. It means 
that DTVEBA_10 has lower risk and higher performance with higher (lower) 
equity (debt) allocation.

Finally, DTVEBA_10 is also compared with the target equity-bond alloca-
tion based on VIX. The average value of VIX is higher than the average real-
ized volatility; therefore, this strategy needs to target 13% VIX to achieve the 
same average equity allocation as DTVEBA_10. In this setting, DTVEBA_10 
overperforms VIX_13 by 8.5% (10.2%) in terms of the Sharpe (Calmar) ratio.

In detail: the low maximum drawdown of DTVEBA_10 shows that the strat-
egy correctly detects market turmoil periods and benefits from the govs FTS 
phenomenon. These relationships are also confirmed when DTVEBA_10 to 
SPX500TR are compared, where the relative overperformance reaches 43% 
(115%) in terms of the Sharpe (Calmar) ratio.

The second test focuses on equity/debt allocation. It compares twelve 
DTVEBA strategies with target volatility ranging from 4% to 15% (TV4 to TV15). 
The average share of equity/debt is calculated for each of them and a peer 
fixed allocation strategy with the same proportions of equity and debt (34/66 
to 92/8) is created. Table 3 presents the results.

Table 3. Target equity volatility with long term bonds vs. constant equity/long 
term bonds strategy

Panel A: Equity target volatility 4–9

Strategy name TV4 34/66 TV5 43/57 TV6 51/49 TV7 60/40 TV8 67/33 TV9 73/27

Return 0.07 0.08 0.08 0.09 0.09 0.10 0.09 0.11 0.10 0.12 0.11 0.12

Std 0.05 0.06 0.05 0.07 0.06 0.08 0.07 0.09 0.07 0.11 0.08 0.12

Max drawdown 0.07 0.09 0.07 0.11 0.08 0.15 0.09 0.18 0.11 0.21 0.11 0.24

Sharpe 1.43 1.44 1.48 1.36 1.46 1.25 1.40 1.16 1.33 1.09 1.29 1.04

Calmar 1.09 0.92 1.15 0.81 1.06 0.68 0.99 0.60 0.93 0.55 0.93 0.52

Equity share 0.34 0.34 0.43 0.43 0.51 0.51 0.60 0.60 0.67 0.67 0.73 0.73

Panel B: Equity target volatility 10–15

Strategy name TV10 78/22 TV11 82/18 TV12 85/15 TV13 88/12 TV14 90/10 TV15 92/8

Return 0.11 0.13 0.12 0.13 0.12 0.14 0.13 0.14 0.13 0.14 0.13 0.14

Std 0.09 0.13 0.10 0.14 0.10 0.14 0.11 0.15 0.11 0.15 0.12 0.16

Max drawdown 0.12 0.26 0.11 0.27 0.11 0.28 0.12 0.29 0.13 0.30 0.14 0.31

Sharpe 1.26 1.00 1.23 0.97 1.21 0.95 1.18 0.94 1.15 0.93 1.14 0.92

Calmar 0.97 0.50 1.08 0.49 1.12 0.48 1.06 0.47 1.00 0.47 0.95 0.46

Equity share 0.78 0.78 0.82 0.82 0.85 0.85 0.88 0.88 0.90 0.90 0.92 0.92

Source: Own work.
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Figure 3. DTVEBA strategy results during the top five drawdowns  
of the S&P500 Total Return Index

Source: Own work.

DTVEBA delivers higher Sharpe and Calmar ratios in all the cases analysed 
except for the most conservative of the examined portfolios. The largest over-
performance is observed in pair TV12 and 82/18 strategy. The average Sharpe 
(Calmar) ratio for the DTVEBA strategies is 1.30 (1.03) and for fixed alloca-
tion strategies is 1.09 (0.58). With equal debt allocations the DTVEBA strate-
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gy overperforms the fixed allocation by 19.2% (Sharpe) and 77.5% (Calmar). 
From the other perspective if equal Sharpe and Calmar ratios with DTVEBA 
and fixed equity-debt allocation are sought significantly lower debt alloca-
tions are obtained. For example, 51/49EB and TV10 have the same Sharpe 
ratio but the debt allocation is more than twice lower. For the Calmar ratios 
all the DTVEBA strategies overperform 51/49EB. Based on all the Calmar ob-
servations it can can be concluded that obtaining the same Calmar ratios is 
possible when reducing the allocation in debt even more than three times.

Finally, DTVEBA’s strategy performance is verified during the market 
stress conditions. Figure 3 presents the DTVEBA_10 strategy performance 
during the five most severe drawdowns in the testing sample (Table A.3 
in the appendix shows the list of drawdowns). The figure is divided into 
five panels. Panels demonstrate different drawdown periods and consist 
of two subfigures. The left subfigure presents cumulative returns for the 
S&P500 Total Return Index (black line); fixed equity-bond 70/30EB alloca-
tion strategy (blue line); DTVEBA (red line); and USGOV10TR. The right sub-
figure visualizes the weight of equity (black line) and bonds (green dotted 
line) in the DTVEBA.

Figure 3 visualizes that in five of the most severe drawdown periods the 
strategy overperformed the S&P500 Index. In each case DTVEBA dynamically 
reduces equity and allocates most of the portfolio to govs that benefit from 
the FTS phenomenon.

Conclusions

This paper applies recurrent neural network predictions of realized mar-
ket volatility to investment portfolio construction. It extends studies about 
target-volatility strategies by dynamic exposition to FTS events to enhance 
performance. Since equity markets perform better during low volatility high 
equity allocation in periods of low predicted volatility enhances portfolio per-
formance. In contrast volatility increases during market turmoil; therefore high 
volatility forecasts reduce equity and increase govs’ allocation thus providing 
a solid exposition for FTS events.

The conditional allocation to govs provides high flexibility to portfolio con-
struction. With Deep Target Volatility Equity-Bond Allocation (DTVEBA) a con-
stant exposition to govs is no longer obligatory to protect the portfolio against 
market turmoil by building exposition to govs and benefiting from FTS events. 
Instead the average govs allocation can be defined mainly through investor 
expectations about the relationship between expected returns from equity 
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and govs. This flexibility is valuable during periods of low expected returns 
on government bonds when holding them in a portfolio may be solely related 
to affirm exposition to FTS events and to deliver lower expected returns. The 
effectiveness of this approach is verified in the fully out-of-sample approach. 
The DTVEBA strategy performance is measured by the Sharpe and Calmar 
ratios and compared to the S&P500 index as well as alternative portfolio di-
versification approaches.

To this end a considerably large-scale empirical analysis is conducted with 
twenty years of daily history spanning from 2002 to 2021. The strategy is test-
ed with a 12-year window (2010–2021) that covers a few significant market 
selloff periods. The DTVEBA strategy targeting 10% volatility overperforms 
the S&P500 index by 43% and 115% in terms of the Sharpe and Calmar ra-
tios and is exceptionally beneficial for portfolio drawdown risk reduction. The 
results show that a portfolio manager is better off by targeting volatility with 
the daily-adjusted decision than sticking to constant allocation.

The findings from this study are relevant to any investor that actively man-
ages portfolio risk. It shows that market volatility estimations with a state-of-
the-art recurrent neural networks model are essential to enhance portfolio 
performance and most importantly to manage its drawdown risk. Moreover, 
it demonstrates the innovatory approach to defining government bonds al-
location where high govs allocation is required only before the FTS event. 
The results are also crucial for active investment advisors that with dynamic 
equity/govs allocation want to deliver an investment risk appropriate to in-
vestors’ needs.

This study also has its limitations. First, the DTVEBA strategy is tested on 
a twelve year window—a maximum period where the input data is available 
and the model can be trained. Since deep neural networks master the analy-
sis of complicated input data and discovery of sophisticated interactions the 
best performance is achieved with multivariate models consisting of many 
informative explanatory variables. Unfortunately, it is necessary to have data 
for all variables in order to start training the model so the variate with the 
shortest history defines the research sample. Furthermore, training the neural 
network requires many training and validation samples that cannot be used 
for out-of-sample testing. The research sample for this study starts in 2002, 
the training lasts eight years and the out-of-sample testing period starts in 
2010. Second, the strategy is tested with the volatility of the S&P500 index. 
Although market volatility can be used as a good approximation for portfolio 
volatility the estimation of volatilities for each instrument in a portfolio may 
deliver more precise guidance concerning portfolio allocation. The last limi-
tation of this study also represents an exciting direction for future research—
namely research on controlling portfolio volatility.
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Appendix A. Additional tables for the study

Appendix A consists of three tables that demonstrate the detailed descrip-
tion of variables, present descriptive statistics, and show the performance 
of DTVEBA_10 during the most severe five drawdowns for the S&P500 TR. It 
depicts a detailed description of the tables, the interpretation of which can 
be found in the main text.

Table A1 explains the variables used in the research. Panels organize the 
rows. Panel A presents the volatility measure for SPX500PI index. Panel B pre-
sents the variates used to predict volatility. Finally, panel C shows the total 
return indices used to calculate the target volatility strategies’ performance. 
The table consists of four columns. The first column provides the name of 
each variable. The second column shows the symbol assigned to the variate. 
The third column describes how the variable is computed and measured. 
Finally, the fourth column indicates the source of the data used in this study 
for the given variable.

Next, Table A2 presents summary statistics for explanatory variables 
(Panel A) and strategy components in the training (Panel B) and testing peri-
od (Panel C). All variates are described in Table A1 The table columns present 
the mean (Mean); standard deviation (Std); skewness (Skew); excess kurtosis 
(Kurt); the number of daily observations, for which the given variable is avail-
able (Count); t-statistic of the Jarque-Bera test, for variable’s normal distribu-
tion (Jarque-Bera), and the Augmented Dickey-Fuller test, for the presence 
of a unit root in a sample (ADF). *** and ** denote a rejection of the null hy-
pothesis at the 1% and 5% significance level, respectively. The sample period 
runs from April 11, 2002, to December 31, 2021, and the testing period for 
the strategy starts in January 1, 2010.

Finally, Table A3 shows the most severe drawdowns in the testing sample. 
Results cover the period from January 1, 2010, to December 31, 2021. The 
table has six columns: 1) the first five worst drawdowns (Worst drawdown pe-
riod); 2) the size of drawdown for S&P500 Total Return Index in % (SPX500TR 
Net drawdown); 3) the size of drawdown for Deep Target Volatility Equity-Bond 
Allocation (DTVEBA) equity target volatility strategy in % (target volatility = 
10%) (DTVEBA_10 Net drawdown); 4) the start date of the drawdown (Peak 
date); 5) the end date of the drawdown (Valley date); and 6) the drawdown 
duration in days (Duration in days).
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Table A3. Target equity volatility strategy with long-term bonds during the most 
severe five drawdowns for the S&P500 TR

Worst 
drawdown 

period

SPX500TR
Net 

drawdown

DTVEBA_10 
Net 

drawdown
Peak date Valley date Duration in 

days

1 33.8 5.3 2020-02-19 2020-03-23 33

2 19.4 7.8 2018-09-20 2018-12-24 95

3 18.6 3.4 2011-04-29 2011-10-03 157

4 15.6 4.1 2010-04-23 2010-07-02 70

5 13.0 8.0 2015-07-20 2016-02-11 206

Source: Own work.

Appendix B. Volatility prediction model

B1. Development of RNNs

Recurrent Neural Network (RNN) is a class of neural network that is de-
signed to perform tasks related to processing sequences. In contrast to a tra-
ditional feedforward network, a basic RNN has a distinguishing feature—back-
ward connections. The most elementary form of an RNN with three nodes—
input node xt, output node yt, and hidden node ht—is depicted in Figure B1 
(left). On the right side, a visualization of the unrolled network is demonstrated 
when the recurrent network is presented once per step. The recurrent neu-
ron receives the input xt and its output from the previous step yt–1 and takes 
two sets of weights at each time t: one for the input xt and the other for the 
output from the previous time step, yt–1. By defining the output at step t as yt 
and the hidden state output as ht, their relationship can be expressed math-
ematically (Géron, 2019):

 ( )( ) ( ) ( 1)
T T

t hx t hh t hh σ W x W h b−= + +  (B1)

 ( )( ) 0 ( )
T

t yh t yy f W h b= +  (B2)

where two matrices of weights comprise the hidden state weights, Whx and 
Whh, along with the recurrent neurons; a matrix of weights called Wyh, encap-
sulates the output layer weights; bias vectors in the hidden layer, bh; and the 
output layer, by; and lastly, an activation function denoted by σ. Ultimately, 
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the function transfer from the hidden state to the output values is repre-
sented by f0.

The basic configuration of a Recurrent Neural Network is limited in its ability 
to learn sequences of significant length. Consequently, it may be insufficient 
to train for complex tasks that involve long-term dependencies, as indicated 
by Bengio et al. (1994). To address this problem, multiple long-term memory 
cells have been developed. Gated Recurrent Units (GRU) were proposed by 
Cho et al. (2014) as a simplified version of LSTM that reduces computational 
costs without compromising performance, as confirmed by Greff et al. (2015) 
and Cong et al. (2020). The GRU architecture unites two state vectors into a 
singular vector –h(t). Additionally, it features a single control gate that man-
ages both the input and forget gates. Unlike the LSTM, there is no output 
gate, and the state vector is produced entirely during each time step. As an 
alternative, a new gate controller is introduced –r(t). The formal computation 
details for GRU, which describe equations B3–B6, are as follows:

  ( )( ) ( ) ( 1)
T T

t xz t hz t zz σ W x W h b−= + +  (B3)

 ( )( ) ( ) ( 1)
T T

t xr t hr t rr σ W x W h b−= + +  (B4)

 ( )( )( ) ( ) ( ) ( 1)
T T

t xg t hg t t gg tanh W x W r h b−= + ⊗ +  (B5)

 ( )( ) ( ) ( 1) ( ) ( )1t t t t th z h z g−= ⊗ + − ⊗  (B6)

B.2. Model training, validation, and testing

The neural network architecture in this study involves a stacked GRU com-
posed of an initial layer for input, followed by two stacked hidden GRU layers, 
which subsequently feed their output to a final layer responsible for deliver-
ing a single volatility prediction value.

In order to achieve out-of-sample results, the data is split into two sub-
samples: training and testing. The former is employed to estimate values for 
the model’s hyperparameters. As part of this process, the five-fold cross-val-
idation technique is used. This technique splits the training dataset into five 
subsets and continuously searches for hyperparameters to minimize predic-
tive mean squared error. The explored hyperparameter range includes: the 
number of neurons in the hidden layers; the batch size; the level of l2 regu-
larisation on weights and bias; and a dropout ratio.

Machine learning algorithms are prone to overfitting. The neural network 
architecture and the training process involve four regularization techniques. 
Their goal is to reduce the probability of overfitting. The first of these ap-
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proaches consists of the implementation of l2, also referred to as ridge regu-
larization, on both the weights and bias. This widely-accepted and commonly 
utilized technique in the realm of machine learning helps to control overfitting 
by inflicting a penalty on the objective function (Gu et al., 2020). The second 
method employed is what is known as “dropout.” This technique involves the 
random exclusion of certain neurons throughout the training phase (Cong et 
al., 2020). The parameters for both the l2 regularization and dropout methods 
are established via cross-validation. Thirdly, the “early-stopping” technique 
is implemented that stops training when the mean square error is no longer 
improving along with subsequent batches in the training process. Finally, as 
our fourth and final measure for regularization, an ensemble approach is im-
plemented. With this technique predictions from separate training processes 
are averaged to get more reliable outcomes.

The training process of Recurrent Neural Networks is based on an effective 
adaptive method for stochastic gradient descent called “Adam”. This algorithm, 
developed by Kingma and Ba (2015), evaluates the first and second moments 
of the gradients and generates adaptive learning rates for each parameter. All 
of the computations in the study are performed using the Python program-
ming language, with the assistance of the Keras and TensorFlow libraries.
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