STATISTICS IN TRANSITION new series, June 2021
Vol. 22, No. 2, pp. 125-142, DOI 10.21307/stattrans-2021-019
Received - 30.12.2019; accepted - 22.09.2020

Developing calibration estimators for population mean using

robust measures of dispersion under stratified random sampling

Ahmed Audu', Rajesh Singh’, Supriya Khare’

ABSTRACT

In this paper, two modified, design-based calibration ratio-type estimators are presented.
The suggested estimators were developed under stratified random sampling using
information on an auxiliary variable in the form of robust statistical measures, including
Gini’s mean difference, Downton’s method and probability weighted moments. The
properties (biases and MSEs) of the proposed estimators are studied up to the terms of first-
order approximation by means of Taylor’s Series approximation. The theoretical results
were supported by a simulation study conducted on four bivariate populations and
generated using normal, chi-square, exponential and gamma populations. The results of the
study indicate that the proposed calibration scheme is more precise than any of the others
considered in this paper.

Key words: calibration, outliers, percentage relative efficiency (PRE), stratified sampling.

1. Introduction

In sampling survey, calibration is a commonly used technique to produce
estimation weights. These calibrations weights in turn satisfy calibration equation that
incorporates auxiliary information. The calibration approach consists of (a)
computation of new weights that incorporate specified auxiliary information and are
restrained by calibration equations (b) the use of these weights to compute linearly
weighted estimate of mean, totals and other finite population parameters satisfying an
objective of obtaining nearly unbiased estimate. This technique has been used to
develop cosmetic estimators (estimators interpretable both as design-based and as
prediction-based estimators) (see Sarndal and Wright (1984), Brewer (1995, 1999),
etc.). The calibration technique has also been utilized to develop design-based estimator
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under different sampling schemes like stratified random sampling, stratified random
double sampling, two-stage sampling, etc. In this direction many authors like Deville
and Sarndal (1992), Singh and Mohl (1996), Estevao and Sarndal (2000), Estevao and
Sarndal (2002), Singh (2003),Tracy et al. (2003), Kim et al. (2007), Barktus and
Pumputis (2010), Sud et al. (2014), Clement and Enang (2016), Rao et al. (2016) and
Subzar et al. (2018) have proposed estimators and studied their properties for
estimating population mean under different calibration constraints in stratified
random sampling. Tracy et al. (2003) obtained calibration weights for population mean
by using first and second order moments of auxiliary variable in stratified random
sampling. Nidhi et al. (2017) considered estimation of population mean using
calibration approach in stratified and stratified double sampling schemes. Kim et al.
(2007) utilized calibration approach in defining estimators for population variance in
stratified random sampling. Other authors like Horvitz and Thompson (1952), Estevao
and Sarndal (2006), Aditya et al. (2016), Salinas et al. (2019) considered estimation of
population mean under two stage sampling scheme using the calibration approach.

In this paper, we have suggested two calibrated schemes in stratified random
sampling by utilizing auxiliary information on certain robust statistical measures like
Gini’s mean difference, Downton’s method and Probability weighted moments, all of
which are insensitive against the presence of outliers in the population and are less
susceptible to fluctuations in sampling whenever extreme observations are present as
alternatives to Rao et al. (2016) calibration estimators.

2. Some existing estimators in literature

Let O = {G)Nh ,h=12,..,K }be a stratified non-overlapping heterogeneous
population with K strata of size N = ZL N, with units Y,,,i=1,2,...,N,; and
Xois1 =1,2,...,N,; for study variable Y and auxiliary variable X respectively.
Y_h =N, ! z IN:h] Y, and X h=N, ! ZIN:'; X, are means of study and auxiliary variables

K
respectively. A random sample of size N = Zh=1 N, is selected from the population

using SRSWOR. The conventional unbiased estimator of the population mean and its
variance is given in Eq. (2.1) and Eq. (2.2), respectively.

Ya = ::1 ApY, (2.1)

var (vy) =2 A (0 = NS5 (22)
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Where,
.2

A, =Ny /N, Y, = nr:lz:il yhiosjh :(Nh _1)_1 ZiN:hl(yhi _Yh) ’Y_:zrzlAhY_h

Singh (2003) suggested a design-based calibration estimator with two constraints
for estimating population mean in stratified sampling. The suggested calibration
estimator is given in Eq. (2.3).

— K S—
Ys = thl AN (2.3)
where Ai is the new calibration weight of stratum K™ to be obtained by solving (2.4).
. K 2
min  Zg= thl(Aﬁ —Ah) /A,

K \so K — K s K
st Zh:IAh Xy = h:lAh xh’ Zh:IAh - h:lAh

where @, are suitably chosen positive scale factors, which decide the form of the

(2.4)

estimator.

Eq.(2.4) yields a calibration weight in Eq. (2.5) and the estimator Yy was obtained
asin Eq. (2.6).

+ %Ahyhz:; Ah¢h _Ah¢h2::Ah¢h7h . (X_ZK:Ah_ )

A=A+ — ! ! X,
Zh: Ah¢h Zh:Ah%Yhz - (Zh: Ah¢h7h )

(2.5)

_ O AAD S BARY D AARD AATh (o .
s~ lAh hT 2 X— _IAh
R PITISIINSEPINISY T

(2.6)

Clement and Enang (2016) suggested a design-based calibration estimator for the
combined ratio estimator in stratified random sampling. The suggested estimators with
the associated calibration constraint are given in Eq. (2.7) and Eq. (2.8).

Yee = Z:; A(h:E RX (2.7)

min  Zee =Y (A A, ) /A,

) B (2.8)
st D AFX =X
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5 [ — CE
where R =V, /X A is the proposed calibration weight of K" stratum.

The calibration weight A: , estimator Y.g and Var(VCE ) were obtained as given

in Eq. (2.9), Eq. (2.10) and Eq. (2.11) respectively.

4 (o _
ACE Z A, +ﬁ(x —ZhK:lAhxh) (2.9)
Yee = XZ::IAth /Z:ZIAth (2.10)
Bias(Vee )= X~ Zh A, ( )(Rth —Syxh) (2.11)

Var (V) :(>?2Var(7St )Z:;Aﬁ (ny' - Nh-l)s;Z)/ )?2Var(is’;)
(2.12)
where

X = Y A Var () =" ASE.S =S +R’S} —2RS , R=Y /X,

Syxh =(Nh _1) Zizl(yhi _Yh)(xhi - )zh)

Rao et al. (2016) proposed two new design-based calibration schemes by
incorporating coefficient of variation in the constraint to the chi-square distance
function for the new calibration weight defined to improve the precision of the sample
mean estimator in stratified random sampling. The first scheme proposed is given
in Eq. (2.13).

Yrrk = zAh Yh (2.13)

where A, is the new calibration weight such that the chi-square function Z, is defined

as

o At (2.14)



STATISTICS IN TRANSITION new series, June 2021 129

where
Cin = Sin /Yhﬂcxh = th / )zhﬂsfh :(nh _1)_1 Zin:l(xhi - =n, z X
S>2<h =(Nh _1)71 Zihl(xhi - >Zh)2

Solving Eq. (2.14) and let ¢, = (Yh +C,, )_l , the calibration weight A;l and the

estimator Yy are given by Eq. (2.15) and Eq. (2.16) respectively.

A;=Ah+A{§Ah(>‘<h+%)—§Ah(&+cm)j(:zlAh(&+cm)jl (2.15)

-1
Ve = ZAhthA (X +CXh)[zA Xh+c )j (2.16)

h=1 h=1

Similarly, function Z, is also subjected to another constraint defined in Eq. (2.17),

iA;(1+Yh+cxh):ZK:Ah(l+ X, +Cyy) (2.17)
h=1 h=1

which lead to another estimator given as

=A +A, (g:Ah(H X, +Ca) —gAh (1+%, +%)J(§Ah (1+%, +c,m)Jl (2.18)

-1
Varks = ZAhthA (1+X, +th)(zA 1+X, +C,, )j (2.19)

h=1 h=1

However, estimators Vg, and Vg, are functions of coefficients of variation

which are easily affected outliers or extreme values.

3. Suggested calibration estimators

Motivated by Clement and Enang (2016) and Rao et al. (2016), we proposed two
classes of design-based calibration estimators in stratified random sampling using

robust measures such as Gini’s mean difference GMD, Downton’s method DM and
probability weighted moments By, of the auxiliary information, which are insensitive
to the presence of outliers or extreme values in the data.

Let Z€R" with units Z,,i =1,2,...,N, then:
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Gyo (2)=2N"'(N=1)" X" (2i-N-1)z (3.1)
DM(z)zzﬁN-‘(Nq)’lZL(i—(N +1)/2)z, (32)
)=~zN ‘22 (2i=(N+1))z, (3.3)

3.1. First calibration scheme proposed

Consider an estimator defined in Eq. (3.4) under stratified sampling having
distance function as given in Eq. (3.5),

K
=> OnY,, 1=1,23. (3.4)
h=1
where €, is the new calibration weights such that the chi-square function Z" is
defined as
2
K *
min = ( i )
h=1 h¢h (3.5)

stZQh,(Xh+ﬂh )= ZA (X, + 244 (x)),i=1,2,3
where A, (X) = Gypp (X), 4y, (X) = Dy (X), A3 (X) = Ry (X)

To compute the new calibrated weights €., we use the Lagrange multipliers

function of the form given by Eq. (3.6),

O = Z;(th h;) 2;7(2Qh,(xh+/1h ))- ZA (X, + 2 ( ))j (3.6)

Partially differentiating Eq. (3.6) with respect to €, and 77 and equating to zero,

K
h=
we have

QL =A +77Ah¢h(Y + 2 (X)) (3.7)

(%, + Ay (X)) - ZA (X, + 24 (x))=0 (3.8)

Mx

=
Il

1
Substituting Eq. (3.7) in Eq. (3.8) to get 77 and then substituting the expression

-1
obtained into Eq. (3.7). By putting @, = (Yh + A, (X)) , the new calibration weight

Q.. is obtained as
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h=1

=0, SA (% 44 (8)- 2 (4409 | A%+ 08 >j_l 59

Now, substituting Eq. (3.9) in Eq. (3.4) and letting A, (X) be either Gy, (X) or

wh (X) or By (X), the new estimators are obtained as,

Voo =2Ahvthh(ih+eMDh<x>)[

=>

=1 h=1

M-

Ay (Yh +GMDh(X))j

Voo =zAhvthh(x‘h+DMh<x>)[

h=1 h=1

>
iMK

AA&+DWu»j

Yars = ZAthzAh (Xh + PWMh(X))[

h=1 h=1

Mx

=
Il

1

A, (Yh + Ruwn (X))j_

(3.10)
3.2. Second calibration scheme proposed

To obtain the second class of the proposed estimators, we let

K
Vis = 2 1Y, 1=1,2,3. (3.11)
h=1

where TT;; is the new calibration weight such that the chi-square function U”
defined as

* < (H:i - Ah )2

min U’ =
=R (3.12)
K K
st Y Ty (14 %, + 24, (0) = XA, (1+ X, + 4, (%)), 1 =1,2,3
h=1 h=1

Solving for IT, using the Lagrange multipliers technique and putting

@ = (1 + )Zh + Ay (X))_1 , we have the new calibrated weight given by Eq. (2.14).

oA 00K A0S o840 [ S22

(3.13)
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By putting Eq. (3.13) in Eq. (3.11) and letting A, (X) be either G5, (X) or
Dy (X) or Ry, (X) , the new estimators are obtained as

K

K _ K -l
Vst = ZAthZA (1+ X, +GMDh(X))[ZAh 1+X, +GMDh(X))j
h=1 h h=1

=1

~

Ay (1+ X, +DMh(x))(iAh 1+X, +DMh(X))j_

h=

Yasa = zAhy
h=1

ey

Mx iMx

K -
Vass = ZAhV A (1 + X Ry (X))(ZAh 1+%, + PWMh(X))j
ho1 =

=
Il

1

(3.14)
3.3. Properties (bias and MSE) of the proposed estimators

To obtain bias and MSE of the suggested estimators Yni, Yasi»> the following error

terms are defined: €, —(yst )/ Y,e —( )Z)/ X with expected values
defined in Eq. (3.15)

E(e,)=E(e)=0,E(e])=Var(y,)/V", 19
E(e?)=Var(%,)/ X*,E(&g ) =Cov(V,%,)/ VX ’

where

Var (X, ZhlAz( - )Xh,Cov(ySt Z:zlAﬁ(n;‘—N,;‘)Syxh.

Expressing Eq. (3.10) and Eq. (3.14) in terms of €, =0,1and simplifying up to
the second degree approximation, we obtained Eq. (3.16) and Eq. (3.17) respectively as

Voo =V (16) 200, A (X, 4 20 (X)) 1 Xes+ 2o, A4 (K + 20 (¥)))
(3.16)

Vis =V (1+6,) D A, (14X, +ﬂ1h(x))/()?e1 +Y A (14X, +ﬂih(x)))
(3.17)

Simplifying Eq. (3.16) and Eq. (3.17), we get Eq. (3.18) and Eq. (3.19)
Ve =Y (1+8,)(1+@e)" (3.18)
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Vas =Y (1+6,)(1+8e)" (3.19)

where
K _ K _ K _ K _

@ =Y AKX Y A(K +2,(0), G =D AKX /A (14 X, + 4,()).
h=1 h=1 h=1 h=1

Simplifying Eq. (3.18) and Eq. (3.19) up to the first order approximation, we
obtained

Vi —V:Y(eo ~@e +@e —wieoel) (3.20)
Vas =Y =Y (e, -9, + 97" - Jee ) (3:21)

Take expectation of Eq. (3.20), Eq. (3.21) and using the results obtained in Eq.
(3.15), we obtained the Bias( Y,y ) and Bias( Vg )as

Bias(y,.x )= RX '@ Var (X, )— X '@,Cov(V,X,) (3.22)
Bias (¥, ) = RX '#Var (X, )- X '9Cov(V,X,) (3.23)
where R=Y / X.

Squaring Eq. (3.20) and Eq. (3.21), and taking expectations and substituting the
results of Eq. (3.15), we obtained the MSE (VARi) and MSE( Vasi ) as given in Eq.
(3.24) and Eq. (3.25) respectively.

MSE (¥, ) =Var (Y, )+ R*@;Var (X, )-2R@,Cov(¥,X, ), i=1,2,3
(3.24)

MSE (Y, ) =Var (7, )+R*3Var (X, )-2R4Cov(V,X, ), i=12,3
(3.25)

3.4. Properties of the New Weights Q. and I1;,,i=1,2,3

Theorem I: The proposed weights () and IT;;,i =1,2,3 are consistent.
Proof: As the sample size in each stratum tends to the stratum size, i.e. as N, —> Nh ,

the stratum sample mean converges to the stratum population mean, i.e. X, = X, .

Then, the expression ZK:Ah ()?h + A (X))—ZK:Ah (Yh + A (X)) in
h=1 h=1



134 A. Audu et al.: Developing calibration estimators...

Q,i=123 andexpress1onZA (1+X +/1h ) iAh (1+7h+ﬂm(x))

h=1 h=1
in IT;;,i =1,2,3 tend to zeros. So,

*

. Q.

lim =" 1 (3.26)
n,—>Nj, Ah

. I,

lim — 1 (3.27)
n, —>Np, Ah

Theorem 2: The sum of the proposed weights Q. and IT;,i =1,2,3 converged to
unity.

Proof: Taking the summation of Q;;and IT};,i =1,2,3 over K, we obtained
YO =K (X =%, )/ D AL (R + Ay (%)) (3.28)
I =1+ K (X =% )/ D0 A (14K, + 4 (%)) (3.29)

As ﬂn—>Nh,7h—>X and X — X, then

lim Q = lim H =1 (3.30)

n,—>Np n, =Ny

Theorem 3: The proposed weights 0 < Q. <land 0<TIT,;, <1,i=1,2,3.
Proof As N, —> N,, X, = X, and X, — X , then

lim Q, = lim IT;; =A, =N, /N (3.31)

N, —>Ny e\

Since N, >0,N >0and N, <N, then 0 <A, <1.

4. Empirical study

4.1. Simulation study

In this section, we perform a simulation study to examine the superiority of the
proposed estimators over other estimators considered in the study. For this, we
generate a bivariate random population of size N=1000 for study population stratified
into 3 non-overlapping heterogeneous groups of size 200, 300 and 500 using function
defined in Table 4.1. Samples of sizes 20, 30 and 50 were selected 10,000 times by the
SRSWOR method from each stratum respectively. The precision (PRE) of the
considered estimators was computed using Eq. (4.1).
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3i05(0)= 3055 2 () (1)
MSE( ) Var (0) = ﬁwjo(éj vy (4.2)
PRE (& (Var ..)/Var( 9))100 (4.3)
where
var(3, ) = loéoolg(vﬂ—Y‘)z,é=Vst,VCEI,VCEZ,VRTKI,VRTKZ,VARi,VASi

Table 4.1. Populations used for Empirical Study

Population Auxiliary variable X Study variable Y

X, I N (4,04 ), 14 = 60,0, =50, Vii = @ + X + &
14, =50,0,=70,1,=30,0,=40 | @=05,1,1.52.0,2.5,3
£ 0N(0,1),h=123

1 X, 0 chsq(6,).6,=1,0,=2,6,=3

I X, 0 exp(4,),4 =02,4,=03, 4, =

X, 0 gamma(6,.,1,).6, =31, =2,
0,=3,n,=1,0,=3,n,=3,

Iv

Table 4.2 shows the biases, MSEs and PREs of the traditional, Rao et al. (2016),
Clement and Enang (2016) and the proposed estimators using population I defined in
Table 4.1. The proposed estimators have smaller MSEs compared to other estimators.
This implies that the estimates of the proposed estimators are on average closer to the
true estimate than that of other estimators. The PREs of the proposed estimators are
higher than that of other estimators. The proposed estimator under has PRE of 326.4
implying 200% and 100% gain in efficiency over and respectively. However, the
proposed estimators are averagely more biased compared to other estimators
considered in the study.
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Table 4.2. PRE of the Proposed and Some Existing Estimators using Pop. BI

Values of &
Estimators 0.5 1.0 1.5
Bias MSE PRE | Bias MSE PRE Bias MSE PRE
yst 0.1 404126.7 100 0.1 406568.4 100 0.1 409023.1 100
Rao et al. (2016)
yRTKl -0.8 176491.7 229 -0.8 176432.9 230.4 -0.9 176374.1 231.9
yRTK2 -2 174926 231 -2.1 174866.3 232.5 -2.1 174806.6 234
Clement and Enang (2016)
yCE 8.9 192907.5 209.5 8.9 192907.5 210.8 8.9 192907.5 212
Proposed
yARl -17.2 123802.4| 326.4 -17.2 124216.1| 327.3| -17.2 124636 | 328.2
yASl -17.2 125626.8 | 321.7 -17.2 126052.3 | 322.5| -17.2 126484.1| 3234
yAR2 -17.4 119408.2 3384 -17.4 119731.9 339.6 -17.4 120061.1 340.7
yAS2 -17.4 121356.7 333 -17.4 121693.5 334.1 -17.4 122035.9 335.2
yAR3 58.2 125249.8 322.7 58.5 125596.7 323.7 58.8 125949.3 324.8
yA53 57.4 127154.8 317.8 57.7 127514.5 318.8 58.0 127879.9 319.8
. Values of X
Estimators
2.0 2.5 3.0
ySt 0.2 411490.7 100 0.2 413971.2 100 0.2 416464.8 100.0
Rao et al. (2016)
yRTKl -0.9 176315.5 2334 -0.9 176256.9 2349 -1.0 176198.3 236.4
yRTK2 -2.1 174747 235.5 -2.2 174687.5 237 -2.2 174628.1 238.5
Clement and Enang (2016)
yCE 8.9 192907.5 213.3 8.9 192907.5 214.6 8.9 192907.5 215.9
Proposed
yARl -17.2 125062 329 -17.3 1254943 | 329.9| -17.3 125932.7 | 330.7
yASl -17.2 126922 | 324.2 -17.3 127366.1 325 -17.3 127816.4| 325.8
yAR2 -17.4 120395.9 341.8 -17.5 120736.2 3429 -17.5 121082 344
yAS2 -17.5 122383.8 336.2 -17.5 1227374 337.3 -17.5 123096.5 338.3
yAR3 59.1 126307.7 325.8 59.5 126671.8 326.8 59.8 127041.7 327.8
yAS3 58.3 128251.1| 320.8 58.6 128628.1| 321.8 58.9 129010.9| 322.8
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Table 4.3 also shows the biases, MSEs and PREs of the traditional, Rao et al. (2016),
Clement and Enang (2016) and the proposed estimators using population II defined
in Table 4.1 The proposed estimators have smaller MSEs compared to other estimators.
These results are in conformity with that of population in Table 4.2.

Table 4.3. PRE of the Proposed and Some Existing Estimators using Pop. II

Values of &
Estimators 0.5 1.0 1.5
Bias MSE PRE Bias MSE PRE Bias MSE PRE
yst 0.02 33 100 0.03 3.6 100 0.03 4.0 100

Rao et al. (2016)

yRTKl 0.05 14 235.7 0.04 14 257.1 0.02 1.5 266.7

yRTK2 0.03 1.7 194.1 0.02 1.8 200 0.04 2.0 200
Clement and Enang (2016)

Vee | 0.1. ‘ 1.0 ‘ 330 ‘ 0.1 | 1.0 ‘ 360 ‘ 0.1 ‘ 1.0 ‘ 400
Proposed
Yari 0.1 09| 3667| -0 0.8 450 0.1 0.8 500
Yasi 0.1 12 275 -01 1.2 300 0.1 12| 3333
Yar2 0.1 09| 3667| -0.1 0.8 450 0.1 0.8 500
Yas2 0.1 12 275 -01 1.2 300 0.1 12| 3333
Yars 0.1 09| 3667 0.1 0.9 400 0.1 09| 4444
Yas3 0.02 1.2 275 0.1 1.2 300 0.1 13| 3077
. Values of O
Estimators
2.0 25 3.0
v 0 44 100 0 48 100 0 5.2 100
Yy
Rao et al. (2016)

Yriki 0 15| 2933 0 1.6 300 0 17| 3059
Yrik2 0 21| 2095 0 22| 2182 0 23| 2261

Clement and Enang (2016)

Yee | -0.1 ‘ 1 ‘ 440 ‘ -0.1 | 1 ‘ 480 ‘ -0.1 ‘ 1 ‘ 520
Proposed
VARI -0.1 0.8 550 -0.1 0.8 600 -0.1 0.8 650
VASI -0.1 1.3 338.5 -0.1 1.3 369.2 -0.1 1.3 400
VARZ -0.1 0.8 550 -0.1 0.8 600 -0.1 0.8 650
VASZ -0.1 1.3 338.5 -0.1 1.3 369.2 -0.1 1.3 400
7AR3 0.1 0.9 488.9 0.1 0.9 533.3 0.1 0.9 577.8
VAS3 0.1 1.3 338.5 0.1 1.3 369.2 0.1 1.4 3714
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Table 4.4. PRE of the Proposed and Some Existing Estimators using Pop. III

Values of O/
Estimators 0.5 1.0 1.5
Bias MSE PRE Bias MSE PRE Bias MSE PRE
ySt -0.1 396 100 -0.1 405.7 100 -0.1 415.5 100
Rao et al. (2016)
yRTKl -1.0 199.4 198.6 -1.0 200.4 202.4 -1.0 201.3 206.4
yRTKZ -1.0 223.2 177.4 -1.0 225.1 180.2 -1.0 227.1 183
Clement and Enang (2016)
yCE -1.3 175.3 2259 -1.3 175.3 2314 -1.3 175.3 237
Proposed
yARl -1.4 152.7 259.3 -14 152.1 266.7 -14 151.4 274.4
yASl -1.4 170.1 232.8 -14 170 238.6 -14 170 244.4
yAR2 -1.4 153.8 257.5 -1.4 153.2 264.8 -1.4 152.5 272.5
yAS2 -1.4 172.1 230.1 -1.4 172.1 235.7 -1.4 172.1 241.4
yAR3 -0.5 156.8 252.6 -0.5 156.2 259.7 -0.5 155.5 267.2
yAS3 -0.6 175.5 225.6 -0.5 175.6 231 -0.5 175.6 236.6
) Values of &
Estimators
2.0 2.5 3.0
ySt -0.1 425.4 100 -0.1 435.5 100 -0.1 445.7 100
Rao et al. (2016)
yRTKl -1.0 202.3 210.3 -1.0 203.3 214.2 -1.0 204.2 218.3
yRTK2 -1.0 229 185.8 -1.0 231 188.5 -1.0 233 191.3
Clement and Enang (2016)
yCE -1.3 175.3 242.7 -1.3 175.3 248.4 -1.3 175.3 254.2
Proposed
yARl -1.4 150.8 282.1 -14 150.1 290.1 -14 149.5 298.1
y/—\Sl -1.4 170 250.2 -14 170 256.2 -14 170.1 262
yARZ -1.4 151.9 280.1 -1.4 151.3 287.8 -1.4 150.7 295.8
yAS2 -1.4 172.2 247.0 -1.4 172.3 252.8 -1.4 172.3 258.7
yAR3 -0.4 154.9 274.6 -0.4 154.2 282.4 -0.4 153.6 290.2
yAS3 -0.5 175.7 242.1 -0.5 175.7 247.9 -0.4 175.8 253.5

Table 4.4 also shows the biases, MSEs and PREs of the traditional, Rao et al. (2016),
Clement and Enang (2016) and proposed estimators using population IIIL
The proposed estimators with the exception of Yas3, which performed below Clement
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and Enang (2016) estimator, have smaller MSEs compared to other estimators. These
results are in conformity with that of population in Table 4.2.
Table 4.5. PRE of the Proposed and Some Existing Estimators using Pop. IV
Values of X
Estimators 0.5 1.0 1.5
Bias MSE PRE Bias MSE PRE Bias MSE PRE
yst 0 0.66 100 0 0.74 100 0 0.83 100
Rao et al. (2016)
yRTKl 0 0.32 206.2 0 0.33 224.2 0 0.34 244.1
yRTKZ 0 0.4 165 0 0.43 172.1 0 0.46 180.4
Clement and Enang (2016)
yCE 0 0.26 253.8 0 0.26 284.6 0 0.26 319.2
Proposed
yARl 0 0.22 300 0 0.22 336.4 0 0.22 377.3
yASl 0 0.31 212.9 0 0.32 231.2 0 0.33 251.5
yAR2 0 0.22 300 0 0.22 336.4 0 0.22 377.3
yASZ 0 0.31 212.9 0 0.32 231.2 0 0.34 244.1
yAR3 0 0.23 287 0 0.23 321.7 0.1 0.23 360.9
yAS3 0 0.32 206.2 0 0.33 224.2 0 0.34 244.1
. Values of X
Estimators
2.0 2.5 3.0
yst 0 0.92 100 0 1.02 100 0 1.13 100
Rao et al. (2016)
yRTKl 0 0.35 262.9 0 0.37 275.7 0 0.39 289.7
yRTK2 0 0.49 187.8 0 0.52 196.2 0 0.56 201.8
Clement and Enang (2016)
yCE 0 0.26 353.8 0 0.26 392.3 0 0.26 434.6
Proposed
yARl 0 0.22 418.2 0 0.22 463.6 0 0.22 513.6
yASl 0 0.34 270.6 0 0.36 283.3 0 0.37 305.4
yARZ 0 0.22 418.2 0 0.22 463.6 0 0.22 513.6
yASZ 0 0.35 262.9 0 0.36 283.3 0 0.38 297.4
yAR3 0.1 0.23 400 0.1 0.23 443.5 0.1 0.23 491.3
yAS3 0 0.36 255.6 0 0.37 275.7 0.1 0.39 289.7
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Table 4.5 also shows the biases, MSEs and PREs of the traditional, Rao et al. (2016),
Clement and Enang (2016) and proposed estimators using population III. The

proposed estimators with the exception of Yz, and other estimators are unbiased. The

proposed estimators Y g, Y ary» Y ar; Performed better compared to other estimators.

However, the proposed estimators Y., Yacr» Yacz > Which outperformed Rao et al.
prop As1> Yas2> Y As3 p

(2016) estimators and usual unbiased estimator Y , performed below the estimator of
Clement and Enang (2016).

5. Discussion

Tables 4.2, 4.3, 4.4 and 4.5 report PREs of the sample mean in stratified sampling,
Rao et al. (2016), Clement and Enang (2016) and proposed calibration estimators using
populations I, II, III and IV (Normal, Chi Square, exponential and gamma
distributions) respectively defined in Table 4.1 for different values of

a= (0.5,1.0,1.5,2.0,2.5,3.0). The results of the PREs reveal that as the values of

a (coefficients of linear component of response variable model) increase, the efficiency
of the all the estimators increases. The results also revealed that all the proposed
estimators have higher PREs compared to their counterparts considered in the study.
This implies that the proposed estimators are more efficient in estimation of population
mean than other related estimators considered in this study.

6. Conclusion

In this study, we utilized auxiliary information for a heterogeneous population in
the form of robust statistical measures based on Gini’s mean difference, Downton’s
method and probability weighted moments. These measures which are not unduly
affected by outliers present in the data and provide more efficient estimates of
population parameters in the presence of extreme values were used as alternatives for
the coefficient of variation used by Rao et al. (2016). From the results of Tables 4.2, 4.3,
4.4 and 4.5, it is observed that in general the estimators proposed under both the
calibration schemes are not only robust but more efficient than the usual ratio estimator
in stratified sampling, Clement and Enang (2016) and Rao et al. (2016) calibration
estimators making them applicable in real life situation when data is somewhat affected

by the presence of extreme values. However, the proposed estimators Y,q;, Yas2s Yas3

performed below the estimator of Clement and Enang (2016) under population IV and
generally the efficiency of the proposed estimators is higher when the study variables
are characterized by outliers.
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