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Generalized extended Marshall-Olkin family of
lifetime distributions

Mehdi Goldoust1, Adel Mohammadpour2

ABSTRACT

We introduce a new generalized family of nonnegative continuous distributions by adding
two extra parameters to a lifetime distribution, called the baseline distribution, by twice com-
pounding a power series distribution. The new family, called the lifetime power series-power
series family, has a serial arrangement of parallel structures, which extends the Marshall and
Olkin structure. Four special models are discussed. A mathematical treatment of the new
distributions is provided, including ordinary and incomplete moments, quantile, moment
generating and mean residual functions. The maximum likelihood estimation technique is
used to estimate the model parameters and a simulation study is conducted to investigate
the performance of the maximum likelihood estimates. Its applicability is also illustrated by
means of two real data sets.

Key words: compound distribution, hazard rate function, lifetime distribution, maximum
likelihood estimation, power series distribution.

1. Introduction

Classical well-known distributions, such as Weibull, gamma and Lomax distributions,
are widely used for modeling data in many disciplines, including engineering, statistics,
medical sciences, economics, and insurance. However, in many practical situations, they
cannot provide appropriate fits on real data sets. Throughout the two last decades, sev-
eral generators have been proposed in the literature to extend well-known distributions by
adding one or more parameters to the baseline distribution. Since 1997, when Marshall
and Olkin proposed a way to add a parameter to the lifetime distribution, by compounding
with the geometric distribution, several new families of distributions have been derived by
compounding the power series distribution with many other nonnegative continuous distri-
butions to provide more flexible distributions for modeling lifetime data.

Marshall and Olkin’s (1997) method was based on the lifetime of a series or parallel
system with an unknown amount of components. Their work was extended by Chahkandi
and Ganjali (2009), which proposed the exponential power series (EPS) distribution. Fur-
thermore, Morais and Barreto-Souza (2011) proposed the Weibull power series (WPS) dis-
tribution containing the EPS distribution as a particular case. On the other hand, Flores
et al. (2013) introduced the complementary EPS distribution, complementary to the EPS
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distribution and Munteanu et al. (2014) presented complementary WPS distribution. Some
more well-known generators based on Marshal-Olkin generated family (MO-G) are Ku-
maraswamy Marshall-Olkin by Alizadeh et al. (2015), Beta Marshall-Olkin by Alizadeh
et al. (2015), exponentiated logarithmic Marshal-Olkin by Marinhoa and Cordeiro (2016),
and Marshall-Olkin alpha power family by Nassar et al. (2019).

According to Ross (2010), any system can be represented both as a series arrangement
of parallel structures or as a parallel arrangement of series structures. Using this key, the
purpose of this paper is to introduce a new generator of lifetime distributions by compound-
ing a lifetime distribution with twice power series distribution, obtaining what is referred
to as the LPS2 family of distributions. The proposed family is motivated by a system con-
sisting of serial components with each component consisting of a parallel of components.
Some researchers published real examples of systems made by the serial, and parallel com-
ponents are resonant converters (Kazimierczuk et al., 1993), hybrid electric bus (Xiong et
al., 2009), and hybrid envelope amplifiers (Hassan et al., 2012).

The paper is organized as follows. In Section 2, we introduce the new family of distribu-
tions. Four special cases of this family are defined in Section 3. Section 4 derives some of its
mathematical properties. The explicit expressions for the moments, incomplete moments,
generating function, and mean residual time are given in this section. The estimation of
parameters using the maximum likelihood method is investigated in Section 5. In Section
6, a simulation study is performed to show the behaviour of asymptotic biases and mean
square errors of maximum likelihood estimations (MLEs). Illustrative examples of two real
data sets are given in Section 7. Finally, in Section 8, we present some concluding remarks.

2. The LPS2 family of distributions

Let Xi, js be a sequence of independent and identically (iid) random sample from a base-
line lifetime distribution for j = 1,2, . . . ,Zi, i= 1,2, . . . ,U , with probability density function
(pdf) π(x;ςςς) and cumulative distribution function (cdf) Π(x;ςςς), where ςςς denoted the pa-
rameter vector of baseline distribution. Suppose Z1,Z2, . . . ,ZU are iid zero truncated power
series random variables with probability mass function (pmf)

P(z;θ) =
bzθ

z

B(θ)
,

for z = 1,2, . . ., where bz depends only on z and B(θ) = ∑
∞
z=1 bzθ

z < ∞. Furthermore,
suppose U is a zero truncated power series random variable with pmf

P(u;λ ) =
auλ u

A(λ )
,

for u = 1,2, . . ., where au depends only on u and A(λ ) = ∑
∞
u=1 auλ u < ∞. Consider that

Xi, js, Zis and U are independent, we define a system, which is made of U series components,
that the ith component is made of Zi components working in parallel. Figure 1 shows an
illustration of this system. Then the lifetime of the system is
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Figure 1: The system made up of series and parallel components.

X = min
{

max
{

Xi, j
}Zi

j=1

}U

i=1
.

Table 1 shows useful quantities of some members of the power series family (truncated at
zero) such as the Poisson, geometric, logarithmic series, negative binomial and binomial
distributions.

Table 1: Members of the power series family.

power series family pmf λ extended λ after compounding au A(λ ) I(λ ) =
∫

λ

0 A′ (v) log{A′ (v)}dv

Poisson e−λ λ u/u!
(
1− e−λ

)
0 < λ < ∞ λ ∈ (−∞,0)

⋃
(0,+∞) 1/u! eλ −1 (λ −1)eλ +1

Geometric (1−λ )λ u−1 0 < λ < 1 λ ∈ (−∞,0)
⋃
(0,1) 1 λ/(1−λ ) −2(λ + log{1−λ})/(1−λ )

Logarithmic series −λ u/u log{1−λ} 0 < λ < 1 λ ∈ (−∞,0)
⋃
(0,1) 1/u − log{1−λ} − 1

2 log2 {1−λ}

Negative Binomial
(m+u−1

u

)
(1−λ )m

λ u/1− (1−λ )m 0 < λ < 1 λ ∈ (−∞,0)
⋃
(0,1)

(m+u−1
u

)
(1−λ )−m −1 log{m}A′(λ )− m+1

m

{
(1−λ )−m [m log{1−λ}+1]−1

}
Binomial

(m
u

)
λ u/((1+λ )m −1) 0 < λ < ∞ λ ∈ (−1,0)

⋃
(0,+∞)

(m
u

)
(1+λ )m −1 (1+λ )m log

{
m(1+λ )m−1

}
− log{m}

It could be shown that the marginal cdf of X is

F (x;ξξξ ) = 1− [A(λ )]−1A
(

λ

{
1− B(θΠ(x;ςςς))

B(θ)

})
, (1)

for x > 0 and ξξξ = (ςςς ,θ ,λ ). Hence, S (x;ξξξ ) = 1−F (x;ξξξ ) is the corresponding survival
function and the pdf and hazard rate function (hrf) of LPS2 family are defined as follows:

f (x;ξξξ ) =
λθπ (x;ςςς)B′ (θΠ(x,ςςς))

A(λ )B(θ)
A′
(

λ

{
1− [B(θ)]−1B(θΠ(x;ςςς))

})
(2)

and

h(x;ξξξ ) =
λθπ (x,ςςς)B′ (θΠ(x;ςςς))A′

(
λ

{
1− [B(θ)]−1B(θΠ(x;ςςς))

})
B(θ)A

(
λ

{
1− [B(θ)]−1B(θΠ(x;ςςς))

}) ,

for x > 0, respectively. Furthermore, A′(.) and B′(.) are the derivative of A(.) and B(.)



58 M. Goldoust, A. Mohammadpour: Generalized extended Marshall-Olkin family...

functions, respectively. The hrf can be constant, decreasing, increasing, J-shaped, bathtub-
shaped, and upside-down bathtub-shaped for a different type of the baseline and power
series distributions (see Section 3). The LPS2 family of distributions contains all com-
pounded lifetime distributions, which were built by the Marshall and Olkin method. Here,
some sub-models of the LPS2 family are presented.

• When Z1,Z2, . . . = 1 and the baseline is an exponential or a Weibull distribution, we
obtain the EPS (Chahkandi and Ganjali, 2009) and WPS (Morais and Barreto-Souza,
2011) distributions respectively;

• when U = 1 and the baseline is an exponential or a Weibull distribution, we obtain the
CEPS (Flores et al., 2013) and the max-Weibull power series (Munteanu et al., 2014)
distributions respectively.

Furthermore, since

lim
λ→0

A(λ ) = 0 and lim
λ→0

A(λx)
A(λ )

= x,

thereupon, we have

• The lifetime power series distributions with minimum structure is a special limiting case
of the LPS2 family of distributions when θ → 0+. In general,

lim
θ→0+

F (x;ξξξ ) = 1− [A(λ )]−1 lim
θ→0

A
(

λ

{
1− B(θΠ(x;ςςς))

B(θ)

})
= 1− [A(λ )]−1A(λ {1−Π(x;ςςς)}) ;

• The complementary lifetime power series distributions with maximum structure is a spe-
cial limiting case of the LPS2 family of distributions when λ → 0+. In general,

lim
λ→0+

F (x;ξξξ ) = 1− lim
λ→0

A
(

λ

{
1− B(θΠ(x;ςςς))

B(θ)

})
[A(λ )]−1 = [B(θ)]−1B(θΠ(x;ςςς)) ;

• The baseline distribution is a special limiting case of this new family when θ ,λ → 0+

lim
θ→0+

lim
λ→0+

F (x;ξξξ ) = Π(x;ςςς) .

3. Some special models

In this section, we consider some special cases of the LPS2 distribution. These special
models generalize some well-known distributions in the literature. We provide four special
models of this family corresponding to the baseline exponential, Weibull, Lomax (Lx), and
generalized half-normal (GHN) distributions. To illustrate the flexibility of the distributions,
graphs of the pdf and hrf for some selected distributions are presented.
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It should be noted that compounding of a lifetime geometric family (Marshall and Olkin,
1997) with a geometric distribution again, just expand the parameter space and its cdf
doesn’t change. Suppose Xi, j is a sequence of the independent identically lifetime random
variables with cdf F (x;ςςς). The cdf of a lifetime geometric-geometric family of distributions
(compounding a lifetime and twice geometric distribution) with parameter ξξξ = (ςςς ,θ ,λ ) is

F (x;ξξξ ) =
(1−λ )F (x;ςςς)

1−θ +(θ −λ )F (x;ςςς)
,

for x > 0. With a reparameterization γ = θ−λ

1−λ
, we can write

F (x;ςςς ,γ) =
F (x;ςςς)

1− γF (x;ςςς)
,

for x > 0 and γ < 1. The lifetime geometric-geometric family of distributions (LGG) is due
to Marshall and Olkin (1997) with expanded geometric parameter space. On the other hand,
the parameter space of truncated Poisson distribution in compound distributions could be
extended to (−∞,0)

⋃
(0,+∞), and the parameter space of truncated binomial distribution

could be extended to (−1,0)
⋃
(0,+∞). A more similar extension of the parameter space

may be done to power series parameters (see Table 1).

3.1. Exponential power series-power series distribution (EPS2D)

The EPS2D distribution is defined from (1) by taking Π(x;β ) = 1− e−βx. Then, its
density function is given by

f (x) =
βθλe−βxB′ (θ

[
1− e−βx

])
A(λ )B(θ)

A′
(

λ

{
1− [B(θ)]−1B

(
θ

[
1− e−βx

])})
,

for x > 0 and β > 0.

3.2. Weibull power series-power series distribution (WPS2D)

The cdf and pdf of the Weibull distribution with scale parameter β and shape parameter
α are given by Π(x;α,β ) = 1− e−βxα

and π(x;α,β ) = αβxα−1e−βxα

, respectively. The
WPS2D pdf follows by inserting these expressions in (2) as

f (x) =
αβθλxα−1e−βxα

B′
(

θ

[
1− e−βxα

])
A(λ )B(θ)

A′
(

λ

{
1− [B(θ)]−1B

(
θ

[
1− e−βxα

])})
,

for x> 0, α > 0 and β > 0. Figures 2 and 3 display the pdf and hrf of the Weibull geometric-
Poisson distribution (WGPD) for some selected parameter values.
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Figure 2: Graphs of the WGPD pdf for some selected values of the parameters.

3.3. Lomax power series-power series distribution (LxPS2D)

The LxPS2D distribution is defined from (2) by taking Π(x;β ) = 1− [1+βx]−α for the
cdf of the Lomax distribution with parameters α and β . The LxPS2 pdf is given by

f (x) =
αβθλB′ (θ

{
1− [1+βx]−α

})
A(λ )B(θ) [1+βx]α+1 A′

(
λ

{
1− [B(θ)]−1B

(
θ
{

1− [1+βx]−α
})})

,

for x > 0, α > 0 and β > 0.

3.4. Generalized half-normal power series-power series distribution (GHNPS2D)

Cooray and Ananda (2008) introduced generalized half-normal distribution with cdf and
pdf
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Figure 3: Graphs of the WGPD hrf for some selected values of the parameters.

Π(x) = 2Φ(βxα)−1 and π (x) =

√
2
π

αβxα−1e−
1
2 (βxα )2

,

respectively. The GHNPS2D pdf follows by inserting these expressions in (2) as

f (x) =

√
2
π

αβθλxα−1B′ (θ [2Φ(βxα)−1 ])

A(λ )B(θ)e
1
2 (βxα )2 A′

(
λ

{
1− [B(θ)]−1B(θ [2Φ(βxα)−1 ])

})
,

for x > 0, α,β > 0 and Φ(.) denotes the cdf of standard normal distribution.

4. Some useful properties

In this section, we derive some useful structural properties of the LPS2 distributions.
These include the two useful linear representations for (1) and (2) (Section 4.1), the r-th
moment, moment generating function and mean residual lifetime (Section 4.2), the quantiles
(Section 4.3).

4.1. Two useful linear representations

Let X be a LPS2 random variable with parameters ξξξ = (ςςς ,θ ,λ ). Using the binomial

expansion and A′ (λ ) =
∞

∑
u=1

uauλ u−1, the cdf and pdf of X can be expanded as

F (x;ξξξ ) =
∞

∑
k=1

∞

∑
j=0

φk, jΠ(x;ςςς)k+ j (3)
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and

f (x;ξξξ ) = π (x,ςςς)
∞

∑
k=1

∞

∑
j=0

ϕk, jΠ(x;ςςς)k+ j−1, (4)

for x > 0, where φk, j = φk, j (θ ,λ ) and ϕk, j = ϕk, j (θ ,λ ) = (k+ j)φk, j. For further details,
see Appendix.

4.2. Moment properties

First, we derive the r-th moment for a random variable X . Therefore, the r-th moment
of X ∼ LPS2(ςςς ,θ ,λ ) is given by

µ
′
r = E [X r] =

∞

∑
k=1

∞

∑
j=0

ϕk, j

∫
∞

0
xr

π (x,ςςς)Π(x)k+ j−1dx

=
∞

∑
k=1

∞

∑
j=0

ϕk, jM (r,k+ j−1),

for r > 0, where M (s,k+ j−1) is the (s,k+ j−1)th probability weighted moment (PWM)
of baseline distribution defined by Greenwood et al. (1979) as follows:

M (i, j) = E
[
X i

Π(X) j
]
=

∫ +∞

0
xi[Π(x)] jdΠ(x) .

The moment generating function (mgf) of the LPS2 family of distributions is given by

MX (t) = E
[
etX]= E

[
∞

∑
s=0

(tX)s

s!

]
=

∞

∑
s=0

ts

s!
E [X s]

=
∞

∑
s, j=0

∞

∑
k=1

ϕk, j

s!
M (s,k+ j−1)ts.

Given the survival to time x0, the residual life is the period from x0 until the time of
failure. From (4), the mean residual lifetime of the LPS2 distribution is given by

m(x0) = E [X − x0|X > x0] = [S (x0;ξξξ )]−1
∫

∞

x0

v f (v)dv− x0

= [S (x0;ξξξ )]−1
∞

∑
k=1

∞

∑
j=0

ϕk, jMx0 (1,k+ j−1)− x0,

where the upper incomplete probability weighted moment was defined as

Mx0 (i, j) =
∫

∞

x0

xi[Π(x)] jdΠ(x) .
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4.3. Quantiles

If U is a uniform [0,1] random variable then

X = Π
−1

(
1
θ

B−1
(

B(θ)

[
1− 1

λ
A−1 (UA(λ ))

]))
is a LPS2 random variable, where Π−1(.) is the inverse of baseline cdf. Furthermore, A−1(.)

and B−1(.) are the inverse of A(.) and B(.) functions, respectively. It follows that the ωth
quantile of the LPS2 distributions is

xω = Π
−1

(
1
θ

B−1
(

B(θ)

[
1− 1

λ
A−1 (ωA(λ ))

]))
.

The effects of the parameters on the skewness of random variable X can be shown based
on quantiles. The Bowley skewness (Kenney and Keeping, 1962), also known as the quan-
tile skewness coefficient, is defined by

B =
x0.75 + x0.25 −2x0.5

x0.75 − x0.25
.

Figure 4 graphs the Bowleie’s measure for the WGPD distribution. The graph indicates the
variability of this measures on the α , β , θ and λ parameters.
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Figure 4: Graphs of skewness based on the quantiles of the WGPD distribution.

5. Estimation of the parameters

In this section, we determine the maximum likelihood estimates (MLEs) of the parame-
ters of the LPS2 family of distributions from complete samples only. Let X =(X1,X2, . . . ,Xn)

be a random sample from the LPS2 distribution with observed values x= (x1,x2, . . . ,xn) and
parameters ξξξ = (ςςς ,θ ,λ ). The log-likelihood function is given by
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ℓ(ξξξ | x) = n logθ +n logλ −n log [A(λ )]−n log [B(θ)]+
n

∑
i=1

log [π (xi;ςςς)]

+
n

∑
i=1

log
[
A′
(

λ

{
1− [B(θ)]−1B(θΠ(xi;ςςς))

})]
. (5)

By differentiating (5) with respect to ςςς , θ and λ , and then equating these derivative to
zero, we obtain the components of score vector Un (ξξξ ) =

(
∂ℓ
∂ςςς
, ∂ℓ

∂θ
, ∂ℓ

∂λ

)
, where

∂ℓ

∂ςςς
=

n

∑
i=1

πςςς (xi;ςςς)
π (xi;ςςς)

− λθ

B(θ)

n

∑
i=1

Πςςς (xi;ςςς)B′ (θΠςςς (xi;ςςς)
)

A′′
(

λ

{
1− [B(θ)]−1B(θΠ(xi;ςςς))

})
A′
(

λ

{
1− [B(θ)]−1B(θΠ(xi;ςςς))

}) ,

∂ℓ

∂θ
=

n
θ
− nB′ (θ)

B(θ)
−λ

n

∑
i=1

B(θ)Π(xi;ςςς)B′ (θ Ḡ(xi;ςςς)
)
−B′ (θ)B(θΠ(xi;ςςς))

[B(θ)]2

×
A′′

(
λ

{
1− [B(θ)]−1B(θΠ(xi;ςςς))

})
A′
(

λ

{
1− [B(θ)]−1B(θΠ(xi;ςςς))

})
and

∂ℓ

∂λ
=

n
λ
− nA′ (λ )

A(λ )

+
n

∑
i=1

{
1− [B(θ)]−1B

(
θ Ḡ(xi;ςςς)

)}
A′′

(
λ

{
1− [B(θ)]−1B(θΠ(xi;ςςς))

})
A′
(

λ

{
1− [B(θ)]−1B(θΠ(xi;ςςς))

}) ,

where

Πςςς (xi;ςςς) =
∂Π(xi;ςςς)

∂ςςς
and πςςς (xi;ςςς) =

∂π (xi;ςςς)
∂ςςς

.

The maximum likelihood estimates, ξ̂ξξ of ξξξ = (ςςς ,θ ,λ ) are obtained by solving the nonlin-
ear equations Un (ξξξ ) =

(
∂ℓ
∂ςςς
, ∂ℓ

∂θ
, ∂ℓ

∂λ

)
= 0. These equations have no closed form and the

values of the parameters ςςς , θ and λ must be found by using iterative methods. To solve
these equations, it is usually more convenient to use nonlinear optimization methods such
as the Newton-Raphson, quasi-Newton, or Nelder-Mead procedures. The Adequacy Model
package version 1.0.8 available in the R programming language was used for numerical
maximization in the data examples Section 7. For interval estimation of (ςςς ,θ ,λ ) and hy-
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pothesis tests on these parameters, we obtain the observed information matrix since the
expected information matrix is very complicated and requires numerical integration. The
(p+ 2)× (p+ 2) observed information matrix Jn(ξξξ ), where p is the dimension of the pa-
rameter vector ςςς , becomes

Jn(ξξξ ) =



∂ 2ℓ

∂ςςς2
∂ 2ℓ

∂ςςς∂θ

∂ 2ℓ

∂ςςς∂λ

∂ 2ℓ

∂θ∂ςςς

∂ 2ℓ

∂θ 2
∂ 2ℓ

∂θ∂λ

∂ 2ℓ

∂λ∂ςςς

∂ 2ℓ

∂λ∂θ

∂ 2ℓ

∂λ 2


.

Under the usual regularity conditions and that the parameters are in the interior of the pa-
rameter space, but not on the boundary and large n, the distribution of

√
n
(

ξ̂ξξ −ξξξ

)
can be

approximated by Np+2
(
0,nJ−1

n (ξξξ )
)
. This approximation can be used to construct confi-

dence intervals and tests of hypotheses.

6. A simulation study

In this section, we assess the performance of the MLEs of the WGPD distribution as the
particular case of LPS2 distribution with respect to sample size n. Samples of sizes 20, 50,
100, 200 and 500 are generated for different combinations of ξξξ = (α,β ,θ ,λ ) from WGPD
distribution by using (5). We repeated the simulation k =1000 times with parameter values I
: α = 2, β = 1, θ = 0.5, λ = 1 and II : α = 1.5, β = 0.5, θ = 0.7, λ = 0.8, then the MLEs
of the parameters are calculated. The standard deviation (SD) of the parameter estimates
are computed by inverting the observed information matrices. The bias and mean squared
errors (MSE) are given respectively by

biasε (n) =
1

1000

1000

∑
i=1

(ε̂i − ε)

and

MSEε (n) =
1

1000

1000

∑
i=1

(ε̂i − ε)2,

for ε = α,β ,θ ,λ where ε̂i is ith MLE of ε with standard error sε̂i . The empirical results are
given in Table 2 indicate that the MLEs perform well for estimating the model parameters.
According to the results, it can be concluded that as the sample size n increases, the MSEs
decay toward zero. We also observe that for all the parameters, the biases decrease as the
sample size n increases.
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Table 2: The mean, bias, MSE, standard error of the MLE estimators.

I II
n Parameter R.value MLE Bias MSE SD R.value MLE Bias MSE SD

n = 20

α 2 2.0912 0.0912 0.1129 0.4445 1.5 1.5412 0.0412 0.0478 0.2715
β 1 1.1614 0.1614 0.3196 0.7924 0.5 0.5738 0.0738 0.0827 0.4787
θ 0.5 0.4743 -0.0257 0.2130 0.9124 0.7 0.6281 -0.0719 0.0671 0.6591
λ 1 1.2050 0.2050 0.7241 3.2141 0.8 0.7705 -0.0295 0.2252 2.9567

n = 50

α 2 2.0675 0.0675 0.0621 0.3502 1.5 1.5133 0.0133 0.0319 0.3024
β 1 1.0758 0.0758 0.2385 0.6444 0.5 0.5641 0.0641 0.1539 0.3816
θ 0.5 0.4815 -0.0185 0.1861 0.9618 0.7 0.6202 -0.0798 0.0552 0.3252
λ 1 0.8462 -0.1538 0.6177 2.9721 0.8 0.7888 -0.0112 0.2413 2.6142

n = 100

α 2 2.0561 0.0561 0.0464 0.2216 1.5 1.5031 0.0310 0.0151 0.1699
β 1 1.0877 0.0877 0.1445 0.3892 0.5 0.5494 0.0494 0.0483 0.2502
θ 0.5 0.4921 -0.0079 0.0706 0.7271 0.7 0.6594 -0.0406 0.0387 0.6048
λ 1 1.0921 0.0921 0.5822 2.3921 0.8 0.7354 -0.0646 0.2166 2.1081

n = 200

α 2 1.9792 -0.0208 0.0162 0.1648 1.5 1.4985 -0.0015 0.0076 0.1263
β 1 1.0393 0.0393 0.0485 0.2704 0.5 0.5185 0.0185 0.0176 0.1519
θ 0.5 0.4216 -0.0787 0.6224 0.7334 0.7 0.6762 -0.0238 0.0198 0.4513
λ 1 1.0434 0.0434 0.1905 2.1947 0.8 0.7766 -0.0234 0.2347 1.6921

n = 500

α 2 1.9875 -0.0125 0.0085 0.1147 1.5 1.4955 -0.0045 0.0033 0.0914
β 1 1.0079 0.0079 0.0277 0.1807 0.5 0.5053 0.0053 0.0084 0.1059
θ 0.5 0.4888 -0.0112 0.0412 0.4425 0.7 0.6894 -0.0106 0.0177 0.3191
λ 1 0.9871 -0.0129 0.0927 1.5535 0.8 0.8302 0.0302 0.0962 1.2971

7. Two application examples

In this section, we present two applications of LPS2 family of distributions using real-
life data sets. In the applications, we use the Adequacy Model package version 1.0.8 avail-
able in the R programming language. The fit is compared to other distributions based on the
maximized log-likelihood, the Kolmogorov-Smirnov test (K-S), Akaike Information Crite-
rion (AIC), corrected Akaike Information Criterion (AICc) and Bayesian Information Cri-
terion (BIC). Finally, we provide the histograms of the data sets to have a visual comparison
of the fitted density functions.

Data set 1

The first set consists of the number of successive failures for the air conditioning system
of each member in a fleet of 13 Boeing 720 airplanes. The pooled data, yielding a total of
213 observations, were first analyzed by Proschan (1963) and further discussed in Dahiya
and Gurland (1972), Adamidis and Loukas (1998) and Tahmasbi and Rezaei (2008). Table
3 gives some descriptive statistics for the first data set. Figure 5a displays the Gaussian
kernel density estimation for this data set.

For this data set, the new distributions, exponential geometric binomial (EGBD) and
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Table 3: Descriptive statistics for data set 1.

n Mean Q1 Median Q3 Mode Variance Skewness Kurtosis Min Max
213 93.14 22 57 118 14 11398.47 2.11 7.92 1 603

Weibull geometric geometric (WGGD) distributions given by the following pdfs were fitted:

fEGBD (x;α,β ,θ ,λ ) =
mλβ (1−θ)e−βx

[
1−θ +(θ +λ )e−βx

]m−1

[(1+λ )m −1]
{

1−θ
(
1− e−βx

)}m+1 ,

and

fWGGD (x;α,β ,γ) =
αβ (1− γ)xα−1e−βxα{

1− γe−βxα
}2

for x > 0, α,β > 0, γ,θ < 1, λ ∈ R. For comparison purposes, we also fit the general-
ization of Weibull distribution (GWD) (Shanker and Shukla, 2019), the generalization of
generalized gamma distribution(GGD) (Shanker and Shukla, 2019), beta exponential (BE)
(Nadarajah and Kotz, 2006) and odd Weibull (OW) (Cooray, 2006) distributions. Estimates
of the parameters of the distributions, standard errors (in parentheses), log-likelihood func-
tion evaluated at the parameter estimates, K-S statistic and its p-value are shown in Table 4.
Furthermore, to compare the models, the AIC, AICc, and BIC indices are obtained too. In
general, the smaller the values of these criteria, the better the fit. According to these formal
tests, the WGGD model has the largest likelihood, the smallest K-S statistic, the largest
p-value, and the smallest values for all other indices, among all fitted models.

Figure 6a gives the graph of the estimated pdfs of the WGGD, EGBD, and other compet-
itive models that are used to fit the data after replacing the unknown parameters included in
each distribution by their MLEs. The fitted pdf of the WGGD distribution captures the ob-
served histograms better than others for the data sets 1. This real example suggests that the
three-parameter WGGD fits data set 1 very well when compared to the other distributions.

Data set 2

The second application takes into account the data related to the breaking stress of car-
bon fibres of 50 mm in length from Nicholas and Padgett (2006). This data set was used
by Cordeiro and Lemonte (2011) which is given in Table 5. Table 6 gives some descriptive
statistics for this data set. Figure 5b displays the Gaussian kernel density estimation for the
second data set.

For the second data set, the new distributions, generalized half normal geometri Poisson
distribution (GHNGPD) and WGPD were fitted:

fCHNGPD (x;α,β ,θ ,λ ) =

√
2
π

αβλ (1−θ)xα−1e−
1
2 (βxα )2[

eλ −1
]
{1−2θΦ(−βxα)}2 exp

[
2λ (1−θ)Φ(−βxα)

1−2θΦ(−βxα)

]
,
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Table 4: Estimates and goodness-of-fit measures for the first data set.

Model MLEs (standard errors) Log-likelihood K-S p-value AIC AICc BIC

EGBD 0.0067, 0.0403, 0.2201 -1175.871 0.0564 0.633 2357.74 2357.85 2367.82
SE (0.0022, 0.3957, 0.2170)

WGGD 1.1982, 0.0017, 0.7651 -1174.180 0.0504 0.765 2354.36 2354.47 2364.44
SE ( 0.029, 2.14×10−5, 0.0430)

GWD 0.9395, 0.9219, 0.0168 -1177.586 0.0662 0.425 2361.17 2361.34 2371.26
SE (1.0679, 0.0487, 0.0168)

GGD 3.7958, 0.4419, 0.6943, 0.6911 -1174.514 0.0537 0.685 2357.03 2357.218 2370.47
SE (2.8461, 0.1786, 0.2453, 0.2701)

BE 1.0483, 2.2710, 0.0104 -1177.771 0.0637 0.475 2361.54 2361.73 2371.62
SE (0.5925, 1.5206, 0.0058)

OW 0.6667, 0.0469, 1.4838 -1176.062 0.0587 0.581 2358.12 2358.24 2368.20
SE (0.1581, 0.0312, 0.3907)

Table 5: Breaking stress of carbon fibres data.

0.39 0.85 1.08 1.25 1.47 1.57 1.61 1.61 1.69 1.80 1.84
1.87 1.89 2.03 2.03 2.05 2.12 2.35 2.41 2.43 2.48 2.50
2.53 2.55 2.55 2.56 2.59 2.67 2.73 2.74 2.79 2.81 2.82
2.85 2.87 2.88 2.93 2.95 2.96 2.97 3.09 3.11 3.11 3.15
3.15 3.19 3.22 3.22 3.27 3.28 3.31 3.31 3.33 3.39 3.39
3.56 3.60 3.65 3.68 3.70 3.75 4.20 4.38 4.42 4.70 4.90

and

fWGPD (x;α,β ,θ ,λ ) =
αβλ (1−θ)xα−1e−βxα[
eλ −1

]{
1−θe−βxα

}2 exp

[
λ (1−θ)e−βxα

1−θe−βxα

]

for x > 0, α,β > 0, θ < 1, λ ∈ R. We also fit the BE, beta Weibull (BW) (Famoye et al.,
2005), Cauchy Weibull logistic (CWL) (Almheidat et al., 2015), Gumbel Weibull (GW) (Al-
Aqtash et al., 2014) distributions to make a comparison with the new models. The parameter
estimates, the log-likelihood values, the Kolmogorov-Smirnov statistics, and respective p-
values are given in Table 7. Additionally, a comparison of these proposed distributions using
the criteria, explained earlier, is presented.

It is observed that the WGPD distribution provides the best fit. In particular, we can see
that the largest log-likelihood value, the largest p-value, the smallest AIC value, the smallest
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Table 6: Descriptive statistics for data set 2.

n Mean Q1 Median Q3 Mode Variance Skewness Kurtosis Min Max
66 2.178 2.178 2.853 3.278 1.61 0.795 -0.131 3.223 0.390 4.90
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Figure 5: The Gaussian kernel density estimation for: (a) data set 1 (b) data set 2.

AICc value, and the smallest BIC value are obtained for the WGPD distribution. The fitted
densities (with the respective histogram) are shown in Figure 6b. These indicate a good fit
for the WGPD distribution for the second data set. It is clear from Tables 4 and 7 and also
Figures 6a and 6b that the WGGD and WGPD models provide the best fits to these two real
data sets.
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Figure 6: Estimates of the density functions for the: (a) data set 1 (b) data set 2.

More on estimated hazard functions

The failure rate of a system usually depends on time, with the rate varying over the life
cycle of the system. the hazard rate refers to the rate of failure for a system of a given age
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Table 7: Estimates and goodness-of-fit measures for the second data set.

Model MLEs (standard errors) Log-likelihood K-S p-value AIC AICc BIC

GHNGPD 0.8290, 1.0219, -37.8800, -0.8760 -84.849 0.0744 0.882 177.70 178.35 186.46
SE (0.4745, 0.9104, 73.3213, 4.1871)

WGPD 1.6669, 0.5589, -11.9420, -1.0240 -84.705 0.0723 0.902 177.41 178.07 186.17
SE (0.8913, 0.9326, 29.3124, 2.8723)

BE 0.1131, 7.5072, 20.9967 -91.223 0.1393 0.181 188.47 188.85 195.01
SE (0.0170, 0.7642, 1.4865)

CWL 2.1437, 7.9321, 2.9530 -86.989 0.1040 0.515 179.98 180.37 186.55
SE (0.7221, 1.8887, 0.1083)

BW 3.6790, 0.0136, 0.8820, 1.0594 -85.971 0.0830 0.786 179.94 180.60 188.70
SE (0.7915, 0.0133, 0.3241, 1.2743)

GW 3.4359, 5.5673, 2.4231, 1.1324 -84.834 0.0733 0.893 177.67 187.32 186.43
SE (1.1494, 2.8064, 0.5078, 0.4524)

x and is defined as h(x) = f (x)/S(x). Hazard rate provides an alternative characterization
for the distribution of a random variable, especially when dealing with lifetime data and it
is quite useful in defining and formulating a model. In this section, we focus on estimated
hrfs as for the previous sections.

First, we provide the total time on test (TTT) transform procedure proposed by Aarset
(1987) as a tool to identify the hazard behaviour of the distribution. The TTT-transform can
illustrate the variety of the hazard rate curves for a lifetime distribution. If the empirical
TTT-transform is convex and concave, the shape of the corresponding hrf is decreasing and
increasing, respectively. If the TTT-transform is convex and concave, the hrf will have a
bathtub shape. Finally, if the TTT-transform is concave and convex, a unimodal hrf will be
more appropriate. Figure 7a shows that the TTT-plot for the first data set has a concave and
convex shape. It indicates that the hrf has a unimodal shape. Figure 7b shows that the TTT-
plot for the second data set has a concave shape. It indicates that the hrf has an increasing
shape.

Graphs of the estimated hrfs are displayed in Figures 8 for data sets 1 and 2. Hence,
the WGGD and WGPD distributions could be the appropriate models for the fitting of such
data sets.

8. Conclusions

We introduce a new generalized class of lifetime distributions, called the LPS2 family of
distributions, by compounding a lifetime and twice power series distributions in a serial and
parallel structure. The new models extend several distributions widely used in the lifetime
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Figure 7: TTT-plot on the data sets 1 and 2.
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Figure 8: Graphs of estimated hrf for the data sets 1 and 2.

literature such as the exponential power series, Weibull power series, and complementary of
exponential power series distributions. The pdf of the new distributions can be expressed as
a linear combination of baseline distributions and they have a hazard function that displays
flexible behaviour. We provide a mathematical treatment of this family, including moments,
quantiles, reliability functions, and moment generating function as well as the mean residual
lifetime. The method of maximum likelihood was used to estimate the model parameters.
We perform a Monte Carlo simulation study to assess the finite sample behavior of the max-
imum likelihood estimators. Some members of the LPS2 family are fitted to two real data
sets to illustrate the usefulness of the new distributions. They provide better fits than other
competing models consistently.
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Appendix

Proof of (3) and (4)

Using the binomial expansion, we have

F (x;ξξξ ) = 1− [A(λ )]−1
∞

∑
u=1

auλ
u
{

1− [B(θ)]−1B(θΠ(x,ςςς))
}u

= [A(λ )]−1
∞

∑
u=1

auλ
u
(

1−
{

1− [B(θ)]−1B(θΠ(x,ςςς))
}u)

= [A(λ )]−1
∞

∑
u=1

auλ
u

u

∑
k=1

(
u
k

)
(−1)k+1[B(θ)]−k

{
∞

∑
z=1

bzθ
z[Π(x,ςςς)]z

}k

= [A(λ )]−1
∞

∑
u=1

auλ
u

u

∑
k=1

(
u
k

)
(−1)k+1[B(θ)]−k

∞

∑
j=0

lk, jθ k+ j[Π(x,ςςς)]k+ j,

where j = z−1 and lk, j = ( jb1)
−1

j
∑

m=1
[m( j+1)− j]bm+1lk, j−m. Then

F (x;ξξξ ) =
∞

∑
k=1

∞

∑
j=0

φk, jΠ(x,ςςς)k+ j,

where

φk, j = φk, j (θ ,λ ) = [A(λ )]−1
∞

∑
u=k

(
u
k

)
(−1)k+1lk, jauλ

u
θ

k+ j[B(θ)]−k.

Finally, Equation (4) is obtained by using the direct differentiation of (3).


