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Abstract

Research background: The article explores the integration of Artificial Intelligence (AI) in
predictive maintenance (PM) within Industrial Internet of Things (IloT) context. It addresses
the increasing importance of leveraging advanced technologies to enhance maintenance prac-
tices in industrial settings.

Purpose of the article: The primary objective of the article is to investigate and demonstrate
the application of Al-driven PM in the IIoT. The authors aim to shed light on the potential
benefits and implications of incorporating Al into maintenance strategies within industrial
environments.

Methods: The article employs a research methodology focused on the practical implementa-
tion of Al algorithms for PM. It involves the analysis of data from sensors and other sources
within the IIoT ecosystem to present predictive models. The methods used in the study con-
tribute to understanding the feasibility and effectiveness of Al-driven PM solutions.

Findings & value added: The article presents significant findings regarding the impact of Al-
driven PM on industrial operations. It discusses how the implementation of Al technologies
contributes to increased efficiency. The added value of the research lies in providing insights
into the transformative potential of Al within the IloT for optimizing maintenance practices
and improving overall industrial performance.

Introduction

The industry is no longer seen as a one-sided production chain that seeks
to produce without thinking about the process, physical and logical con-
straints which surround the industrial environment. With the arrival of
Industry 4.0, the manufacturing process has become more intelligent
(Chahed et al., 2023; Kumar & Kumar, 2019) and it integrates data of differ-
ent nature and format coming from a set of data sources. In such a context,
the manager faces several challenges in order to make effective decisions
within the required time frame.

We focus on the maintenance of the means of production, namely pro-
duction machines. In this regard, maintenance is no longer considered
a reactive or preventive operation (Christou et al., 2020). We are in the digi-
tal age, where predictive maintenance (PM) is based on monitoring per-
formance in the active state. According to Hurtado et al. (2023), PM is an
approach to identify the best time to maintain it before it breaks down. PM
has become a necessity for intervention in order to make the production
process efficient and more flexible.

According to Usman et al. (2022), this new trend in maintenance process
control requires very sophisticated means in order to deploy more robust
solutions. At this time, edge control infrastructures and applications have
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been introduced. This new infrastructure ensures flexibility, scalability and
cost control. This aspect of scalability of industrial processes must be taken
into account when developing machine learning (ML) software by integrat-
ing an adaptation mechanism that predicts anticipated changes (Li et al.,
2022).

The importance of artificial intelligence (Al)-based PM in the field of In-
dustrial Internet of Things (IloT) is highlighted by its profound impact on
economic efficiency and sustainability. This article delves deeper into the
central role played by PM in the optimization of industrial processes, with
particular emphasis on its economic implications. By harnessing the power
of Al to predict equipment failures and streamline maintenance proce-
dures, organizations can realize substantial savings, improve productivity,
and extend asset lifecycles. This exploration not only highlights the techno-
logical intricacies of Al-based PM, but also elucidates its central role in
shaping a more economically resilient and competitive industrial land-
scape.

The methodology employed in the study involves the application of ad-
vanced techniques within the realm of Al for PM. The approach centers on
harnessing the power of Al in the context of IIoT. The research employs
sophisticated algorithms and data analytics to proactively predict and ad-
dress potential issues in industrial equipment before they escalate into sig-
nificant failures. This method aims to enhance the efficiency and reliability
of maintenance practices, leveraging Al-driven insights to optimize indus-
trial processes within the framework of IIoT.

This study comprises several sections that collectively explore the inter-
section of Al and PM within the IIoT landscape. The first part provided
direct research gap diagnosis and presents an introduction to the architec-
ture of IIoT. The second part highlights the growing importance of PM in
the optimization of industrial operations. Following this, the background
section delves into the evolution of PM and the role of Al in revolutioniz-
ing traditional approaches. The methodology section outlines the various
Al-driven techniques employed in PM, providing an overview of relevant
ML algorithms. The results and case studies section offers real-world ex-
amples, illustrating the tangible benefits of implementing Al-driven PM
strategies. Finally, the conclusion synthesizes the key findings, emphasizes
the transformative potential of Al in PM within IloT, and suggests future
directions for research and implementation in this rapidly evolving field.
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Through these sections, the article provides a thorough exploration of
the synergy between Al and PM, offering valuable insights for researchers,
practitioners, and decision-makers in the industrial domain.

Conceptual review
Research gap diagnosis

This research fills an important gap, being the only paper configuring the
economics of IIoT in terms of digital twin simulation and movement and
behavior tracking tools, haptic and biometric sensor technologies, and geo-
spatial big data management algorithms. Multisensory customer experi-
ences, blockchain and image recognition technologies, socially intercon-
nected virtual services, and smart contracts require mobile location analyt-
ics, remote sensing data fusion techniques, event modeling and forecasting
tools, and spatial cognition algorithms.

This paper shows how visual imagery and ambient scene detection
tools, neural network-based recognition and visual cognitive algorithms,
and distributed sensing and dynamic routing technologies enable big data-
driven governance of cyber-physical system-based manufacturing across
product decision-making information and neuromorphic computing sys-
tems. Data-driven sustainable smart manufacturing integrates machine
learning-based object recognition and deep learning-based sensing tech-
nologies, haptic augmented reality and interactive 3D geo-visualization
systems, predictive modeling techniques, and virtual simulation algo-
rithms. Industrial big data and real-time sensor networks are pivotal for
advanced robotics and automated production systems by harnessing simu-
lation modeling tools, tactile sensing, multisensor fusion, and cognitive
modeling technologies, and image processing computational algorithms.

The value added to the literature is that Al-based PM, time-sensitive
networking (TSN), and big data-driven algorithmic decision-making in the
economics of IloT shape Industry 4.0-based large-scale value chains
through digital readiness, personnel expertise, and lean workplaces by
deploying environment mapping and computer vision algorithms, geospa-
tial simulation tools, and Industry 4.0 wireless and IoT sensing networks to
enable deep learning-assisted smart process management.
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The rationale underlying our hypotheses is that spectrum sensing and
computing technologies, big data management clustering and visual per-
ception algorithms, and mapping and navigation tools optimize cyber-
physical smart manufacturing systems throughout big data-driven smart
urban economy by use of the Internet of Robotic Things.

Architecture of [IoT

The emergence of a new era of industrialization requires adequate ideas
and resources that meet new environmental requirements. Industrial sys-
tems must be flexible, modular, and interoperable to manage small batch
orders. Faced with the increased complexity surrounding manufacturers,
automation has been complemented by self-optimization (Dubey et al.,
2023; Jurczuk & Florea, 2022). According to Khan et al. (2020), the latter
notion relies on a variety of resources, such as decentralization typical of
industries, borderless competitiveness, autonomy and execution time, ver-
tical integration, connectivity and mobile, cloud computing, and advanced
analytics.

In order to fully understand the conceptual framework of the study,
knowing how to determine the key concepts of the study is a major orienta-
tion in current research. Table 1 shows the main abbreviations of the key
words and their descriptions.

In this context, the concept of smart factory comes into force in particu-
lar with the arrival of networks of robotic devices, sensors, and intercon-
nected software to monitor and optimize the production process. In this
context, smart factories can be used to monitor the manufacturing process,
from raw materials to finished products (Soori et al., 2023). This will bring
out a variety of data in different forms from various sources. In this regard,
according to Chahed et al. (2023), data can be classified into two forms:
application data and monitoring and telemetry data from edge infrastruc-
ture and network devices. Application data are the incoming streams from
IoT sensors that are required for everyday industrial applications, while
monitoring and telemetry data represent real-time monitoring information
from edge compute nodes and network infrastructure.

The data collected is categorized in different databases. The nature of
data stored in flow databases is related to ordinary industrial operations
such as transfer of raw materials, logistics, standardization of industrial
procedures, standardization of results, the operational characteristics of
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each piece of equipment, and the industrial control software involved. Ad-
ditionally, configuration bases seek to identify all the data that reshape
how an industrial operation functions, such as reformulating the produc-
tion equation, introducing quality standards into the process, and the inte-
gration of methods that regulate the industrial process. Finally, event data-
bases make it possible to identify exceptional industrial cases, such as pre-
dicting failures, reducing machine downtime or material waste, forecasting
spare parts not conforming to the production system, and even the mal-
functions recorded in the industrial chain.

The intelligent operation of factories is subject to several sensitive con-
straints which constantly interact. For this purpose, according to Gugueoth
et al. (2023) and Christou ef al. (2020), a multilevel platform composed of
three layers is needed, illustrated in table 2.

Here are more details on how the IloT infrastructure can serve decision-
makers in operational processes. In a first layer, data should be captured
using wireless captures which have more batch transfer power between
nodes than traditional wired sensors. In this context, data extraction is
a process that requires very sophisticated support. According to Gupta et
al. (2023), three modes of extracting relevant data are required: i) temporal
side, ii) frequency side, and iii) frequency-time side. Table 3 presents the
different dimension of relevant data extraction.

The extraction of lots (data) based on the temporal dimension is an ac-
tion based on statistical parameters such as the root mean square, which
can be used as a measure of the quality of an estimator, the kurtosis, which
estimates whether distribution is sharp or spread, the mean, which esti-
mates the center of gravity of lots, the variance which estimates the degree
of dispersion of lots, and the asymmetry, which estimates the distribution
of lots. In addition, the extraction can be based on a frequency approach
which transforms batches of data via the accelerometer which plays a key
role in activity recognition, movement analysis, fall detection, and so on.
Additionally, data transfer can combine both modes at the same time,
which gives more regularity and completeness to the transferred data.

The proper functioning of the first layer depends on the other following
layers. In this regard, the network layer plays an important role in
strengthening the interconnected data transfer process. Connected objects
must interact with each other via protocols that serve the decision-maker
during its mission. Indexed data are primarily related to the entities that
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control the flow of data transfers between them. The entity can be a source,
node, root, etc.

The source data is considered a key reference in order to identify the
configurations that formulate the datasets. For this reason, a digital model
called Data Source Definition (DSD) defines the properties of a data source
coming from a sensor or automation device. Each DSD is subject to a Data
Identifier (DI) which facilitates access to data, including details such as
network protocol, port, network address, etc. In order to identify the nature
of the source, a Data Kind (DK) digital model is integrated at the level of
each identifier in order to determine the semantics of the data source. It
allows the identification of the type of data, whether there are event data
such as planned failures on machines or simply configuration data linked
to an update of management rules. Finally, the selected data will be dis-
played via a Data Source Manifest (DSM), which will be used to represent
the data sources available in the factory in order to place them under future
processing.

The third layer is dedicated to data processing and purification. In this
regard, the application layer serves decision makers in analyzing data, data
cleaning, feature engineering, and application of various ML algorithms to
understand and visualize the massive amount of data (Bagheri & Dijkstra,
2023). In this regard, data coming from IoT edges differ from other types of
data due to the large amount of input generated by various systems and
business units. While traditional data is generated following a user-driven
query, IoT data are delivered via a data push approach (Devi et al., 2020).

According to Garcia and Garcia (2019), for the proper functioning of the
different layers of the IoT system, various technologies must be part of the
system as a whole (see table 4).

Each technology works in relation to the others. In this context, the
cyber-physical system (CPS) is considered as a regulator which controls the
progress of batch flows. The flow is divided into several distinct levels. The
acquisition flow makes it possible to monitor the industrial state whether in
the development, maturity or decline phase. This input is converted via
auto-conversion of data into information. This is achieved through analysis
techniques capable of understanding the semantics and context of the op-
eration.

CPS, via its technical potential, can play an important role in the phase
of extracting additional information for specific problems while relying on
advanced self-comparison models. Each technology is used to explore and
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analyze the meaning of information via a set of techniques such as aug-
mented reality, simulators, ML or even Al systems which are essential for
the most advanced data processing. Batches of data cannot be moved or
visualized without the support of mobile, location and sensing, and data
storage technologies.

Operational PM

Faced with the development of means of capturing, calculating and
storing information, intervention mechanisms within industries have con-
figured a complex ecosystem which is evolving towards multi-objective
optimization in which several application criteria are considered jointly
(Pinciroli et al., 2023). This is why producers want to minimize the costs of
transforming their equipment, while maximizing the availability of ma-
chines and the efficiency of their production line. Another criterion that has
recently emerged for critical systems and infrastructures with high data
volume is resilience. According to Alrumaih et al. (2023), resilience is de-
fined as the ability of a system to withstand potential high-impact disrup-
tions, mitigating impacts and quickly restoring normal conditions. Resili-
ence is considered a cornerstone in the context of Industry 4.0, as systems
can be affected by several potentially disruptive events, such as natural
events, pandemics, or cyberattacks.

In this context, competition has become more robust, especially with the
entry of the multi-faceted system known as “product-service systems”
(Nguyen et al., 2022), comprising a complete set of services with a major
benefit to the customer by ensuring “choice” and “flexibility”. This new
production system is attached to several services which are associated with
several maintenance models depending on several factors ensuring the
reliability, availability, and safety of the system, and regulating the degra-
dation processes and the state of health of the components of the system
(Table 5).

In order to fully understand the different approaches to maintenance in
the IoT era, we propose the increased evolution of maintenance from cor-
rective maintenance to PM (Figure 1).

From passive maintenance towards anticipatory maintenance, opera-
tions rely on prior planning via models and approaches which seek to iden-
tify the economic advantage provided by the maintenance strategy (Pincir-
oli et al., 2021; Ferreira et al., 2021), such as maintenance cost, profit, pro-
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duction loss, and unmet demand. Likewise, security, reliability, availabil-
ity, resilience, environmental impact, and sustainability are typical quanti-
tative measures that should be considered.

Research method

A conceptual approach was presented based on the 2020-2023 literature
indexed in WoS and Scopus. We focused on a semantic search by words
and phrases such as: lloT applications; PM; ML-based industrial decision-
making strategies; and PM challenges. These keywords are combined using
the "AND’ command to get the most relevant and narrowly defined arti-
cles. Selected documentation from a set of reputable peer-reviewed jour-
nals was retained for analysis. This research draws on Emerald, IEEE
Xplore and ScienceDirect platforms as well as NCBI to create a narrower
search. Additional sources were then inspected and, if relevant, added.
Table 6 illustrates the various methodological aspects of the study.

Related work

In order to clearly identify the constraints of PM in the booming digital
industry, we propose two conceptual frameworks.

Prognostics & health management (PHM)

The data stored and generated by machines, tools, and spare parts are
mainly dispersed in different systems which makes analysis and reconfigu-
ration operations very complicated. This operation requires a more flexible
integrated system that ensures good proactive maintenance at the right
time. In this context, Ciancio et al. (2022) proposed a methodology for PM
presented in the table 7. The PM approach is a very sensitive interconnect-
ed process, and is divided into two parts: “Better understand machines and
processes” and “Better analyses objects and processes”. The first part is
divided into three phases. The first step begins with the identification of
the machine or unit of the production system that will be studied. In this
regard, knowing how to identify the point of failure is considered a very
complicated step to carry out. Indeed, equipment containing different ob-
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jects gives off a variety of signs that make it difficult to understand failure
modes.

In order to clearly identify the cases of failure, an approach was pro-
posed to determine the most sensitive cases. First of all, a Computerized
Maintenance Management System (CMMS) must be integrated in order to
properly manage the different interventions and keep past data on the
production system, to classify the different failures observed according to
their costs and their occurrences. The CMMS system is often connected to
applications, advanced software and even integrated applications such as
ERP (Enterprise Resource Planning) in order to access thousands of data
stored in clusters in a very short time.

The second important element of this architecture to know how to ana-
lyze failure modes and their effects is FMEA (Failure Modes and Effects
Analysis). This system is widely integrated in the industry to understand
potential breakdowns that may occur and better understand them by ana-
lyzing their causes and effects on the equipment concerned. This system
takes two different forms: the first is used to analyze the process (PFMEA)
and the second is used to assign a criticality score to the failure modes
(FMECA). The PFMEA can provide us with a list of failure modes that can
be studied by the PM system. On the one hand, the FMECA offers us the
a priori knowledge of causes and effects that can help us to choose a first
set of data to be collected by the PM system. Furthermore, expert
knowledge is also important in order to choose the most appropriate fail-
ure mode. For this purpose, some knowledge can be found at FEMA. In
parallel, other experts relate to several groups of people within companies
with increased importance to expand the range of theoretical and practical
knowledge on the breakdowns expected to appear on equipment.

In the next phase, it is important to set the amount of data that will be
collected and stored for further processing. Data circulate between equip-
ment and applications via different communication protocols such as OPC
UA, Modbus, MQTT, and also directly to the Programmable Logic Control-
ler (PLC) of the machine through its proprietary protocol: Siemens S7 pro-
tocol. The data will be stored in variables. Most of the data collected from
the production system are subject to time series techniques, being strongly
associated with a timestamp of the data. The data transferred are strongly
associated with a fixed time interval, that is to say the operation of sending
data is calculated by estimated measurements suggested by experts, e.g.:
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Y=X,a+X,-b+X;:-c+X,-d+-+X,'n 1)
where:
Y Quantity of failure data expected for subsequent processing.
X1 The seasonality of breakdowns.
X, The unexpected in terms of breakdowns.
X3 The most frequent breakdowns.
X, Costs.

a,b,c,dandn  The regression weight of each predictor.

After a data collection phase, users are asked to research the type of
monitoring that will be performed and the event thresholds in order to be
considered a failed resource. For this reason, everyone seeks to identify the
failure zone. The threshold can be known a priori from simulation tests and
applications based on augmented reality which are generally exploited to
deal with the uncertainty inherent in stochastic processes such as degrada-
tion or evolution of operating conditions and environment. Furthermore,
the expectation of an optimization threshold is calculated using ML algo-
rithms (see Table 6).

In this context, the optimization of maintenance processes has become
stricter and seeks to target a specific objective such as the maintenance pe-
riod or the age threshold for triggering a maintenance process, the degra-
dation threshold to trigger a maintenance operation or the type of action
planned (e.g., repair or replacement).

The second part focuses on the analysis of objects and processes. The ul-
timate goal in this phase is to be able to create correlations between the
selected data in order to effectively predict the occurrence of the failure. In
this regard, the PHM system must understand what is happening in other
areas of the industrial process. For this purpose, the data management sys-
tem must integrate modules based on ML to perform these actions. Most of
these analyses are multivariate, because the state of several data must be
studied and taken into account in relation to other aspects of the industrial
process.

The PM process is supported by a range of ML-based technologies di-
vided into three parts; the first was mainly used to optimize the parameters
of a predefined maintenance strategy, the second integrates reinforcement
learning to select the optimal maintenance actions to carry out and the
third part presents how the actions are selected for better optimization of
the MP. All this is summarized in Table 8.
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A holistic Al-driven networking and processing (AIDA)

The industrial environment has experienced a new generation of manu-
facturing methods, control methods, and treatment of anomalies. This new
generation of resources is integrated into lightweight virtualization tech-
nologies with a large quantity of data stored in several media (machine,
capture, mobile, mental map, etc.). In this context, permanent monitoring
of its resources is a very complicated task that requires an evolving config-
uration of the company’s system linked to the environment. In order to
address this issue, we clearly explore the different components of the AIDA
system proposed by Chahed et al. (2023). In this context, AIDA is a highly
time-sensitive control system. It provides real-time capabilities with high
compute capacity via an edge-to-cloud continuum that automates monitor-
ing in a proactive manner. Table 9 presents the AIDA system architecture.

The operation of the AIDA system has brought new meaning to the data
generated by IoT devices. All actions taken are generated in a systemic
manner based on ML systems. In this context, the first step of Data-Driven
Maintenance (DDM) is to collect relevant data from various sources, in-
cluding sensors, IoT devices, maintenance records, and other sources. Ac-
cording to Wolfartsberger et al. (2020), each execution phase until failure
(K) is presented in a model that controls the data transfer until reaching the
level of deterioration. For example, we have three levels of deterioration
observed in ascending order and denote them x1, x2, ..., xn. In addition, the
binary variables y1, y2, . . ., yn € {0, 1} seek to identify whether an observa-
tion of deterioration led to a failure at the next time step (1) or not (0).

In order to properly support the operation of network system, we ex-
plore how software-defined networking helps users control data flow
through a centralized network configuration (CNC). In fact, according to
Al-Saedi et al. (2017), there are different types of control systems that moni-
tor various machines in all types of manufacturing industries. According to
Chahed et al. (2023), the CNC is composed of two subsystems:

1. An operational system with triple roles presented in the points below:
a) Seeks to build a synchronization tree responsible for applying the
synchronization policy decided by the time-based control subsystem.
This can be done via a Precision Time Protocol (PTP), which aims to
identify the entire time synchronization path of all entities.

b) Aims to manage configuration features and network devices (send-

ing verification messages, cancellation, etc.). Additionally, it re-
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trieves monitoring information from time-sensitive devices, collects
statistics, derives metrics from real-time system status information,
and analyzes network events.
2. TSN subsystem: based on three main entities presented in the points
below:

a) The entity responsible for clearing the data flow path and maintain-

ing the routing paths within the network.

b) The resource allocation entity, which is responsible for allocating re-

sources (data) on the network.

c) The main entity, responsible for coordinating all operations inside

the CNC and all communications through the different interfaces.

TSN'’s mission is to ensure that high priority and urgent information is
transmitted without interference (Zezulka et al., 2019). There are several
time synchronization mechanisms via industrial protocols such as PTP
which seek to attach a large quantity of links, entities, data, conditions,
distances, and heterogeneity of components on the same predefined failure
point before launch, but how does the synchronization task actually work?

According to Adame ef al. (2021), PTP allows for the distribution of
a single reference clock integrated on network devices in the form of a mas-
ter/slave base. According to Gundall et al. (2021), this would enable suc-
cessful scheduling of multi-user uplink and downlink transmissions, as
well as establishing coordination mechanisms between access points. In
this regard, time propagates in frames between a master and a port of call.
This is to clearly regulate the flow of data, thus being able to calculate the
offset of a clock and adjust its own time accordingly.

For the purpose of good circulation of data flows, the IEEE 802.1Q
standard, according to Gerhard et al. (2019), specifies up to eight different
traffic classes for better data transmission based on the priority code point
(PCP). This makes it possible to index and differentiate traffic that is less
time-sensitive. The IEEE 802.11 standard provides an option to support
traffic flow differentiation via two means, namely Traffic Specification
(TSPEC) and Traffic Classification (TCLAS) via Traffic ID (TID), which
allows the type of traffic to be classified into several categories. For exam-
ple, the failure flow of safety-critical equipment requires immediate atten-
tion to prevent accidents and hazards. In contrast, routine maintenance is
a lower-level but important routine task, such as cleaning, lubrication, and
inspection, which helps extend the life of equipment and prevent unex-
pected breakdowns.
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The operation of the CNC is no longer efficient except after the deploy-
ment of a centralized user configuration (CUC) infrastructure linked to the
CNC system. The CUC plays the role of receiver of endpoint configuration
requests in terms of time-related resource frequency, range of resources
sent, etc. The CNC controls the configuration of the end point via calcula-
tions based on a set of parameters such as the life cycle of the resource.
Likewise, the CUC receives the response in the form of the regels executed
indicating the actual configuration of the network interfaces which allows
the network to operate efficiently in terms of speed and reliability.

From Figure 2 results, according to Trifonov and Heffernan (2023), it
follows that the data flowing in the network are strictly controlled via
a TSN subsystem which makes all control decisions like inspecting the data
load, finding the most optimized circuit via highly optimized and sophisti-
cated algorithms, and even minimizing the latency rate. Additionally, the
TSN subsystem communicates with the operational subsystem via storage.
The CNC keeps all generated, received, and collected information in a cen-
tral storage which includes the topologically classified databases such as:
metrics database, flow database, configuration database, and event data-
base.

In this context, reaching the point of failure is the ultimate objective to-
wards better maintenance threshold prediction. According to Nazemi Ab-
sard and Javidan (2023) monitoring via edge computing is a critical point
towards better end-to-end execution performance. The following points
show the different services of edge computing involved in an IoT industry
based on the AIDA processing system:

1. Measurement and delivery services: Such operations have mastered the
different metrics coming from various sources (application, machine,
mobile, report, etc.). According to Usman et al. (2019), the selection of
measurements is calculated via appropriate measurement intervals to
obtain the desired failure zone. To this end, a double data quality as-
sessment is carried out in two phases. The first is done at the level of pe-
ripheral nodes and the second is the most complete and is carried out in
the cloud.

2. Merging and storage services: The data storage and fusion operation
constitutes a major challenge for the company. According to Turnbull
(2018), the AIDA system relies on supervised techniques such as time
series which seek to subdivide the operation of storing and merging
metric data according to a set of parameters such as failure seasonality
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related to actual operating times, failure times, and previous down-

times. In contrast, log storage through Loki is primarily used to collect,

store, and query logs, making it ideal for monitoring and debugging
computer systems (Bautista et al., 2022). This task is subdivided in Table

10.

3. Viewing and notification services: Visualizations are important to facili-
tate immediate data retrieval, visually detect patterns, and take action
against unwanted operational behaviors. Grafana is an open source data
monitoring and visualization platform designed to help users analyze
and display data in real time (Chakraborty & Kundan, 2021). It is widely
used for monitoring IT infrastructure, applications, cloud services, da-
tabases, and other systems. How Grafana works can be described in
several steps (Table 11).

4. Provisioning and orchestration service: According to Gokhale et al.,
2021, the provisioning and orchestration service plays a dual role, on the
one hand determining the components responsible for installation and
execution, and on the other hand determining the configuration of
a specified number of services required on the nodes and peripheral de-
vices. Table 12 illustrates the different installation and configuration
services.

Industrial process control is regulated through an ML system that
serves to address manufacturing challenges (Drakaki et al., 2021), consist-
ently, making operations more predictive and scalable. According to Cinar
et al. (2020), ML algorithms can be used to solve several problems related to
highly available data generated by industries. The diversity of methods
constitutes one of the possible areas at this stage of deduction. Table 13
presents a detailed description of each method and how it actually works.

Results, discussion, and managerial implications

From the two models presented we retain certain valuable information.
With technological advances for the benefit of the object-oriented industry,
the process of collecting, indexing, analyzing, storing, and reusing data has
become a careful operation both in terms of choice of the methodology
followed and of the machine learning technique employed. In this context,
managers are called upon to change their approaches in order to regulate
their production chains within data-generating industries. In this regard,
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anew air of pretreatment of equipment (machines, parts, gateway, etc.)

comes into play. The manager seeks to predict the object of the equipment

in active state before it is broken.

PM is a new equipment control regulation based on Al. The mainte-
nance process is associated with a set of technical, organizational, and even
professional constraints. Technical constraints are evident in how data flow
is circulated within the industry, how we can develop a maintenance plan
that takes into account the time factor and how we can predict the point of
failure before it arrives.

For this purpose, the flow of data between the nodes is controlled in
a constant manner. The node (partial database, spare part) plays the role of
an intermediate data storage point. Multi-form data require different
recognition protocols such as thermal data which are processed using two
protocols: Low Energy (BLE), LoRaWAN, spatial data via LoRa (Long
Range) protocols, MQTT (Message Queuing Telemetry Transport), CoAP
(Constrained Application Protocol) and more. The data flow is only active
after self-authorization from the user network center which gives access to
circulation and consultation, and calculates the failure threshold in order to
set the highest priority data flow.

At this stage, the prediction of a breakdown will be operational with the
support of ML algorithms that are trained on historical data to recognize
patterns that precede an outage. To this end, continuously monitoring data
in real time can lead to identification of deviations from normal operating
conditions and predict potential failures. This is achieved through TSN
technology, which allows different types of traffic to coexist on the same
network, ensuring that critical data is delivered on time while avoiding
congestion and minimizing delays for other non-network sensitive data
factor time. This task is ensured via a set of components presented in the
following points:

1. Time scheduling: TSN ensures that time-critical data are transmitted on
priority.

2. Precise synchronization: TSN synchronizes the clocks of all devices on
the network to a common master clock. This ensures precise coordina-
tion of actions between the different nodes of the network and therefore
reduces the variance rate during data dissemination.

3. Flow control: TSN uses flow control mechanisms to avoid network con-
gestion and ensures stable performance even under high load condi-
tions.
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4. Quality of Service (QoS): TSN supports multiple classes of services with

different quality of service (QoS) guarantees to meet the varied needs of
industrial applications, such as real-time and non-real-time data trans-
mission.

Scalability: TSN enables the extension and scaling of industrial net-
works without compromising performance. It is designed to be compat-
ible with standard Ethernet technologies, making it easy to integrate in-
to existing infrastructures.

The organizational aspect is also present to clearly predict the failure

rate of equipment. To this end, a range of important organizational re-
sources will perhaps be exploited for the effective use of PM in the IoT
industry. We present certain organizational aspects that should not be ne-
glected:

1.

Systems Integration: For successful implementation of PM, it is essential
to integrate existing IoT systems within current maintenance processes.
This often requires close coordination between IT, maintenance, and
production teams.

Data Security: Since PM involves collecting and analyzing large
amounts of data in real time, it is crucial to have robust security
measures in place to protect sensitive information from cyberattacks
and data breaches.

Cross-Functional Collaboration: Encouraging collaboration between
different departments, such as production, maintenance, and engineer-
ing, can facilitate a holistic approach to equipment management. Cross-
functional teams can leverage their diverse expertise to identify poten-
tial failure points, develop comprehensive maintenance strategies, and
implement timely interventions to minimize equipment downtime and
failures.

Finally, PM in an industrial IoT environment can be heavily influenced

by business context, as needs, challenges, and priorities vary depending on
industry, company size, specific processes, equipment used, etc. Here’s

how the business context can affect PM:

1.

Types of Equipment: Industries can use a wide variety of equipment,
ranging from heavy machinery to high-tech equipment. The sensors and
IoT data relevant to PM will vary depending on this equipment, and
monitoring systems may need to be adapted accordingly. For example,
in the automotive industry, we find many types of equipment, such as
engines, brakes, suspension systems, on-board electronics, etc.
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2. Asset Criticality: Some assets in the industry are more critical than oth-
ers. In the aviation industry, for example, predictive maintenance must
be extremely accurate to ensure safety. In other industries, predictive
maintenance may be more focused on reducing downtime and costs.

3. Process complexity: Industrial production processes can be complex,
with many interdependent steps. PM should be coordinated with these
processes to minimize disruption. Different constraints linked to com-
plexity include a high number of components, interdependence of sys-
tems, heterogeneous data, variety of conditions of use, and type of pro-
duction followed such as mass production.

Conclusions

The integration of Al-based PM in the field of IIoT has brought about trans-
formative changes, revolutionizing the landscape of maintenance practices
in the industry. Through the use of advanced algorithms and data analyt-
ics, Al has demonstrated the ability to predict potential equipment failures
and avoid costly downtime, thereby optimizing overall operational effi-
ciency. Real-time data collection and analysis enable proactive decision-
making, facilitating timely interventions and implementation of preventive
measures, thereby ensuring that machines are operating at their optimal
performance levels.

Furthermore, the deployment of Al-based PM systems has not only led
to improved asset reliability, but also facilitated cost reduction through
efficient resource utilization and minimized unscheduled maintenance.
This shift towards a proactive maintenance approach has established
a culture of forethought and preparation, enabling businesses to allocate
resources efficiently and focus on long-term productivity and sustainabil-
ity. While there are significant benefits to implementing Al in PM, chal-
lenges persist in terms of data security, algorithmic bias, and the need for
skilled professionals who can manage and interpret complex data sets.
Striking a balance between technological advancement and ensuring data
integrity remains crucial to fostering trust and reliability within the IIoT
ecosystem.

In conclusion, this study provides significant contributions to both theo-
retical and practical domains, making it a valuable resource for scholars
and industry practitioners.
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The direct long-term value of this study for theory lies in its thorough
exploration of the integration of Al in PM within the IIoT framework. The-
oretically, the study enhances our understanding of the symbiotic relation-
ship between Al and IIoT, shedding light on novel approaches to optimize
machinery performance and prevent unforeseen breakdowns. This theoret-
ical foundation not only enriches academic discussions on Al and IIoT, but
also lays the groundwork for future research directions in the broader field
of technology-driven industrial systems.

From a practical standpoint, the article’s significance is evident in its ac-
tionable insights for industry professionals. By delving into real-world
applications of Al-driven PM, the article equips practitioners with innova-
tive strategies to enhance operational efficiency, reduce downtime, and cut
maintenance costs. The practical implications of the study make it a valua-
ble resource for decision-makers in industrial settings, providing them with
tangible solutions to improve overall equipment effectiveness and ensure
the reliability of their systems.

The article is crucial for research and the scientific community as it ad-
vances the state of the art in the intersection of Al, IIoT, and PM. Scholars
seeking to stay at the forefront of technological advancements should in-
spect this article for its insights and its potential to inspire further investi-
gations in the rapidly evolving landscape of industrial technologies. By
referencing this work, the scientific community can acknowledge and build
upon the methodologies and findings presented, fostering a collective ef-
fort towards pushing the boundaries of knowledge in this interdisciplinary
field.

However, it is important to acknowledge potential limitations in the
study. One such limitation may be the generalizability of the findings
across diverse industrial sectors, as the effectiveness of Al-driven PM could
vary based on the nature of the equipment and operational conditions.
Additionally, the article might not fully address the ethical considerations
and potential biases associated with Al algorithms, which could impact
decision-making in critical industrial processes.

Looking ahead, the perspectives offered by this study suggest a trajecto-
ry towards further refinement of AI models for PM. Future research could
focus on addressing the identified limitations, exploring hybrid approaches
that combine AI with other emerging technologies, and adapting the pro-
posed methodologies to suit the evolving landscape of industrial practices.
Embracing a holistic perspective, the article encourages ongoing discourse
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on the responsible and effective integration of Al in industrial settings,
paving the way for a more resilient and intelligent industrial future.
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Annex

Table 1. Terminology related to IoT technology

Concept Abbreviation Description References
Internet of IoT Interested in analysing the software Shvets and
Things architecture of industrial models. Hanak (2023)
A new technology and includes many Ammar et al.
innovations. (2022)
IIoT IoT describes the network of physical objects

Industrial IoT and even human interface to exchange

processed data with other devices and systems

over the Internet.

Smart SI Industry 4.0 sees itself as an industrial Hien et al. (2022)
Industry or ecosystem where all manufacturing industries
Industry 4.0 must be managed without human interaction.
Smart Factory SF Facilities that use digital technologies to Soori et al. (2023)

improve operational efficiency and

productivity
Table 2. The structure of Industry 4.0
Components Physical Layer Network Layer Application layer
This layer consists of In this layer, various network This layer provides
physical resources protocols will be incorporated in application specific
such as sensors and order to establish secure services such as smart
Support actuators to obtain communication between cities, smart factory,
real-time information network devices. smart health services,
using various etc. based on learning
communication machine algorithms.
devices.
High frequency MQTT protocol; Constrained Group method of data
RFID; Light Emitting application protocol; Mutual processing (GMDH)
Diode (LED); authentication and key neural network (NN);
Spectrometer; agreement; Long Range Wide Pareto multi-objective
Accelerometer Area Network (LoRaWAN); optimization; Monte
Tool Bluetooth Low Energy (BLE); Carlo simulation;
Advanced Encryption Standard Unscented Kalman
(AES); digital model : Data filter (UKF); Fuzzy
Source Definition (DSD) ; Data logic (FL), technical
Identifier (DI); Data Kind (DK);
Data Source Manifest (DSM)
Benefit It plays the role of a Create gateways between objects It plays a role in the

data receiver.

(node)

world of data analysis.

Source: Gugueoth et al. (2023); Christou et al. (2020).



Table 3. The structure of Industry 4.0

Definition

Benefits

The “temporal side” in the context of the
Temporal side Physical Layer refers to aspects related to

time in the transmission of data.

Timing and Synchronization;
Data Rate; Temporal Patterns
in Signal; Error Detection and

Correction;

The “frequency side” of extracting
Frequency side relevant data from the Physical Layer
refers to considerations related to the

frequency domain in the context of data

Frequency Selectivity;
Frequency Planning;

Frequency Diversity;
Frequency Stability

transmission. In communication systems,
signals are often analyzed in terms of
their frequency components and

characteristics

Frequency-time side

The frequency-time side of extracting
relevant data from the Physical Layer
involves considerations related to both
frequency and time domains in the

transmission and reception of signals

Frequency Spectrum;
Frequency Selectivity; Time-

Frequency Analysis;

Source: Gupta et al. (2023).

Table 4. The most popular IT component in IoT

IT component

Advantage

Outcomes

Adaptive robotics

Learn from human activities, thus improving their

autonomy and flexibility towards appropriate action.

Repetitive action

Embedded systems
(Cyber-Physical
Systems, CPS)

Plays a multivariate role especially in state monitoring,
self-awareness, self-comparison, self-cognition and self-

adaptive.

Regulate data
flow in an

intelligent way

Cloud technologies

Plays multi-role such as collaborative design; data

storage; calculates data; virtualization.

Ubiquitous and
integrated data

access
Virtualization Reproduce reality in a more developed way with the Improved
technologies aim of ensuring the scalability of inductive action. production

models
Simulation Emulate reality through an experimental model capable Building digital

of acquiring knowledge transferable to reality.

twin models

Data analytics and

artificial intelligence

Discover latent industrial associations.

Delete
unnecessary data;

clean data

Mobile Technologies

Increased ability to interact between supports (machine-

machine or machine-human).

Receiving large
amounts of

information




Table 4. Continued

IT component Advantage Outcomes
RFID & RTLS Batch location detection. Extraction of Lots
(data)
Communication & Connectivity between agents. Application
Networking performance
enhancement

Source: Garcia and Garcia (2019).

Table 5. Product-service systems foundations

System of production

Product 1 Product 2
Service 2 Service 2
Model Model
maintenance maintenance 2

1

Product 3 Product 4 Product 5 Product 6
Service 3 Service 4 Service 5 Service 6
Model Model Model Model
maintenance 3 maintenance 4 maintenance 5 maintenance

6

Table 6. The different aspects of the methodology

Define Research Objectives

Inclusion and Exclusion Criteria

Selection of Qualitative Tools

We focus on scientific articles that clearly define the process of
data circulation between the different captures of the LoT database
in order to properly analyse and define the most likely failure
zone.
Clearly define inclusion criteria for articles to be considered in the
study:

Inclusion Criteria:
- Articles published in reputable journals and conferences.
- Studies focusing on Al-driven PM in IIoT.
- Real-world case studies or implementations.

Define exclusion criteria to filter out irrelevant or low-quality
studies.
Exclusion Criteria:

- Articles lacking transparency in methodology.

- Studies without a clear connection to real-world
implementations.

- Content Analysis: To systematically analyze and categorize
textual data from articles.

- Thematic Analysis: To identify and analyze recurring themes
across different studies.




Table 6. Continued

Search Strategy

Initial Article Selection

Full-Text Review

Data Synthesis

Reporting and Documentation

Develop a comprehensive search strategy using a combination of

keywords, Boolean operators, and controlled vocabulary specific

to the subject.

Screen titles and abstracts of retrieved articles against the
inclusion and exclusion criteria.

Eliminate articles that do not meet the criteria.

Retrieve and thoroughly review the full text of selected
articles.

Apply qualitative tools (content analysis, thematic analysis) to
extract relevant information related to Al-driven PM in IToT.
Synthesize qualitative data to identify patterns, themes, and
key insights across the selected articles.

Relate findings to the real-world implementation of Al-driven
PMin IToT.

Present findings in a transparent manner, using quotes or
excerpts from selected articles to support the analysis.
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Figure 1. Evolution of the maintenance context in industry
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Figure 2. The Al-based maintenance data circuit diagram
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