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1. Introduction

The paper considers the problem of modelling the 
probability of bankruptcy on the example of Polish 
companies from the manufacturing sector in the 
years 2007–2013. The problem described, due to its 
specificity, ie, the lack of causal effect between the vector 
of characteristics and the label, is usually considered a 
predictive task. Therefore, the aim is not to infer the 
process of generating the data, because such a process 
does not exist in the form considered. The predictive 
character of the task makes it a constantly topical 
issue, research is focused on finding better methods 
of analysis. Such is also the purpose of this article: the 
presentation and application of a non-standard method 
of analysis and a proposal for solving the problems that 
are an integral part of it. 

The main research objective was to test whether 
convolutional neural networks can achieve results 
comparable to models commonly used for bankruptcy 
forecasting based on cross-sectional tabular data. It 
was expected that data preprocessing involving the 
transformation of predictor distributions would be 
a key aspect of the analysis. We supposed that the 
transformations would prove useful in models based 
on gradient-updated parameters, as opposed to models 
based on decision trees. 

The paper is structured as follows. The first chapter 
presents the literature review. The second chapter 
describes the methodology. Chapter three presents the 
results. Experiments performed in cross-validation 
concerning both the conversion of observation vectors 
to images as well as the models themselves, selection of 
hyperparameters, and architecture are also described. 
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The analytical part of the study was performed using 
the Python language. 

2. Review of the literature 

Modelling the probability of corporate bankruptcy 
is a topic that researchers have been dealing with 
continuously for years, applying more and more 
effective methods. As a rule, these analyses are based 
on financial ratios, which is a highly flexible approach, 
and we can easily imagine its application in business. 
One of the first models based on financial ratios is the 
Z-score discriminant function (Altman, 1968). The 
logit model for bankruptcy prediction was first used 
by Ohlson (1980). The bias on the estimators of the 
Maximum Likelihood Method in the case of artificial 
balancing of the sample and its non-random selection 
was first described in the literature by Zmijewski 
(1984). 

2.1. Current methods and challenges 

In order for standard statistical and econometric 
models to produce the expected results, it is often 
required to meet a number of assumptions, such as 
the normality of the distribution, linear dependence, 
the constancy of variance in time, or independence 
of predictors in relation to each other, which, as it 
turns out, is difficult to achieve in reality. Moreover, 
in order to draw correct statistical inferences, it is 
extremely important to know the functional form 
of the process generating the data a priori, which is 
often a problem that cannot be solved. The existing 
limitations have led researchers to develop research 
methodologies resulting in a number of machine 
learning algorithms. As it turns out, modern methods 
often show better predictive capabilities than typical 
statistical models without requiring compliance with 
restrictive assumptions. However, this is very often at 
the expense of interpretability. 

Zhang, Hu, Patuwo & Indro (1999) were among the 
first to propose a feedforward multilayer perceptron 
(MLP) neural network model to model the probability 
of corporate bankruptcy. In terms of metric accuracy, 
the neural network was found to be superior to the 
logit model. Kim & Kang (2010) proposed two novel 
approaches to modelling with MLP: bagging and 
boosting, methods belonging to the ensembling 
class. Both of these methods are based on training 

multiple small and weak models (weak classifiers) 
and combining them to produce more accurate and 
robust predictions. AdaBoost, or decision trees with 
only one stump trained in the boost system, also find 
application in bankruptcy prediction (Heo & Yang, 
2014). The results reported allow us to conclude 
that the discriminatory model inspired by Altman’s 
Z-score model has better predictive quality for small 
companies in terms of both Type I and Type II errors. 
The AdaBoost model was better in terms of Type I 
errors for medium and large companies. Issues such as 
imbalance of the training set (Veganzones & Séverin, 
2018; Carmon, Climent & Momparler, 2019) and 
the role of preprocessing (Wyrobek & Kluza, 2018; 
Vellamcheti & Singh, 2020) were also emphasised in 
previous studies. Son, Hyun, Phan & Hwang (2019) 
reported significant gains in success metrics after 
applying the Box-Cox power transformation (Box & 
Cox, 1964). Pawełek (2019) examined the performance 
of boosted decision trees in the context of outlier 
observations. The solution to the outlier problem 
proposed by Pawełek was to constrain the set with 
appropriate quantiles from above and below but 
only for observations that were assigned the label of 
non-bankruptcy. The approach seems controversial 
because in this way the model can build a decision 
rule that assigns the bankrupt label based on the 
determination of whether an observation is an outlier. 
Given that the outlier reduction process took place 
only on the training set, it can be concluded that the 
results from the test set are still unbiased. 

2.2. Articles of inspiration 

Zięba, Tomczak & Tomczak (2016) addressed the 
automation of feature generation in a boosted decision 
tree algorithm (using XGBoost). The authors, Carmon 
et al. (2019), took advantage of the ability to assign 
importance to individual features using XGBoost. 
From the features that exceeded the desired level of 
importance, a discrete probability distribution was 
created, and this importance was the probability 
of a particular event occurring. Two features were 
then drawn at random from the distribution created 
and one from the basic arithmetic operations to be 
performed on them. Obviously, the more trees built 
within the algorithm, the more synthetic and less 
interpretable the attributes became; however, the goal 
was prediction, not inference. 

The method presented by Hosaka (2019) consisted 
in converting a vector of parameters to a greyscale 
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image using Monte Carlo simulation, which allowed 
the arrangement of pixels, ie, representations of each 
of the financial ratios disposed, in a two-dimensional 
space taking into account their correlation with each 
other, and then the training of a convolutional neural 
network. The model proposed was compared with 
the CART decision tree, discriminant function, SVM, 
MLP, and AdaBoost. The highest ROC-AUC scores 
were obtained for the convolutional neural network.  

Szegedy et al. (2015) proposed a new order for 
building convolutional neural networks – the inception 
module. Normally, convolutional models are built in a 
fairly uniform way: several convolutional layers are 
followed by a pooling operation applied resulting in a 
three-dimensional tensor, which at the end is flattened 
to a one-dimensional vector to be connected to a 
dense layer. The standard approach to achieving better 
results when using neural networks is to build a wider 
and deeper architecture, which is directly related to a 
much higher computational cost; moreover, it often 
results in over-fitting. The proposed inception blocks 
allow a significant increase in the architecture while 
reducing the computational cost. 

When we review the literature, it is possible to 
notice the recurrence of certain problems: a strong 
imbalance, high correlation coefficient of predictors 
and skewness of their distributions, the occurrence 
of outliers, the curse of multidimensionality, the 
lack of a defined framework of a good model and 
data generating process. Researchers try to propose 
solutions to the problems mentioned above, usually 
bringing better results.

3. Methodology 

The ignorance of the process generating the data – and 
thus the inability to determine the causal influence 
– force analysts to try to find the best possible 
approximation of reality. Such an approximation, ie a 
de facto model according to econometric procedures, 
usually consists in determining the nearest truth 
specification of a phenomenon according to beliefs (or 
theories). These beliefs not only include explanatory 
variables that have a potential influence on the variable 
explained, an additional aspect is the functional 
form of the phenomenon itself. Then, with the use 
of statistical tools, the accuracy of beliefs is checked 
by, among others, testing the significance of the 
explanatory variables, correctness of functional form 

or assumptions required for non-bias, consistency, or 
the effectiveness of a given model. It can be argued 
that model building involves approximation of a real 
data generating process. However, the available tools 
require a great deal of expertise and have a limited 
spectrum of functional dependencies to be tested. 
In response to the problems presented the solutions 
discussed below have been developed.

3.1. Convolutional Neural Networks 

A single input to the MLP model is a vector whose 
components undergo transformations within each 
neuron of the next layer. The values stored in the 
hidden layer neurons are thus the features of the 
given vector that the model learns during the training 
process. If, on the other hand, the description of a 
given observation has more than one axis, then it is 
a matrix, and it cannot be directly reprocessed by the 
MLP model. One solution is to flatten the matrix into 
a vector. This solution has two major drawbacks, the 
first being the high computational cost, since each 
component must be concatenated with each neuron 
of the neighboring layer. The second disadvantage 
is the omission of the issue of the neighbourhood of 
components in the model structure, which occurs 
during the flattening operation. The drawbacks 
mentioned become even more significant if the 
representation of the observation is an image. 

By convolving the image representation, ie 
tensor A∈[0,255]∈Z

n
h

×n
w

×n
c, where n

h

×n
w

×n
c

 represents 
the height, width, and number of channels of the 
image through the filter, respectively; F∈R

f
h

×f
w

×n
c  is 

understood to be the conduct of operations: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴𝐴𝐴,𝐹𝐹𝐹𝐹)𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 = 𝐴𝐴𝐴𝐴 ∗ 𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 = ���𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 ,𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥+𝑖𝑖𝑖𝑖−1,𝑦𝑦𝑦𝑦+𝑗𝑗𝑗𝑗−1,𝑘𝑘𝑘𝑘

𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐

𝑘𝑘𝑘𝑘=1

𝑓𝑓𝑓𝑓𝑤𝑤𝑤𝑤

𝑗𝑗𝑗𝑗=1

𝑓𝑓𝑓𝑓ℎ

𝑖𝑖𝑖𝑖=1

 ,

 

where x, y are the indices of the result of the operation, 
ie the matrix A*F, n

c

 is the number of channels that 
varies depending on the color palette of the image, 
for RGB n

c

=3, for greyscale image n
c

=1. The operation 
is possible only if the third dimension of tensor A is 
equal to the third dimension of filter F and if the first 
two dimensions of tensor A are not less than the first 
two dimensions of filter F. The dimensions of the 
result of this operation are (n

h

-f
h

+1,n
w

-f
w

+1). In the 
convolutional layer, the parameters are the elements 
of the filter F, and they are optimised analogously to 
the dense network. 
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By default, the more convolutional layers the 
network contains the smaller the height and width 
of the returned volume and the larger the depth. 
Reducing the first two dimensions is not always a 
desirable effect; then the input tensor is complemented 
with some constant, usually zeros, and this operation 
is called padding. The order of padding is determined 
by the p parameter; for p=1, a row is added from the top 
and bottom, and a column from the top and bottom, 
to make a ‘frame’. When p=1 is applied, the size of the 
tensor A∈R

n
h

×n
w

×n
c  is changed to (n

h

+2,n
w

+2,n
c

 ). 

The last of the convolution layer hyperparameters 
considered in this paper is the so-called stride (s) or 
filter step. The stride significantly affects the size of 
the output tensor, the final formula for the size of the 
output feature map (total) is: 

��
𝑐𝑐𝑐𝑐ℎ + 2𝑝𝑝𝑝𝑝 − 𝑓𝑓𝑓𝑓ℎ

𝑠𝑠𝑠𝑠 + 1� , �
𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤 + 2𝑝𝑝𝑝𝑝 − 𝑓𝑓𝑓𝑓𝑤𝑤𝑤𝑤

𝑠𝑠𝑠𝑠 + 1� , #𝐹𝐹𝐹𝐹� , 

where ⌊.⌋ means a rounding down operation.

The convolutional layer is thus used for direct 
extraction of low-level features. A family of operations 
is defined to aggregate these features (ie pooling). 
Standard types of pooling are max pooling and 
average pooling. Both versions rely on a mechanism 
similar to convolution, ie, moving the filter along the 
input tensor, with the difference that the filter does 
not have weights updated in the learning process. 

3.1.1. Inception module

A convolutional neural network has been used 
with success in tasks in the area of image analysis 
(Simonyan & Zisserman, 2014; Krizhevsky, Sutskever 
& Hinton, 2012; Lin, Chen & Yan, 2013; LeCun et 
al., 1998). These models typically use 3 × 3, 5 × 5 or 
7 × 7 filters. An interesting approach is to use an 
inception module. The inception module uses several 
variants of layers simultaneously; originally, in the 
paper by Szegedy et al. these were 1 × 1, 3 × 3, 5 × 5 
and max pooling. The individual feature maps are 
concatenated along a specific axis, so as mentioned in 
the literature review, a correspondence between two 
of the three dimensions of the concatenated tensors is 
required. In order to achieve this correspondence, the 
layers themselves (convolution and pooling) are used. 
However, such a module scheme is computationally 
very expensive; the remedy turns out to be the addition 
of 1 × 1 convolutions before 1 × 1 and 5 × 5, and after 

pooling, it is then possible to reduce the z-axis of the 
output tensors, as reported by the authors without 
significantly reducing the information held.

     

Figure 1. Naive Inception  
Source: Own elaboration                      

Figure 2. Optimum Inception
Source: Own elaboration.

This study uses an optimised variant of the inception 
module (Figure 2).

3.2. Validation methods

A key aspect of predictive modelling is the selection 
of an appropriate model of validation method. The 
basis of the division into training and test sets is 
the consistency of the distributions of variables. 
Particularly important in unbalanced classification 
problems is to keep the label distributions as close as 
possible during the division, in order to maintain the 
desired properties instead of using random division a 
layered division is used and this was done in this study. 
A common division of data is 70% for training set, 20% 
for validation set and 10% for test set. The problem 
arises when few data are in the dataset, in which case 
the validation and test sets may not be an adequate 
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representation of the population, especially in highly 
unbalanced problems where only a few positive 
labels – or in extreme cases none – may end up in the 
test set. Furthermore, testing many combinations of 
hyperparameters involves a risk of overfitting to the 
validation set, in which case the results obtained may 
be too optimistic. The solution to both problems is 
K-fold cross-validation, or in the case of this study, 
K-fold stratified cross-validation.

K-fold cross-validation, involves dividing the 
training set into K subsets and training the model 
K times. During one iteration, the kth set serves as 
the validation set while the rest are used to train the 
algorithm, thus obtaining K results, which are finally 
averaged to estimate the generalisation ability of the 
model. The premise of K-fold cross-validation is to use 
each observation as a validation observation exactly 
once. During the validation process, the separation 
rules between training, validation, and test sets must 
be respected, ie data transformations can take place 
only on the basis of the training set characteristics and 
their distributions must be as similar as possible to 
each other. Layering is applied analogously.

In this study, it was decided to divide the dataset 
into a training set (90%) and a test set (10%). A 
6-fold stratified cross-validation procedure was then 
performed on the training set, ie, in each iteration the 
validation set was separated from the training set. In 
the literature K is often stated to be 5–10. In general, the 
higher the number of folds, the more robust the results. 
Choosing K equal to 6 we gain a bit of the robustness 
of results in relation to five folds not increasing the 
cost of calculations too much (compared with 10 
folds) at the same time. All data transformations 
were performed inside the validation, except for 
the removal of attributes with too many missing 
values (completion was already done in the current 
validation iteration, separately). The hyperparameters 
of the random forest and boosted decision tree 
(XGBoost) models were tuned using random search 
after examining the sensitivity of a given algorithm to 
a particular hyperparameter and narrowing the range 
considered. During random search, hyperparameters 
are randomised, then validation metrics are measured 
and stored in the validation process, and finally a 
configuration is selected as preferred. As the main 
metric in this study is AUC-PR, it was the value of 
this metric that was used to select the best model, in 
addition, attention was also paid to overfitting, ie the 
difference in performance between the training and 
validation sets.

For neural network models, the hyperparameter 
space is too large to rely on random search; in addition, 
training and validating these models are much more 
computationally expensive. The architecture and 
hyperparameters of the neural networks were selected 
based on experiments and analysis of the results 
obtained (metrics, learning curves, early stopping) in 
a 6-fold stratified cross-validation.

3.3. Specification of tested models

The sensitivity of each model type (logit, random 
forest, XGBoost, MLP neural network, and CNN) to 
preprocessing variant (raw data, normalised data, data 
without outliers and normalised, data without outliers 
after power transformation and normalised) and 
hyperparameters was tested. If justified (appropriate 
space of considered hyperparameters) a random 
search was performed to find a quasi-optimal set of 
them. If it was necessary (neural networks), learning 
curves were analysed, both in terms of the best results 
obtained with the use of early stopping, as well as the 
shape of curves (desirable possibly smooth, monotonic 
course and as little overtraining as possible). 

The logistic regression model was considered in 
four preprocessing variants: raw data, normalised data, 
data without outliers and normalised, data without 
outliers after power transformation and normalised. 
The only hyperparameter tested was regularisation by 
the L1 norm (𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿1(𝑊𝑊𝑊𝑊) = 𝜆𝜆𝜆𝜆� |𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘|

𝐾𝐾𝐾𝐾

𝑘𝑘𝑘𝑘=1
 ).

The random forest model proved to be resistant to 
a variant of the data preprocessing, so it was decided 
to treat it as a hyperparameter of the learning process 
during random search. The sensitivity of the model 
to changes in individual hyperparameters – maximum 
tree depth, maximum number of features used in the 
tree, minimum number of observations required to 
perform division, minimum number of observations 
in a leaf, the minimum number of observations 
required to perform the division – was examined. 

The method of data preprocessing was treated 
as a hyperparameter also for the XGBoost model. 
The optimisation of the hyperparameters followed 
principles analogous to the procedure used for random 
forests. The set of hyperparameters was as follows: 
maximum tree depth, learning rate η, a fraction of the 
rows used to train the tree, a fraction of the columns 
used to train the tree,  minimum loss function 
reduction, a regularisation of L1, regularisation L2  
(𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿2(𝑊𝑊𝑊𝑊) = 𝜆𝜆𝜆𝜆� (𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘)2

𝐾𝐾𝐾𝐾

𝑘𝑘𝑘𝑘=1
 ).The number of estimators was 
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calculated as the early stopping median of all validation 
subsets. 

Due to the similarity in the training process 
between the MLP and CNN models, the procedure for 
selecting the preprocessing variant, architecture, and 
hyperparameters was analogous for the latter.  

4. Results

4.1. Data

The dataset used in this study was created for the 
article ‘Ensemble boosted trees with synthetic feature 
generation in application to bankruptcy prediction’ 
(Zięba et al., 2016). The set was divided into five subsets: 
bankruptcies at one-year, two-year, three-year, four-
year, and five-year horizons were analysed. The set 
of explanatory variables includes 64 financial ratios 
describing a company, while the objective variable 
is the state of that company after the tth period, 
bankrupt or not bankrupt, respectively. The data 
come from the EMIS database, which contains, among 
others, financial statements. The objects analysed are 
Polish enterprises from the manufacturing sector, and 
the time range is 2000–2013.

4.2. Analysis and preparation of data 

for modelling

The main problems that had to be solved during data 
analysis and modelling were a strong imbalance, 
the presence of many data gaps and outliers, and the 
skewness of the predictor distributions.1

Strong unbalancing compounds the problem of 
insufficient set size. The number of bankrupts in the 
validation and test sets would be too small to perform 
a valid procedure. The solution is to use the area 
under the precision-recall curve as the main metric 
while monitoring the area under the ROC curve. The 
problem of validation set counts was solved by using 
a 6-fold cross-validation, and the disbalance required 
stratified randomisation. 

The procedure for dealing with missing data was 
designed to preserve as many observations as possible. 

1   Owing to the similarity of the analysis and preprocessing 
process, it was decided to show details only for the one-
year prediction.

A gap-filling algorithm was implemented based on 
random forests.

The problem of outliers was solved by constraining 
the distributions of the predictors from above and 
below with quantiles of order Q 0.005 and Q 0.995. The 
skewness problem was also detected. Owing to the fact 
that the variables analysed in this study are financial 
ratios, ie, the condition of applicability of the Box-Cox 
transformation, x>0,  is not met, it was decided to use 
its generalisation, the Yeo-Johnson transformation 
(Yeo & Johnson, 2000).

Limiting distributions, power transformations, 
and normalisation were the techniques that were used 
to transform the input data for standard algorithms 
that process vectors, as convolutional neural networks 
require data in the form of matrices or tensors. A 
method proposed by Hosaka (2019) to convert a 
vector to an image was used. First, the vector had to 
be converted to a matrix (greyscale), which would 
eventually become an image. Then, an energy function 
was defined in the form E=∑(i,j)∈ξ|ϕ[R(i),R(j)]|×d(i,j), 
where i, j are indexes of matrix elements – image 
pixels, d(i, j) is a measure of distance between pixels, 
R(i) is a given attribute, ξ is a set of all possible 
combinations of pairs of R(i) and R(j), and ϕ(∙) is a 
correlation coefficient. The result of minimising this 
function is a matrix (conversion formula) in which 
the more correlated variables are closer together. The 
solution to this task was obtained using Monte Carlo 
simulation.

Square images were assumed to be generated, so 
if the number of features did not have an equal square 
root, a complement with a neutral shade of grey (128) 
was applied. The algorithm was carried out only 
on companies that were not labeled bankrupt; this 
approach was also used by Hosaka (2019) arguing that 
if a company is bankrupt, it is very possible that some 
anomalies have been observed in it. In the creation 
of a picture, the goal is to create a pattern that is as 
structured as possible, which should be easier if 
thriving units are considered. It is then assumed that 
if the companies are from the same sector and there 
are no anomalies, then the relationships between their 
balance sheet items will be similar.

Owing to the fact that color saturation is coded 
using integers in the range 0−255, the normalisation 
method f:x∈R→Z∩[0,255] was required. The function 
proposed by Hosaka (2019) was implemented: 

𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 0 < 𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 �
𝑥𝑥𝑥𝑥 − 𝜇𝜇𝜇𝜇
𝜎𝜎𝜎𝜎 × 100 + 128� < 255 , 
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where int(∙) is a function that returns the integer part 
of a decimal number, 0<⋯<255 means the operation of 
limiting to boundary values of 0 and 255.

If the observed value was higher than the mean, 
then the corresponding pixel was brighter, while if 
the value was lower than the mean, then the pixel was 
darker. Convolutional neural networks perform better 
for small floating point numbers; for this reason, 
before they were passed to the model, the images were 
scaled to the range [0,1] by dividing each element of 
the matrix by 255.

The observations are described by 64-dimensional 
vectors, which means that under the assumption of 
generating square images, the conversion results were 
images with a resolution of 8 × 8 pixels. To solve the 
problem of small images, it was decided to implement 
a procedure to automatically generate new attributes. 
It allowed the resolution of the images to be increased 
from 8 × 8 to 20 × 20 pixels.

4.3. Experiments in K-fold stratified 

cross-validation

It was decided to run the experiments in a 6-fold 
stratified cross-validation to select the best model in 
its class (best logit, random forest, XGBoost, MLP, 
CNN).

4.3.1. Conversion of the observation vector to image

This section presents the results of converting the 
observation vector to an image, one bankrupt and 
non-bankrupt case each for the quasi-optimised and 
initialised variants, the 8 × 8 and 20 × 20 sizes for each 
cross-validation fold in the one-year prediction. In 
addition, results are presented depending on the data 
preprocessing.  

From Figure A1 in the Appendix, it is hard to see 
the differences between bankrupt and non-bankrupt. 
In fact, in most examples it is hard to distinguish 
between the image before and after the optimisation 
simulation, which was also reflected in the model 
results. As it turned out, a technique that reduces the 
tails of the distributions (see the results in Figure A2 
in the Appendix) had a huge effect also during image 
generation. The reduction of outliers has significantly 
improved the quality of the generated images, and it is 
now easy to see the differences between the initialised 

image and the quasi-optimal image, especially in 
the case of non-bankrupts (white spot in the upper 
right corner for folds 1–4). Moreover, it is possible to 
observe the difference between bankrupt and non-
bankrupt: the latter seems to be kept in a lighter tone, 
which means higher than average values of the ratios. 

Figure A3 in the Appendix shows the images 
generated for data without outliers previously 
transformed using the Yeo-Johnson transformation. 
The difference is not as large as when the tails 
of the distribution are truncated compared with 
the raw data, but it is noticeable. After the power 
transformation, the images become sharper, there is 
less shading around 128, and as the experiments have 
shown, models trained on such prepared data perform 
better. It is worth pointing out a common feature of 
all the 8 × 8 images presented, a grey bar built of five 
pixels in the lower right corner of the images. This is 
the previously mentioned effect of complementing the 
incomplete square root of the number of features with 
a neutral shade of grey (128). 

Figure A4 in Appendix shows images created from 
only normalised data of size 20 × 20, ie, after generating 
artificial variables. Similar to the 8 × 8 images, this 
variant of preprocessing results in low information 
images with the difference that it is easier to see the 
optimisation results in the enlarged image.

Similar to the 8 × 8 images, the application of the 
outlier reduction technique significantly improved 
the quality of the generated 20 × 20 images. Bankrupts 
and non-bankrupts can be easily distinguished in 
the examples presented. Non-bankrupts are usually 
characterised by a white spot in the upper right corner 
and lighter shades of the whole image. Bankrupts, 
on the other hand, do not present a visible pattern 
even after optimisation, which is consistent with the 
hypothesis that financial anomalies occur in poorly 
performing companies.

After applying the power transformation, much 
sharper 20 × 20 images were obtained, as in the case 
of 8 × 8, for which there are fewer neutral shades close 
to saturation 128. The difference between bankrupt 
and non-bankrupt in this case is even more apparent, 
similarly with the effect of the optimisation algorithm. 
The results are shown in Figure A6 in the Appendix.

Thus, it can be concluded that the proposed data 
transformations significantly affected the quality of the 
generated images: the more elaborate the procedure the 
better the results, and the better the images the better 
the scores of the CNN model metrics, as it turns out. 
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4.3.2. Models

The sensitivity of investigated models to preprocessing 
variants and hyperparameters was tested. 

In the logistic regression model normalisation 
did not affect the results (the exception was model 
convergence each time). After we applied the outlier 
reduction method and normalisation, an increase 
in AUC-PR was detected for the model without 
regularisation. When the power transformation 
was added, a significant improvement in AUC-PR 
and AUC-ROC was observed. For the random forest 
model the best results were obtained using the 
method of reducing the tails of the distribution and 
normalisation. In case of the XGBoost the number 
of estimators was calculated as the early stopping 
median of all validation subsets. The best results were 
achieved on normalised data without outliers. 

Figure A7 in Appendix shows the learning process 
of a feedforward neural network example. The graphs 
presented confirm the conclusions drawn by Son et al. 
(2019) about the improved results after the application 
of the power transformation. Furthermore, one 
can see the huge impact of applying normalisation 
– smoothing and increasing learning curves and 
much higher results (+ 0.18 on the AUC-PR metric). 
Subsequent components of the data preprocessing 
procedure turned out to be accurate: outlier reduction 
is a + 0.09 gain and + 0.05 after applying the power 
transformation. The results shown in the legend of 
each graph are the effect of early stopping, indicated by 
the red dot. From the results of this experiment, it was 
decided to build MLP models on the fully preprocessed 
data. The final MLP model is a two-layer model with 
60 neurons, a dropout of 0.4, and regularisation of L1 = 
0.00005 in each hidden layer. The activation functions 
are the hyperbolic tangent and sigmoid, respectively. 
It is worth mentioning that different functions were 
tested, including tanh, sigmoid, linear, ReLU, SELU, 
and PReLU, on both layers. For ReLU and PReLU, for 
instance, the lowest values of AUC-ROC and AUC-PR 
metrices were achieved. When the linear function 
was applied, the learning curves were non-monotonic. 
Given the tests, we choose tanh, ensuring high results, 
and the sigmoid function, ensuring smoothed curves.

The model was trained in batches of 394 
observations each for 5,000 epochs using the Adam 
algorithm with standard hyperparameters. The results 
obtained by the MLP model are simply spectacular – 
AUC-PR = 0.712 (0.238 overfitting), AUC-ROC = 0.93 
(0.07 overfitting).

Due to the similarity in the training process 
between the MLP and CNN models, the procedure 
for selecting the preprocessing variant, architecture, 
and hyperparameters was analogous for the latter. 
The learning curves presented in Figure A8 a–c in 
the Appendix also illustrate the positive relationship 
between the complexity of the data preprocessing 
procedure and the results (AUC-PR). In this case, 
however, it should be emphasised that the preliminary 
experiments were conducted on an architecture that 
turned out to be fundamentally different from the 
optimal one. In addition, the CNN model presented 
was trained with only 100 epochs while the MLP was 
trained with 400. The model whose learning process 
is illustrated in graphs a–c of Figure A8 in Appendix 
consists of two consecutive convolutional layers 
(same) 3 × 3; #F are 32 and 64 respectively, the next 
layers are average pooling 2 × 2, p = 0, and convolution 
(same) 1 × 1 with 32 filters, all flattened and passed 
to a dense two-layer network (512,256 neurons). The 
convolutional layer activations are ReLU functions 
and dense sigmoid, and the optimiser is RMSprop 
(Hinton, Srivastava & Swersky, 2012) with standard 
hyperparameters. The input data are 8 × 8 images. 
For comparison, Figure A8 d in the Appendix shows 
the learning curves for the same validation division 
with full preprocessing and the best architecture 
found (inception blocks, see Table 2 for details). The 
model in Figure A8 d was trained at 450 epochs, so 
the comparison with graphs a–c is the progress of 
graph d up to 100 epochs. Model d reached lower 
metrics after 100 epochs, but the observed learning 
curves are almost perfectly smooth and increasing, 
which justifies training the model on a larger number 
of epochs. Ultimately, model d achieved noticeably 
higher metrics, much lower overtraining, and its 
training process was not objectionable.

In most of the prediction horizons, the architecture 
based on inceptive blocks turned out to be the best. As 
a rule, we searched for the best possible network for 
8 × 8 images; then new variables were generated, and 
the process of searching for architecture for models 
trained on 20×20 images was started by checking the 
best architecture for models trained on 8 × 8 images. 
During the experiments in the one-year horizon, it 
turned out that there was no sense testing a separate 
architecture for models taking into account a larger 
number of features – the process was computationally 
very time-expensive and did not bring any noticeable 
results. Thus, the 20 × 20 models in the sense of 
architecture from the 8 × 8 models differ only in the 
dimensions of the output tensors of the individual 
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layers and the differences between the dimensions 
of the input tensors. For the one-year horizon, the 
application of the image magnification method did 
not improve the results; the results obtained were 
AUC-PR 0.541 (0.233 overfitting) and AUC-ROC 
0.881 (0.074 overfitting). However, fewer epochs were 
generally needed to achieve similar metric values 
(Table 2), and the learning curves were even smoother.

Table 1 shows the results of the cross-validation 
performed for the logistic regression for each of the 
predictive horizons analysed. The numbers presented 
are the average of all validation splits, and the models 
were trained each time on data without outliers, after 
power transformation, and normalised. In the context 
of the AUC-PR metric, it should be emphasised that 
the naive classifier (ie assigning a label of 1 to each 
observation) achieves a result equal to the sample 
balance. An exception to the decreasing relationship 
between the results and the prediction horizon is the 
last, five-year horizon. However, in the analysis of the 
results, it is worth noting not only the absolute values 
of the metrics, but also the difference between them 
and the metrics of the naive classifier, ie, the sample 
balance in the case of AUC-PR and the value of 0.5 
in the case of AUC-ROC. The longer the prediction 
horizon, the more difficult the task, not only because 
of the less informative predictors, but also because 
of the decreasing balance. When a proper data 
preprocessing method is applied, logistic regression 
achieves really good results. What is extremely 
noticeable, however, is the increased difficulty when 
the time horizon is extended: one more year equals 
almost twice the AUC-PR results. On the AUC-ROC 
metric, admittedly there is also a noticeable decrease, 
but it is much lower relative to the naive classifier 
(model added value) than in the case of AUC-PR, 
which confirms the validity of using the latter metric 
as the main one. In addition, the very low overtraining 
of the models (especially compared with the more 
comprehensive ones) should be noted.

The results of the random forest validation are 
presented in Table 1. Increasing the prediction horizon 
significantly decreased the metrics, the exception 
to their negative relationship being the four-year 
horizon. The values of the hyperparameters found 
using the random search are worth noting; they are 
very similar between horizons. Random forests proved 
to be a much better model than logit in terms of both 
AUC-PR and AUC-ROC but much more overfitted. 
As mentioned earlier, the data preprocessing variant 
for decision tree-based models was treated as a 

hyperparameter, and so q stands for outlier reduction 
(limiting distributions with quantiles of order Q 0.005 
and Q 0.995), p stands for power transformation, and n 
is normalisation. The use of more than one method 
is denoted by +, and the absence of any method is 
denoted by -.

XGBoost is the model that is often indicated as the 
best in the literature, and its cross-validation results 
are presented in Table 1. XGBoost performed much 
better than logit and random forest. In the context 
of the area under the ROC curve, noticeably worse 
results were obtained compared to Zięba et al. (2016). 
The hyperparameters found by a random search, 
as with random forest, are very similar between 
horizons. However, the models presented differ in the 
parameters responsible for regularisation (γ, L1, L2). 
There is no relationship between the lengthening of 
the time horizon and the optimal number of estimators 
(early stopping, line median of estimators), the fastest 
peak was reached for the one-year horizon. XGBoost 
also generally exhibits less overtraining than random 
forests, which is certainly a result of the model’s 
inclusion of regularisation components. In addition, 
the relatively high optimal fraction of columns, or 
attributes in each case, suggests the possibility of using 
variables that are even strongly correlated. XGBoost is 
the model that most often performed best on raw data.

Very good results were obtained for the MLP 
model in particular in view of the results reported 
by Zięba et al. (2016) for models of this class – 
0.514–0.699 AUC-ROC, which means that in some 
cases the models built differed little in performance 
from the naive classifiers. The models presented in 
this study were found to be comparable with the best 
XGBoost models from the reference study in terms 
of AUC-ROC (ie, the best models from that study). 
Extremely high results (the highest of all models) were 
obtained primarily in the main metric: AUC-PR, for 
the one-year horizon, the model on average (in the 
context of the cut-off threshold) correctly classified 
significantly more than 2/3 of bankrupts while noting 
very high AUC-ROC. The huge impact of using the full 
preprocessing procedure should be emphasised here, 
as on normalised data the best MLP model obtained 
an AUC-PR of 0.457, which is an even larger gain than 
in the reports of Pawełek (2019) and Son et al. (2019). 
The results presented in Table 2 were achieved after 
applying the full preprocessing procedure, ie, q + p + n. 
Moreover, the dense neural network has much lower 
overfitting than decision tree-based models. The 
models built for different horizons are very similar, 
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and in three cases the only difference is the number of 
epochs (1, 2, 5 years). The convention for presenting 
the neural network architecture is as follows: + 
denotes the presence of a layer in a given model, 
and early stopping denotes the median of the epochs 
in which the best AUC-PR results were achieved in 

cross-validation. Optimisers were run with the default 
hyperparameters of the keras library.

The results and architecture of convolutional 
neural networks built for 8 × 8 images, ie, without 
artificial variable generation, are presented in Table 
2. CNN models are more different from MLP models; 

Table 1. Hyperparameters and results for the best models, all horizons

Model Horizon (balance) 1 year 
(6.94%)

2 years 
(5.25%)

3 years 
(4.71%)

4 years 
(3.93%)

5 years 
(3.86%)

Logit λ 1 0.08 0 0.05 0.03

Results

AUC-PR 0.497 0.28 0.251 0.221 0.27

overfitting PR 0.05 0.067 0.035 0.07 0.075

AUC-ROC 0.852 0.782 0.762 0.726 0.764

overfitting ROC 0.003 0.022 0.03 0.04 0.036

Random 
forests

max depth 12 12 13 12 8

max number of characteristics 52 58 54 55 33

min observations to divide 4 18 8 10 5

min observations in the leaf 4 17 6 9 4

number of trees 200 200 200 600 100

preprocessing q+n p+n - q+p+n p+n

Results

AUC-PR 0.535 0.337 0.284 0.292 0.264

overfitting PR 0.416 0.412 0.67 0.603 0.564

AUC-ROC 0.89 0.84 0.829 0.817 0.795

overfitting ROC 0.1 0.1367 0.168 0.175 0.192

XGBoost max depth 6 7 5 5 4

learning rate η 0.08 0.03 0.07 0.1 0.07

column fraction 0.8 0.8 1 0.8 0.9

raw fraction 0.9 0.9 0.9 0.9 0.8

loss reduction γ 3 5 0.08 4 2

regularisation L1 0.4 1 1 0.4 0.1

regularisation L2 0.4 0.2 0 1 0.3

preprocessing q+n - q+n - n

estimators median 122 271 209 246 164

Results

AUC-PR 0.596 0.411 0.39 0.392 0.355

overfitting PR 0.392 0.52 0.598 0.571 0.54

AUC-ROC 0.909 0.869 0.864 0.86 0.835

overfitting ROC 0.09 0.124 0.136 0.137 0.145

Source: Authors’ calculations
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in the case of the three-year horizon the architecture 
used is fundamentally different from the rest. The 
concept of this model is based, among others, on 
the models of AlexNet (2012), VGG (2014) or the 
article ‘Network in network’ (2013), while the rest 
is built on inception modules and the GoogLeNet 
model (Szegedy et al., 2015). The first submodule 
of the inception module is always formed by a 1 × 1 
convolution layer, the second one is a 3 × 3 convolution 
preceded by a 1 × 1 convolution, the third one is a 5 × 
5 convolution preceded by a 1 × 1 convolution, and the 
last, the fourth one, is a max pooling layer followed 
by a 1 × 1 convolution (optimised inception module, 
Figure 2). The structure of the modules is shown as 
follows: F1 denotes the number of filters of the first 
submodule, the subscripts denote the subsequent 
submodules (digit), and in and out denote the number 
of filters of the 1 × 1 convolution and the following 
‘main’ convolution, ie 3 × 3 or 5 × 5, respectively. The 
padding from the definition of the inception module is 
always the same, the stride is 1 × 1, and the activation 
function is always the same. The number of filters is 
not given in pooling layers because it results from the 
number of channels of the input tensor. Relative to 
the MLP models, the CNNs performed much worse 
but much faster in terms of the number of epochs (in 
the time dimension, the MLP models trained faster 
than the CNN models – no GPU). The 8 × 8 model 
performed satisfactorily, generally ranking behind 
MLP and XGBoost and ahead of random forests and 
logit (AUC-PR). For the three-year horizon, the CNN 
model built for the 8 × 8 data even performed slightly 
better than XGBoost (AUC-PR). As the prediction 
horizon increased, the overfitting also increased 
dramatically.

The results of the convolutional neural networks 
trained on 20 × 20 data, ie, after generating artificial 
variables, are reported in Table 2. Since these models 
have an architecture analogous to the 8 × 8 models, 
the presentation has been simplified by considering 
only the relevant details. It can be concluded that 
the proposed method of image enlargement turned 
out to be successful; beyond the one-year horizon, an 
increment of results was recorded, and for the two-, 
four- and 5-year horizons, the increment turned out 
to be statistically significant at the 10% level (test for 
equality of median AUC-PR validation splits with the 
alternative of superiority of the 20 × 20 model). In 
terms of the AUC-PR metric, the CNN models after 
the variable generating technique were even superior 
to the XGBoost models for 2-, 3-, and 4-year horizons 
and also recording lower overtraining. Moreover, at the 

expense of higher overfitting, the maximum results in 
the context of epochs were achieved even faster than 
in models with fewer features. On the test sets it was 
decided to test only one type of convolutional neural 
networks, the decision whether it was an 8 × 8 or 20 × 
20 variant was made on the basis of Wilcoxon tests: if 
the increment of metrics caused by the generation of 
new variables was statistically significant at the 10% 
level then the more comprehensive model was chosen.

4.4. Results on the test set

We present the results of the best-in-class models 
(best logit, random forest, XGBoost, MLP, and CNN) 
trained on the entire training sample, the data used 
to train and validate the individual models in the 
previous subsections. The hyperparameters and 
architecture of the models are presented in Tables 
1 and 2. The test data were processed separately for 
each model considering the components by which 
the results presented in the previously mentioned 
tables were obtained, using the characteristics of the 
training data.

The graphs presented in Figure 3, in addition to 
the results of the trained models – the curves and the 
areas below them (legend) – also contain information 
about the results that would be obtained from a 
naive classifier, ie one that assigns each observation 
a bankrupt label. This makes it possible to quantify 
the number of dependencies that the model actually 
learned. It turns out that the results obtained in some 
cases differ from those obtained in cross-validation, 
with generally higher results obtained on the test 
set. The differences between the validation and test 
results may suggest that too few data were used as a 
test set. However, owing to the huge imbalance and 
the number of observations, it was considered better 
that more data were used for training and validation. 
It can be surmised that generally higher test metrics 
are the result of the strategy adopted, and by doing 
the opposite there would be a risk of undertraining 
the models. The biggest surprise is the positive 
deviation of the PR curves for the four-year horizon. 
As expected, the MLP models outclassed all others in 
terms of the area under the PR curve at almost every 
prediction horizon, recording excellent precision 
for horizons 1–3 for the longest time. The excellent 
precision of the logit at the 5-year horizon, which is 
maintained for the longest time, is also a surprise. 
The convolutional neural network model in the 20 × 
20 variant maintained excellent precision the longest 
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Table 2. MLP and convolutional neural networks: hyperparameters and results for best networks, all horizons

Network Horizon (balance) 1 year 
(6.94%)

2 years 
(5.25%)

3 years 
(4.71%)

4 years 
(3.93%)

5 years 
(3.86%)

MLP neural 
networks 

Architecture

dense layer + + + + +

neurons 60 60 60 60 60

activation tanh tanh tanh tanh tanh

dropout 0.4 0.4 0.4 0.4 0.4

regularisation  L1 0.00005  L1 0.00005    L2 0.00005 L1 0.00005

dense layer + + + + +

neurons 60 60 60 60 60

activation sigmoid sigmoid sigmoid sigmoid sigmoid

dropout 0.4 0.4 0.4 0.4 0.4

regularisation  L1 0.00005  L1 0.00005    L2 0.00005 L1 0.00005

dense layer + + + + +

Neurons 1 1 1 1 1

activation sigmoid sigmoid sigmoid sigmoid sigmoid

early stopping 4,873 3,972 4,892 6,843 7,243

batch size 394 394 394 394 394

Optimiser Adam Adam Adam Adam Adam

Results

AUC-PR 0.717 0.611 0.632 0.629 0.519

overfitting PR 0.238 0.214 0.35 0.282 0.34

AUC-ROC 0.929 0.895 0.9 0.909 0.883

overfitting ROC 0.065 0.079 0.098 0.085 0.106

8×8 
convolutional 
neural 
networks 

Architecture

inception module + + - + +

 #F1 4 4   4 4

 #F2in/#F2out 1/4  1/4     1/4 1/4 

 #F3in/#F3out 1/4  1/4     1/4 1/4 

 #F4out 4 4   4 4

Activation ReLU ReLU   ReLU ReLU

inception module + + - + +

 #F1 8 8   8 8

 #F2in/#F2out 4/8  4/8    4/8  4/8 

 #F3in/#F3out  4/8  4/8   4/8  4/8 

 #F4out 8 8   8 8

Activation ReLU ReLU   ReLU ReLU

Convolution - - + - -

Size     3 × 3    
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Network Horizon (balance) 1 year 
(6.94%)

2 years 
(5.25%)

3 years 
(4.71%)

4 years 
(3.93%)

5 years 
(3.86%)

8×8 
convolutional 
neural 
networks

 #F     32    

Padding     same    

Stride     1 × 1    

Activation     ReLU    

Convolution - - + - -

Size     3 × 3    

#F     64    

Padding     same    

Stride     1 × 1    

Activation     ReLU    

Max pooling - - + - -

Size     2 × 2    

Padding     Valid    

Stride     2 × 2    

Convolution - - + - -

Size     1 × 1    

#F     32    

Stride     1 × 1    

Activation     ReLU    

Average pooling + + - + +

Size 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2

Padding valid valid valid valid

Stride 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2

flatten layer + + + + +

dense layer + + + + +

Neurons 256 256 512 256 256

Activation ReLU ReLU sigmoid ReLU ReLU

Dropout 0.4 0.4 0.4 0.4

regularisation L1 0.000025 L2 0.00005 L2 0.00005 L2 0.0001 L2 0.00005

dense layer - - + + -

neurons 256 128

activation sigmoid ReLU

dropout

regularisation     L2 0.00005 L2 0.00005  

dense layer + + + + +

neurons 1 1 1 1 1

activation sigmoid sigmoid sigmoid sigmoid sigmoid

Continued

Table 2. MLP and convolutional neural networks: hyperparameters and results for best networks, all horizons
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for the four-year horizon. The MLP model (best 
results of AUC-PR for each horizon and AUC-ROC 
for horizons 1–3) should undoubtedly be considered 
the best model for the set analysed for the purpose of 
this paper, preprocessing proved to be crucial. Thanks 
to outlier reduction technique, power transformation 
and normalization it was possible to train the model 
for many epochs, which with smooth and increasing 
learning curves affected the results very positively. 
With the exception of the five-year horizon, logistic 
regression turned out to be the worst model (the 
lowest AUC-PR results from the two–four year 
horizon and AUC-ROC every time). It is worth noting 
that decision tree-based models proved to be resistant 
to the preprocessing variant used, which resulted in 
second-to-last results for random forests compared 
with significant improvements for all other models. 
XGBoost ranked near the top despite its resistance to 
transformations of the predictor distributions. While 
feedforward neural networks are undoubtedly the 
best model, identifying the second-best algorithm is a 
difficult task, because depending on the time horizon, 
XGBoost and convolutional neural networks were 
alternately better. 

In response to the main research question, 
convolutional neural networks, despite the fact that 

they were not created for modelling cross-sectional 
tabular data, do really well, recording some of 
the leading results. The undoubted advantage of 
convolutional models is the possibility to look at the 
analysis and presentation of data in a different way, 
because it is much easier for humans to analyse images 
than tables. The disadvantage of convolutional models 
in the context of this study is the need to spend a lot 
of time on data processing, development of vector-
to-image conversion methods and their computation, 
and the selection of appropriate architecture and 
hyperparameters. The presented vector-to-image 
conversion method, along with the algorithm 
generating new predictors, seems to be suitable and 
perhaps would also find application in fields other 
than corporate bankruptcy prediction. The XGBoost 
model is definitely advantageous, owing to its ease of 
application, construction, and optimisation. Of course, 
during the development of the models presented, it was 
not possible to use GPUs, which would significantly 
speed up the process of training convolutional 
networks, perhaps making them competitive in this 
field. Before we started this work, it was expected 
that by extending the prediction horizon, the results 
would be weaker and weaker. In the context of the 
results obtained, this hypothesis cannot be confirmed, 
because it turns out that the amount of information 

Network Horizon (balance) 1 year 
(6.94%)

2 years 
(5.25%)

3 years 
(4.71%)

4 years 
(3.93%)

5 years 
(3.86%)

8×8 
convolutional 
neural 
networks

early stopping 418 350 112 220 326

batch size 394 394 394 394 394

optimiser Adam Adam RMSprop Adam Adam

Results

AUC-PR 0.547 0.393 0.392 0.342 0.306

overfitting PR 0.219 0.404 0.43 0.414 0.392

AUC-ROC 0.885 0.828 0.84 0.814 0.793

overfitting ROC 0.07 0.147 0.136 0.156 0.169

20 × 20 
convolutional 
neural 
networks 

early stopping 189 157 137 155 239

Results

AUC-PR 0.542 0.456 0.401 0.394 0.345

overfitting PR 0.233 0.447 0.489 0.576 0.553

AUC-ROC 0.881 0.846 0.837 0.847 0.811

overfitting ROC 0.074 0.143 0.152 0.151 0.173

Source: Authors’ calculations

Continued

Table 2. MLP and convolutional neural networks: hyperparameters and results for best networks, all horizons
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that can be extracted from the financial indicators 
on the probability of bankruptcy of the company is 
much greater than assumed and goes beyond a linear 
analysis in relation to the parameters.

5. Conclusion

Modelling the likelihood of corporate bankruptcy 
using financial indicators is definitely a difficult topic 
but one worthy of attention. Research in this area may 
be of interest to state decision makers, economists, 
investors, entrepreneurs, and due to the specificity of 
the phenomenon, also to specialists in data analysis. 

Early detection of a potential bankrupt can save many 
fatal situations such as increased unemployment or 
loss of capital; on the other hand such a possibility 
creates opportunities for market speculators and 
allows effective control by the state by stimulating 
appropriate economic sectors. The lack of a real 
process generating data excludes the possibility of 
correct causal inference, which increases interest in 
models treated in other fields as ‘black boxes’, because 
all the attention is focused on prediction. This state 
of affairs focuses researchers on methodology, which 
contributes to the development of novel methods 
of analysis. Although there is no data generating 
process between financial indicators and bankruptcy 
probability, the correlation between these variables 

(a) 1-year horizon (b) 2-year horizon 

(c) 3-year horizon (d) 4-year horizon 

(e) 5-year horizon 

Figure 3. PR and ROC curves for all prediction horizons, test data
Source: Authors’ calculations
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is evident. Some of the indicators fit directly into 
the definition of bankruptcy (for example, debt or 
liquidity ratios).

The right approach seems to be to treat the 
problem as a binary classification, distinguishing 
only the state of formal bankruptcy and the entity 
constantly prospering.

The fundamental problems indicated in the 
literature and detected in this study include the strong 
skewness of the label distribution, the presence of 
many missing data, outliers, the insufficient number 
of observations, and the skewness of the predictor 
distributions. The class imbalance was resolved 
by using appropriate success metrics (precision-
recall curve and the area under it) and stratified 
randomisation to training, validation, and test 
sets. The problem of the insufficient number of 
observations was solved by using a 6-fold stratified 
cross-validation and simulating a real production 
process (separating the test set and excluding it from 
the analyses). Missing data were supplemented with 
the author’s algorithm based on random forests, 
which seems to be a slightly more sophisticated 
method than median supplementation, and due to the 
small number of observations their removal should 
not be considered at all. Addressing the problems of 
outliers and skewness of the predictor distributions 
proved crucial. Outliers were reduced using a 
method that consisted of limiting the top and bottom 
distributions (0.5%); this limitation did not consist of 
removing observations, but of assigning a boundary 
value to a given attribute if it exceeded the boundary 
value. Owing to the skewness of distributions, a 
generalisation of the Box-Cox transformation, ie 
the Yeo-Johnson transformation was applied. The 
result of applying data preprocessing methods was a 
significant improvement of the obtained results, both 
in terms of models and generated images. 

The main conclusion of the study is that 
convolutional neural networks, after appropriate 
data preparation, can be successfully used to analyse 
cross-sectional tabular data, especially in the problem 
of modeling the probability of corporate bankruptcy. 
The second, very important conclusion is the necessity 
of using appropriate preprocessing techniques in 
order to achieve good results with models based on 
parameters updated with a gradient – neural networks 
and logit. At the same time, models based on decision 
trees proved to be insensitive to the applied data 
transformations. 
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Appendix

1 
 

Figure A1. 8 × 8 images, raw data, normalised, validation, one-year horizon. 
 

(a) fold 1 (b) fold 2 

  
(c) fold 3 (d) fold 4 

  
(e) fold 5 (f) fold 6 

  
 

Source: Authors’ calculations. 
 
 
 
 
 

Figure A1: 8 × 8 images, raw data, normalised, validation, one-year horizon
Source: Authors’ calculations
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2 
 

Figure A2. 8 × 8 images, outlier-free, normalised, validation, one-year horizon. 
 

(a) fold 1 (b) fold 2 

  
(c) fold 3 (d) fold 4 

  
(e) fold 5 (f) fold 6 

  
 
Source: Authors’ calculations. 

 
 
 

Figure A2: 8 × 8 images, outlier-free, normalised, validation, one-year horizon
Source: Authors’ calculations
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3 
 

Figure A3. 8 × 8 images, outlier-free, power transformation, normalised, validation,  one-year 
horizon. 

(a) fold 1 (b) fold 2 

  
(c) fold 3 (d) fold 4 

  
(e) fold 5 (f) fold 6 

  
 
Source: Authors’ calculations. 
 
 
 
 
 

Figure A3: 8 × 8 images, outlier-free, power transformation, normalised, validation,  one-year horizon
Source: Authors’ calculations.u
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4 
 

Figure A4. 20 × 20 images, raw data, normalised, validation, one-year horizon. 
 

(a) fold 1 (b) fold 2 

  
(c) fold 3 (d) fold 4 

  
(e) fold 5 (f) fold 6 

  
 
Source: Authors’ calculations. 
 
 
 
 
 

Figure A4: 20 × 20 images, raw data, normalised, validation, one-year horizon
Source: Authors’ calculations
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5 
 

Figure A5. 20 × 20 images, data without outliers, normalised, validation, one-year horizon. 
 

(a) fold 1 (b) fold 2 

  
(c) fold 3 (d) fold 4 

  
(e) fold 5 (f) fold 6 

  
 
Source: Authors’ calculations. 
 
 
 
 

Figure A5: 20 × 20 images, data without outliers, normalised, validation, one-year horizon
Source: Authors’ calculations
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6 
 

Figure A6. 20 × 20 images, outlier-free, power transformation, normalised, validation, one-year 
horizon.  

(a) fold 1 (b) fold 2 

  
(c) fold 3 (d) fold 4 

  
(e) fold 5 (f) fold 6 

  
 
Source: Authors’ calculations. 
 

Figure A6: 20 × 20 images, outlier-free, power transformation, normalised, validation, one-year horizon
Source: Authors’ calculations
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(a) raw data (b) normalised data

(c) outlier-free data, normalised (d) outlier-free data, power transformation, normalised

Figure A7: Learning curves depending on the variant of preprocessing with early stopping
for the MLP model example.
Source: Authors’ calculations
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(a) normalised data, inadequate architecture (b) outlier-free data, normalised, inadequate
architecture

(c) outlier-free data, power transformation, normalised, (d) outlier-free data, power transformation,  ,
inadequate architecture normalised,appropriate architecture

Figure A8: Learning curves depending on the variant of preprocessing with early stopping
for CNN model examples 
Source: Authors’ calculations


