
ISSN: 2543-6821 (online)

Journal homepage: http://ceej.wne.uw.edu.pl

To cite this article

Dzik-Walczak A., Odziemczyk M. (2021). Modelling cross-sectional tabular
data using convolutional neural networks: Prediction of corporate ban-
kruptcy in Poland. Central European Economic Journal, 8(55), 352-377.

DOI: 10.2478/ceej-2021-0024

To link to this article: https://doi.org/10.2478/ceej-2021-0024

Modelling cross-sectional tabular

data using convolutional neural

networks: Prediction of corporate

bankruptcy in Poland

Aneta Dzik-Walczak,

Maciej Odziemczyk

Open Access. © 2021 A. Dzik-Walczak, M. Odziemczyk, published by Sciendo.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

http://ceej.wne.uw.edu.pl
https://doi.org/10.1515/ceej-2018-0003

Aneta Dzik-Walczak

Faculty of Economic Sciences, University of Warsaw, Poland
corresponding author: adzik@wne.uw.edu.pl

Maciej Odziemczyk

Faculty of Economic Sciences, University of Warsaw, Poland

Modelling cross-sectional tabular data using convolutional

neural networks: Prediction of corporate bankruptcy in Poland

1. Introduction

The paper considers the problem of modelling the
probability of bankruptcy on the example of Polish
companies from the manufacturing sector in the
years 2007–2013. The problem described, due to its
specificity, ie, the lack of causal effect between the vector
of characteristics and the label, is usually considered a
predictive task. Therefore, the aim is not to infer the
process of generating the data, because such a process
does not exist in the form considered. The predictive
character of the task makes it a constantly topical
issue, research is focused on finding better methods
of analysis. Such is also the purpose of this article: the
presentation and application of a non-standard method
of analysis and a proposal for solving the problems that
are an integral part of it.

The main research objective was to test whether
convolutional neural networks can achieve results
comparable to models commonly used for bankruptcy
forecasting based on cross-sectional tabular data. It
was expected that data preprocessing involving the
transformation of predictor distributions would be
a key aspect of the analysis. We supposed that the
transformations would prove useful in models based
on gradient-updated parameters, as opposed to models
based on decision trees.

The paper is structured as follows. The first chapter
presents the literature review. The second chapter
describes the methodology. Chapter three presents the
results. Experiments performed in cross-validation
concerning both the conversion of observation vectors
to images as well as the models themselves, selection of
hyperparameters, and architecture are also described.

Abstract
The paper deals with the topic of modelling the probability of bankruptcy of Polish enterprises using convolutional
neural networks. Convolutional networks take images as input, so it was thus necessary to apply the method of con-
verting the observation vector to a matrix. Benchmarks for convolutional networks were logit models, random forests,
XGBoost, and dense neural networks. Hyperparameters and model architecture were selected based on a random
search and analysis of learning curves and experiments in folded, stratified cross-validation. In addition, the sensitivity
of the results to data preprocessing was investigated. It was found that convolutional neural networks can be used to
analyze cross-sectional tabular data, especially for the problem of modelling the probability of corporate bankruptcy.
In order to achieve good results with models based on parameters updated by a gradient (neural networks and logit),
it is necessary to use appropriate preprocessing techniques. Models based on decision trees have been shown to be
insensitive to the data transformations used.

Keywords

convolutional neural networks | machine learning | simulation | bankruptcy prediction | financial indicators

JEL Codes

C45, C02, G33

https://orcid.org/0000-0002-0192-0226

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 354

The analytical part of the study was performed using
the Python language.

2. Review of the literature

Modelling the probability of corporate bankruptcy
is a topic that researchers have been dealing with
continuously for years, applying more and more
effective methods. As a rule, these analyses are based
on financial ratios, which is a highly flexible approach,
and we can easily imagine its application in business.
One of the first models based on financial ratios is the
Z-score discriminant function (Altman, 1968). The
logit model for bankruptcy prediction was first used
by Ohlson (1980). The bias on the estimators of the
Maximum Likelihood Method in the case of artificial
balancing of the sample and its non-random selection
was first described in the literature by Zmijewski
(1984).

2.1. Current methods and challenges

In order for standard statistical and econometric
models to produce the expected results, it is often
required to meet a number of assumptions, such as
the normality of the distribution, linear dependence,
the constancy of variance in time, or independence
of predictors in relation to each other, which, as it
turns out, is difficult to achieve in reality. Moreover,
in order to draw correct statistical inferences, it is
extremely important to know the functional form
of the process generating the data a priori, which is
often a problem that cannot be solved. The existing
limitations have led researchers to develop research
methodologies resulting in a number of machine
learning algorithms. As it turns out, modern methods
often show better predictive capabilities than typical
statistical models without requiring compliance with
restrictive assumptions. However, this is very often at
the expense of interpretability.

Zhang, Hu, Patuwo & Indro (1999) were among the
first to propose a feedforward multilayer perceptron
(MLP) neural network model to model the probability
of corporate bankruptcy. In terms of metric accuracy,
the neural network was found to be superior to the
logit model. Kim & Kang (2010) proposed two novel
approaches to modelling with MLP: bagging and
boosting, methods belonging to the ensembling
class. Both of these methods are based on training

multiple small and weak models (weak classifiers)
and combining them to produce more accurate and
robust predictions. AdaBoost, or decision trees with
only one stump trained in the boost system, also find
application in bankruptcy prediction (Heo & Yang,
2014). The results reported allow us to conclude
that the discriminatory model inspired by Altman’s
Z-score model has better predictive quality for small
companies in terms of both Type I and Type II errors.
The AdaBoost model was better in terms of Type I
errors for medium and large companies. Issues such as
imbalance of the training set (Veganzones & Séverin,
2018; Carmon, Climent & Momparler, 2019) and
the role of preprocessing (Wyrobek & Kluza, 2018;
Vellamcheti & Singh, 2020) were also emphasised in
previous studies. Son, Hyun, Phan & Hwang (2019)
reported significant gains in success metrics after
applying the Box-Cox power transformation (Box &
Cox, 1964). Pawełek (2019) examined the performance
of boosted decision trees in the context of outlier
observations. The solution to the outlier problem
proposed by Pawełek was to constrain the set with
appropriate quantiles from above and below but
only for observations that were assigned the label of
non-bankruptcy. The approach seems controversial
because in this way the model can build a decision
rule that assigns the bankrupt label based on the
determination of whether an observation is an outlier.
Given that the outlier reduction process took place
only on the training set, it can be concluded that the
results from the test set are still unbiased.

2.2. Articles of inspiration

Zięba, Tomczak & Tomczak (2016) addressed the
automation of feature generation in a boosted decision
tree algorithm (using XGBoost). The authors, Carmon
et al. (2019), took advantage of the ability to assign
importance to individual features using XGBoost.
From the features that exceeded the desired level of
importance, a discrete probability distribution was
created, and this importance was the probability
of a particular event occurring. Two features were
then drawn at random from the distribution created
and one from the basic arithmetic operations to be
performed on them. Obviously, the more trees built
within the algorithm, the more synthetic and less
interpretable the attributes became; however, the goal
was prediction, not inference.

The method presented by Hosaka (2019) consisted
in converting a vector of parameters to a greyscale

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 355

image using Monte Carlo simulation, which allowed
the arrangement of pixels, ie, representations of each
of the financial ratios disposed, in a two-dimensional
space taking into account their correlation with each
other, and then the training of a convolutional neural
network. The model proposed was compared with
the CART decision tree, discriminant function, SVM,
MLP, and AdaBoost. The highest ROC-AUC scores
were obtained for the convolutional neural network.

Szegedy et al. (2015) proposed a new order for
building convolutional neural networks – the inception
module. Normally, convolutional models are built in a
fairly uniform way: several convolutional layers are
followed by a pooling operation applied resulting in a
three-dimensional tensor, which at the end is flattened
to a one-dimensional vector to be connected to a
dense layer. The standard approach to achieving better
results when using neural networks is to build a wider
and deeper architecture, which is directly related to a
much higher computational cost; moreover, it often
results in over-fitting. The proposed inception blocks
allow a significant increase in the architecture while
reducing the computational cost.

When we review the literature, it is possible to
notice the recurrence of certain problems: a strong
imbalance, high correlation coefficient of predictors
and skewness of their distributions, the occurrence
of outliers, the curse of multidimensionality, the
lack of a defined framework of a good model and
data generating process. Researchers try to propose
solutions to the problems mentioned above, usually
bringing better results.

3. Methodology

The ignorance of the process generating the data – and
thus the inability to determine the causal influence
– force analysts to try to find the best possible
approximation of reality. Such an approximation, ie a
de facto model according to econometric procedures,
usually consists in determining the nearest truth
specification of a phenomenon according to beliefs (or
theories). These beliefs not only include explanatory
variables that have a potential influence on the variable
explained, an additional aspect is the functional
form of the phenomenon itself. Then, with the use
of statistical tools, the accuracy of beliefs is checked
by, among others, testing the significance of the
explanatory variables, correctness of functional form

or assumptions required for non-bias, consistency, or
the effectiveness of a given model. It can be argued
that model building involves approximation of a real
data generating process. However, the available tools
require a great deal of expertise and have a limited
spectrum of functional dependencies to be tested.
In response to the problems presented the solutions
discussed below have been developed.

3.1. Convolutional Neural Networks

A single input to the MLP model is a vector whose
components undergo transformations within each
neuron of the next layer. The values stored in the
hidden layer neurons are thus the features of the
given vector that the model learns during the training
process. If, on the other hand, the description of a
given observation has more than one axis, then it is
a matrix, and it cannot be directly reprocessed by the
MLP model. One solution is to flatten the matrix into
a vector. This solution has two major drawbacks, the
first being the high computational cost, since each
component must be concatenated with each neuron
of the neighboring layer. The second disadvantage
is the omission of the issue of the neighbourhood of
components in the model structure, which occurs
during the flattening operation. The drawbacks
mentioned become even more significant if the
representation of the observation is an image.

By convolving the image representation, ie
tensor A∈[0,255]∈Z

n
h

×n
w

×n
c, where n

h

×n
w

×n
c

 represents
the height, width, and number of channels of the
image through the filter, respectively; F∈R

f
h

×f
w

×n
c is

understood to be the conduct of operations:

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴𝐴𝐴,𝐹𝐹𝐹𝐹)𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 = 𝐴𝐴𝐴𝐴 ∗ 𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 = ���𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 ,𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥+𝑖𝑖𝑖𝑖−1,𝑦𝑦𝑦𝑦+𝑗𝑗𝑗𝑗−1,𝑘𝑘𝑘𝑘

𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐

𝑘𝑘𝑘𝑘=1

𝑓𝑓𝑓𝑓𝑤𝑤𝑤𝑤

𝑗𝑗𝑗𝑗=1

𝑓𝑓𝑓𝑓ℎ

𝑖𝑖𝑖𝑖=1

 ,

where x, y are the indices of the result of the operation,
ie the matrix A*F, n

c

 is the number of channels that
varies depending on the color palette of the image,
for RGB n

c

=3, for greyscale image n
c

=1. The operation
is possible only if the third dimension of tensor A is
equal to the third dimension of filter F and if the first
two dimensions of tensor A are not less than the first
two dimensions of filter F. The dimensions of the
result of this operation are (n

h

-f
h

+1,n
w

-f
w

+1). In the
convolutional layer, the parameters are the elements
of the filter F, and they are optimised analogously to
the dense network.

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 356

By default, the more convolutional layers the
network contains the smaller the height and width
of the returned volume and the larger the depth.
Reducing the first two dimensions is not always a
desirable effect; then the input tensor is complemented
with some constant, usually zeros, and this operation
is called padding. The order of padding is determined
by the p parameter; for p=1, a row is added from the top
and bottom, and a column from the top and bottom,
to make a ‘frame’. When p=1 is applied, the size of the
tensor A∈R

n
h

×n
w

×n
c is changed to (n

h

+2,n
w

+2,n
c

).

The last of the convolution layer hyperparameters
considered in this paper is the so-called stride (s) or
filter step. The stride significantly affects the size of
the output tensor, the final formula for the size of the
output feature map (total) is:

��
𝑐𝑐𝑐𝑐ℎ + 2𝑝𝑝𝑝𝑝 − 𝑓𝑓𝑓𝑓ℎ

𝑠𝑠𝑠𝑠 + 1� , �
𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤 + 2𝑝𝑝𝑝𝑝 − 𝑓𝑓𝑓𝑓𝑤𝑤𝑤𝑤

𝑠𝑠𝑠𝑠 + 1� , #𝐹𝐹𝐹𝐹� ,

where ⌊.⌋ means a rounding down operation.

The convolutional layer is thus used for direct
extraction of low-level features. A family of operations
is defined to aggregate these features (ie pooling).
Standard types of pooling are max pooling and
average pooling. Both versions rely on a mechanism
similar to convolution, ie, moving the filter along the
input tensor, with the difference that the filter does
not have weights updated in the learning process.

3.1.1. Inception module

A convolutional neural network has been used
with success in tasks in the area of image analysis
(Simonyan & Zisserman, 2014; Krizhevsky, Sutskever
& Hinton, 2012; Lin, Chen & Yan, 2013; LeCun et
al., 1998). These models typically use 3 × 3, 5 × 5 or
7 × 7 filters. An interesting approach is to use an
inception module. The inception module uses several
variants of layers simultaneously; originally, in the
paper by Szegedy et al. these were 1 × 1, 3 × 3, 5 × 5
and max pooling. The individual feature maps are
concatenated along a specific axis, so as mentioned in
the literature review, a correspondence between two
of the three dimensions of the concatenated tensors is
required. In order to achieve this correspondence, the
layers themselves (convolution and pooling) are used.
However, such a module scheme is computationally
very expensive; the remedy turns out to be the addition
of 1 × 1 convolutions before 1 × 1 and 5 × 5, and after

pooling, it is then possible to reduce the z-axis of the
output tensors, as reported by the authors without
significantly reducing the information held.

Figure 1. Naive Inception
Source: Own elaboration

Figure 2. Optimum Inception
Source: Own elaboration.

This study uses an optimised variant of the inception
module (Figure 2).

3.2. Validation methods

A key aspect of predictive modelling is the selection
of an appropriate model of validation method. The
basis of the division into training and test sets is
the consistency of the distributions of variables.
Particularly important in unbalanced classification
problems is to keep the label distributions as close as
possible during the division, in order to maintain the
desired properties instead of using random division a
layered division is used and this was done in this study.
A common division of data is 70% for training set, 20%
for validation set and 10% for test set. The problem
arises when few data are in the dataset, in which case
the validation and test sets may not be an adequate

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 357

representation of the population, especially in highly
unbalanced problems where only a few positive
labels – or in extreme cases none – may end up in the
test set. Furthermore, testing many combinations of
hyperparameters involves a risk of overfitting to the
validation set, in which case the results obtained may
be too optimistic. The solution to both problems is
K-fold cross-validation, or in the case of this study,
K-fold stratified cross-validation.

K-fold cross-validation, involves dividing the
training set into K subsets and training the model
K times. During one iteration, the kth set serves as
the validation set while the rest are used to train the
algorithm, thus obtaining K results, which are finally
averaged to estimate the generalisation ability of the
model. The premise of K-fold cross-validation is to use
each observation as a validation observation exactly
once. During the validation process, the separation
rules between training, validation, and test sets must
be respected, ie data transformations can take place
only on the basis of the training set characteristics and
their distributions must be as similar as possible to
each other. Layering is applied analogously.

In this study, it was decided to divide the dataset
into a training set (90%) and a test set (10%). A
6-fold stratified cross-validation procedure was then
performed on the training set, ie, in each iteration the
validation set was separated from the training set. In
the literature K is often stated to be 5–10. In general, the
higher the number of folds, the more robust the results.
Choosing K equal to 6 we gain a bit of the robustness
of results in relation to five folds not increasing the
cost of calculations too much (compared with 10
folds) at the same time. All data transformations
were performed inside the validation, except for
the removal of attributes with too many missing
values (completion was already done in the current
validation iteration, separately). The hyperparameters
of the random forest and boosted decision tree
(XGBoost) models were tuned using random search
after examining the sensitivity of a given algorithm to
a particular hyperparameter and narrowing the range
considered. During random search, hyperparameters
are randomised, then validation metrics are measured
and stored in the validation process, and finally a
configuration is selected as preferred. As the main
metric in this study is AUC-PR, it was the value of
this metric that was used to select the best model, in
addition, attention was also paid to overfitting, ie the
difference in performance between the training and
validation sets.

For neural network models, the hyperparameter
space is too large to rely on random search; in addition,
training and validating these models are much more
computationally expensive. The architecture and
hyperparameters of the neural networks were selected
based on experiments and analysis of the results
obtained (metrics, learning curves, early stopping) in
a 6-fold stratified cross-validation.

3.3. Specification of tested models

The sensitivity of each model type (logit, random
forest, XGBoost, MLP neural network, and CNN) to
preprocessing variant (raw data, normalised data, data
without outliers and normalised, data without outliers
after power transformation and normalised) and
hyperparameters was tested. If justified (appropriate
space of considered hyperparameters) a random
search was performed to find a quasi-optimal set of
them. If it was necessary (neural networks), learning
curves were analysed, both in terms of the best results
obtained with the use of early stopping, as well as the
shape of curves (desirable possibly smooth, monotonic
course and as little overtraining as possible).

The logistic regression model was considered in
four preprocessing variants: raw data, normalised data,
data without outliers and normalised, data without
outliers after power transformation and normalised.
The only hyperparameter tested was regularisation by
the L1 norm (𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿1(𝑊𝑊𝑊𝑊) = 𝜆𝜆𝜆𝜆� |𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘|

𝐾𝐾𝐾𝐾

𝑘𝑘𝑘𝑘=1
).

The random forest model proved to be resistant to
a variant of the data preprocessing, so it was decided
to treat it as a hyperparameter of the learning process
during random search. The sensitivity of the model
to changes in individual hyperparameters – maximum
tree depth, maximum number of features used in the
tree, minimum number of observations required to
perform division, minimum number of observations
in a leaf, the minimum number of observations
required to perform the division – was examined.

The method of data preprocessing was treated
as a hyperparameter also for the XGBoost model.
The optimisation of the hyperparameters followed
principles analogous to the procedure used for random
forests. The set of hyperparameters was as follows:
maximum tree depth, learning rate η, a fraction of the
rows used to train the tree, a fraction of the columns
used to train the tree, minimum loss function
reduction, a regularisation of L1, regularisation L2
(𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿2(𝑊𝑊𝑊𝑊) = 𝜆𝜆𝜆𝜆� (𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘)2

𝐾𝐾𝐾𝐾

𝑘𝑘𝑘𝑘=1
).The number of estimators was

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 358

calculated as the early stopping median of all validation
subsets.

Due to the similarity in the training process
between the MLP and CNN models, the procedure for
selecting the preprocessing variant, architecture, and
hyperparameters was analogous for the latter.

4. Results

4.1. Data

The dataset used in this study was created for the
article ‘Ensemble boosted trees with synthetic feature
generation in application to bankruptcy prediction’
(Zięba et al., 2016). The set was divided into five subsets:
bankruptcies at one-year, two-year, three-year, four-
year, and five-year horizons were analysed. The set
of explanatory variables includes 64 financial ratios
describing a company, while the objective variable
is the state of that company after the tth period,
bankrupt or not bankrupt, respectively. The data
come from the EMIS database, which contains, among
others, financial statements. The objects analysed are
Polish enterprises from the manufacturing sector, and
the time range is 2000–2013.

4.2. Analysis and preparation of data

for modelling

The main problems that had to be solved during data
analysis and modelling were a strong imbalance,
the presence of many data gaps and outliers, and the
skewness of the predictor distributions.1

Strong unbalancing compounds the problem of
insufficient set size. The number of bankrupts in the
validation and test sets would be too small to perform
a valid procedure. The solution is to use the area
under the precision-recall curve as the main metric
while monitoring the area under the ROC curve. The
problem of validation set counts was solved by using
a 6-fold cross-validation, and the disbalance required
stratified randomisation.

The procedure for dealing with missing data was
designed to preserve as many observations as possible.

1 Owing to the similarity of the analysis and preprocessing
process, it was decided to show details only for the one-
year prediction.

A gap-filling algorithm was implemented based on
random forests.

The problem of outliers was solved by constraining
the distributions of the predictors from above and
below with quantiles of order Q 0.005 and Q 0.995. The
skewness problem was also detected. Owing to the fact
that the variables analysed in this study are financial
ratios, ie, the condition of applicability of the Box-Cox
transformation, x>0, is not met, it was decided to use
its generalisation, the Yeo-Johnson transformation
(Yeo & Johnson, 2000).

Limiting distributions, power transformations,
and normalisation were the techniques that were used
to transform the input data for standard algorithms
that process vectors, as convolutional neural networks
require data in the form of matrices or tensors. A
method proposed by Hosaka (2019) to convert a
vector to an image was used. First, the vector had to
be converted to a matrix (greyscale), which would
eventually become an image. Then, an energy function
was defined in the form E=∑(i,j)∈ξ|ϕ[R(i),R(j)]|×d(i,j),
where i, j are indexes of matrix elements – image
pixels, d(i, j) is a measure of distance between pixels,
R(i) is a given attribute, ξ is a set of all possible
combinations of pairs of R(i) and R(j), and ϕ(∙) is a
correlation coefficient. The result of minimising this
function is a matrix (conversion formula) in which
the more correlated variables are closer together. The
solution to this task was obtained using Monte Carlo
simulation.

Square images were assumed to be generated, so
if the number of features did not have an equal square
root, a complement with a neutral shade of grey (128)
was applied. The algorithm was carried out only
on companies that were not labeled bankrupt; this
approach was also used by Hosaka (2019) arguing that
if a company is bankrupt, it is very possible that some
anomalies have been observed in it. In the creation
of a picture, the goal is to create a pattern that is as
structured as possible, which should be easier if
thriving units are considered. It is then assumed that
if the companies are from the same sector and there
are no anomalies, then the relationships between their
balance sheet items will be similar.

Owing to the fact that color saturation is coded
using integers in the range 0−255, the normalisation
method f:x∈R→Z∩[0,255] was required. The function
proposed by Hosaka (2019) was implemented:

𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 0 < 𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 �
𝑥𝑥𝑥𝑥 − 𝜇𝜇𝜇𝜇
𝜎𝜎𝜎𝜎 × 100 + 128� < 255 ,

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 359

where int(∙) is a function that returns the integer part
of a decimal number, 0<⋯<255 means the operation of
limiting to boundary values of 0 and 255.

If the observed value was higher than the mean,
then the corresponding pixel was brighter, while if
the value was lower than the mean, then the pixel was
darker. Convolutional neural networks perform better
for small floating point numbers; for this reason,
before they were passed to the model, the images were
scaled to the range [0,1] by dividing each element of
the matrix by 255.

The observations are described by 64-dimensional
vectors, which means that under the assumption of
generating square images, the conversion results were
images with a resolution of 8 × 8 pixels. To solve the
problem of small images, it was decided to implement
a procedure to automatically generate new attributes.
It allowed the resolution of the images to be increased
from 8 × 8 to 20 × 20 pixels.

4.3. Experiments in K-fold stratified

cross-validation

It was decided to run the experiments in a 6-fold
stratified cross-validation to select the best model in
its class (best logit, random forest, XGBoost, MLP,
CNN).

4.3.1. Conversion of the observation vector to image

This section presents the results of converting the
observation vector to an image, one bankrupt and
non-bankrupt case each for the quasi-optimised and
initialised variants, the 8 × 8 and 20 × 20 sizes for each
cross-validation fold in the one-year prediction. In
addition, results are presented depending on the data
preprocessing.

From Figure A1 in the Appendix, it is hard to see
the differences between bankrupt and non-bankrupt.
In fact, in most examples it is hard to distinguish
between the image before and after the optimisation
simulation, which was also reflected in the model
results. As it turned out, a technique that reduces the
tails of the distributions (see the results in Figure A2
in the Appendix) had a huge effect also during image
generation. The reduction of outliers has significantly
improved the quality of the generated images, and it is
now easy to see the differences between the initialised

image and the quasi-optimal image, especially in
the case of non-bankrupts (white spot in the upper
right corner for folds 1–4). Moreover, it is possible to
observe the difference between bankrupt and non-
bankrupt: the latter seems to be kept in a lighter tone,
which means higher than average values of the ratios.

Figure A3 in the Appendix shows the images
generated for data without outliers previously
transformed using the Yeo-Johnson transformation.
The difference is not as large as when the tails
of the distribution are truncated compared with
the raw data, but it is noticeable. After the power
transformation, the images become sharper, there is
less shading around 128, and as the experiments have
shown, models trained on such prepared data perform
better. It is worth pointing out a common feature of
all the 8 × 8 images presented, a grey bar built of five
pixels in the lower right corner of the images. This is
the previously mentioned effect of complementing the
incomplete square root of the number of features with
a neutral shade of grey (128).

Figure A4 in Appendix shows images created from
only normalised data of size 20 × 20, ie, after generating
artificial variables. Similar to the 8 × 8 images, this
variant of preprocessing results in low information
images with the difference that it is easier to see the
optimisation results in the enlarged image.

Similar to the 8 × 8 images, the application of the
outlier reduction technique significantly improved
the quality of the generated 20 × 20 images. Bankrupts
and non-bankrupts can be easily distinguished in
the examples presented. Non-bankrupts are usually
characterised by a white spot in the upper right corner
and lighter shades of the whole image. Bankrupts,
on the other hand, do not present a visible pattern
even after optimisation, which is consistent with the
hypothesis that financial anomalies occur in poorly
performing companies.

After applying the power transformation, much
sharper 20 × 20 images were obtained, as in the case
of 8 × 8, for which there are fewer neutral shades close
to saturation 128. The difference between bankrupt
and non-bankrupt in this case is even more apparent,
similarly with the effect of the optimisation algorithm.
The results are shown in Figure A6 in the Appendix.

Thus, it can be concluded that the proposed data
transformations significantly affected the quality of the
generated images: the more elaborate the procedure the
better the results, and the better the images the better
the scores of the CNN model metrics, as it turns out.

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 360

4.3.2. Models

The sensitivity of investigated models to preprocessing
variants and hyperparameters was tested.

In the logistic regression model normalisation
did not affect the results (the exception was model
convergence each time). After we applied the outlier
reduction method and normalisation, an increase
in AUC-PR was detected for the model without
regularisation. When the power transformation
was added, a significant improvement in AUC-PR
and AUC-ROC was observed. For the random forest
model the best results were obtained using the
method of reducing the tails of the distribution and
normalisation. In case of the XGBoost the number
of estimators was calculated as the early stopping
median of all validation subsets. The best results were
achieved on normalised data without outliers.

Figure A7 in Appendix shows the learning process
of a feedforward neural network example. The graphs
presented confirm the conclusions drawn by Son et al.
(2019) about the improved results after the application
of the power transformation. Furthermore, one
can see the huge impact of applying normalisation
– smoothing and increasing learning curves and
much higher results (+ 0.18 on the AUC-PR metric).
Subsequent components of the data preprocessing
procedure turned out to be accurate: outlier reduction
is a + 0.09 gain and + 0.05 after applying the power
transformation. The results shown in the legend of
each graph are the effect of early stopping, indicated by
the red dot. From the results of this experiment, it was
decided to build MLP models on the fully preprocessed
data. The final MLP model is a two-layer model with
60 neurons, a dropout of 0.4, and regularisation of L1 =
0.00005 in each hidden layer. The activation functions
are the hyperbolic tangent and sigmoid, respectively.
It is worth mentioning that different functions were
tested, including tanh, sigmoid, linear, ReLU, SELU,
and PReLU, on both layers. For ReLU and PReLU, for
instance, the lowest values of AUC-ROC and AUC-PR
metrices were achieved. When the linear function
was applied, the learning curves were non-monotonic.
Given the tests, we choose tanh, ensuring high results,
and the sigmoid function, ensuring smoothed curves.

The model was trained in batches of 394
observations each for 5,000 epochs using the Adam
algorithm with standard hyperparameters. The results
obtained by the MLP model are simply spectacular –
AUC-PR = 0.712 (0.238 overfitting), AUC-ROC = 0.93
(0.07 overfitting).

Due to the similarity in the training process
between the MLP and CNN models, the procedure
for selecting the preprocessing variant, architecture,
and hyperparameters was analogous for the latter.
The learning curves presented in Figure A8 a–c in
the Appendix also illustrate the positive relationship
between the complexity of the data preprocessing
procedure and the results (AUC-PR). In this case,
however, it should be emphasised that the preliminary
experiments were conducted on an architecture that
turned out to be fundamentally different from the
optimal one. In addition, the CNN model presented
was trained with only 100 epochs while the MLP was
trained with 400. The model whose learning process
is illustrated in graphs a–c of Figure A8 in Appendix
consists of two consecutive convolutional layers
(same) 3 × 3; #F are 32 and 64 respectively, the next
layers are average pooling 2 × 2, p = 0, and convolution
(same) 1 × 1 with 32 filters, all flattened and passed
to a dense two-layer network (512,256 neurons). The
convolutional layer activations are ReLU functions
and dense sigmoid, and the optimiser is RMSprop
(Hinton, Srivastava & Swersky, 2012) with standard
hyperparameters. The input data are 8 × 8 images.
For comparison, Figure A8 d in the Appendix shows
the learning curves for the same validation division
with full preprocessing and the best architecture
found (inception blocks, see Table 2 for details). The
model in Figure A8 d was trained at 450 epochs, so
the comparison with graphs a–c is the progress of
graph d up to 100 epochs. Model d reached lower
metrics after 100 epochs, but the observed learning
curves are almost perfectly smooth and increasing,
which justifies training the model on a larger number
of epochs. Ultimately, model d achieved noticeably
higher metrics, much lower overtraining, and its
training process was not objectionable.

In most of the prediction horizons, the architecture
based on inceptive blocks turned out to be the best. As
a rule, we searched for the best possible network for
8 × 8 images; then new variables were generated, and
the process of searching for architecture for models
trained on 20×20 images was started by checking the
best architecture for models trained on 8 × 8 images.
During the experiments in the one-year horizon, it
turned out that there was no sense testing a separate
architecture for models taking into account a larger
number of features – the process was computationally
very time-expensive and did not bring any noticeable
results. Thus, the 20 × 20 models in the sense of
architecture from the 8 × 8 models differ only in the
dimensions of the output tensors of the individual

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 361

layers and the differences between the dimensions
of the input tensors. For the one-year horizon, the
application of the image magnification method did
not improve the results; the results obtained were
AUC-PR 0.541 (0.233 overfitting) and AUC-ROC
0.881 (0.074 overfitting). However, fewer epochs were
generally needed to achieve similar metric values
(Table 2), and the learning curves were even smoother.

Table 1 shows the results of the cross-validation
performed for the logistic regression for each of the
predictive horizons analysed. The numbers presented
are the average of all validation splits, and the models
were trained each time on data without outliers, after
power transformation, and normalised. In the context
of the AUC-PR metric, it should be emphasised that
the naive classifier (ie assigning a label of 1 to each
observation) achieves a result equal to the sample
balance. An exception to the decreasing relationship
between the results and the prediction horizon is the
last, five-year horizon. However, in the analysis of the
results, it is worth noting not only the absolute values
of the metrics, but also the difference between them
and the metrics of the naive classifier, ie, the sample
balance in the case of AUC-PR and the value of 0.5
in the case of AUC-ROC. The longer the prediction
horizon, the more difficult the task, not only because
of the less informative predictors, but also because
of the decreasing balance. When a proper data
preprocessing method is applied, logistic regression
achieves really good results. What is extremely
noticeable, however, is the increased difficulty when
the time horizon is extended: one more year equals
almost twice the AUC-PR results. On the AUC-ROC
metric, admittedly there is also a noticeable decrease,
but it is much lower relative to the naive classifier
(model added value) than in the case of AUC-PR,
which confirms the validity of using the latter metric
as the main one. In addition, the very low overtraining
of the models (especially compared with the more
comprehensive ones) should be noted.

The results of the random forest validation are
presented in Table 1. Increasing the prediction horizon
significantly decreased the metrics, the exception
to their negative relationship being the four-year
horizon. The values of the hyperparameters found
using the random search are worth noting; they are
very similar between horizons. Random forests proved
to be a much better model than logit in terms of both
AUC-PR and AUC-ROC but much more overfitted.
As mentioned earlier, the data preprocessing variant
for decision tree-based models was treated as a

hyperparameter, and so q stands for outlier reduction
(limiting distributions with quantiles of order Q 0.005
and Q 0.995), p stands for power transformation, and n
is normalisation. The use of more than one method
is denoted by +, and the absence of any method is
denoted by -.

XGBoost is the model that is often indicated as the
best in the literature, and its cross-validation results
are presented in Table 1. XGBoost performed much
better than logit and random forest. In the context
of the area under the ROC curve, noticeably worse
results were obtained compared to Zięba et al. (2016).
The hyperparameters found by a random search,
as with random forest, are very similar between
horizons. However, the models presented differ in the
parameters responsible for regularisation (γ, L1, L2).
There is no relationship between the lengthening of
the time horizon and the optimal number of estimators
(early stopping, line median of estimators), the fastest
peak was reached for the one-year horizon. XGBoost
also generally exhibits less overtraining than random
forests, which is certainly a result of the model’s
inclusion of regularisation components. In addition,
the relatively high optimal fraction of columns, or
attributes in each case, suggests the possibility of using
variables that are even strongly correlated. XGBoost is
the model that most often performed best on raw data.

Very good results were obtained for the MLP
model in particular in view of the results reported
by Zięba et al. (2016) for models of this class –
0.514–0.699 AUC-ROC, which means that in some
cases the models built differed little in performance
from the naive classifiers. The models presented in
this study were found to be comparable with the best
XGBoost models from the reference study in terms
of AUC-ROC (ie, the best models from that study).
Extremely high results (the highest of all models) were
obtained primarily in the main metric: AUC-PR, for
the one-year horizon, the model on average (in the
context of the cut-off threshold) correctly classified
significantly more than 2/3 of bankrupts while noting
very high AUC-ROC. The huge impact of using the full
preprocessing procedure should be emphasised here,
as on normalised data the best MLP model obtained
an AUC-PR of 0.457, which is an even larger gain than
in the reports of Pawełek (2019) and Son et al. (2019).
The results presented in Table 2 were achieved after
applying the full preprocessing procedure, ie, q + p + n.
Moreover, the dense neural network has much lower
overfitting than decision tree-based models. The
models built for different horizons are very similar,

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 362

and in three cases the only difference is the number of
epochs (1, 2, 5 years). The convention for presenting
the neural network architecture is as follows: +
denotes the presence of a layer in a given model,
and early stopping denotes the median of the epochs
in which the best AUC-PR results were achieved in

cross-validation. Optimisers were run with the default
hyperparameters of the keras library.

The results and architecture of convolutional
neural networks built for 8 × 8 images, ie, without
artificial variable generation, are presented in Table
2. CNN models are more different from MLP models;

Table 1. Hyperparameters and results for the best models, all horizons

Model Horizon (balance) 1 year
(6.94%)

2 years
(5.25%)

3 years
(4.71%)

4 years
(3.93%)

5 years
(3.86%)

Logit λ 1 0.08 0 0.05 0.03

Results

AUC-PR 0.497 0.28 0.251 0.221 0.27

overfitting PR 0.05 0.067 0.035 0.07 0.075

AUC-ROC 0.852 0.782 0.762 0.726 0.764

overfitting ROC 0.003 0.022 0.03 0.04 0.036

Random
forests

max depth 12 12 13 12 8

max number of characteristics 52 58 54 55 33

min observations to divide 4 18 8 10 5

min observations in the leaf 4 17 6 9 4

number of trees 200 200 200 600 100

preprocessing q+n p+n - q+p+n p+n

Results

AUC-PR 0.535 0.337 0.284 0.292 0.264

overfitting PR 0.416 0.412 0.67 0.603 0.564

AUC-ROC 0.89 0.84 0.829 0.817 0.795

overfitting ROC 0.1 0.1367 0.168 0.175 0.192

XGBoost max depth 6 7 5 5 4

learning rate η 0.08 0.03 0.07 0.1 0.07

column fraction 0.8 0.8 1 0.8 0.9

raw fraction 0.9 0.9 0.9 0.9 0.8

loss reduction γ 3 5 0.08 4 2

regularisation L1 0.4 1 1 0.4 0.1

regularisation L2 0.4 0.2 0 1 0.3

preprocessing q+n - q+n - n

estimators median 122 271 209 246 164

Results

AUC-PR 0.596 0.411 0.39 0.392 0.355

overfitting PR 0.392 0.52 0.598 0.571 0.54

AUC-ROC 0.909 0.869 0.864 0.86 0.835

overfitting ROC 0.09 0.124 0.136 0.137 0.145

Source: Authors’ calculations

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 363

in the case of the three-year horizon the architecture
used is fundamentally different from the rest. The
concept of this model is based, among others, on
the models of AlexNet (2012), VGG (2014) or the
article ‘Network in network’ (2013), while the rest
is built on inception modules and the GoogLeNet
model (Szegedy et al., 2015). The first submodule
of the inception module is always formed by a 1 × 1
convolution layer, the second one is a 3 × 3 convolution
preceded by a 1 × 1 convolution, the third one is a 5 ×
5 convolution preceded by a 1 × 1 convolution, and the
last, the fourth one, is a max pooling layer followed
by a 1 × 1 convolution (optimised inception module,
Figure 2). The structure of the modules is shown as
follows: F1 denotes the number of filters of the first
submodule, the subscripts denote the subsequent
submodules (digit), and in and out denote the number
of filters of the 1 × 1 convolution and the following
‘main’ convolution, ie 3 × 3 or 5 × 5, respectively. The
padding from the definition of the inception module is
always the same, the stride is 1 × 1, and the activation
function is always the same. The number of filters is
not given in pooling layers because it results from the
number of channels of the input tensor. Relative to
the MLP models, the CNNs performed much worse
but much faster in terms of the number of epochs (in
the time dimension, the MLP models trained faster
than the CNN models – no GPU). The 8 × 8 model
performed satisfactorily, generally ranking behind
MLP and XGBoost and ahead of random forests and
logit (AUC-PR). For the three-year horizon, the CNN
model built for the 8 × 8 data even performed slightly
better than XGBoost (AUC-PR). As the prediction
horizon increased, the overfitting also increased
dramatically.

The results of the convolutional neural networks
trained on 20 × 20 data, ie, after generating artificial
variables, are reported in Table 2. Since these models
have an architecture analogous to the 8 × 8 models,
the presentation has been simplified by considering
only the relevant details. It can be concluded that
the proposed method of image enlargement turned
out to be successful; beyond the one-year horizon, an
increment of results was recorded, and for the two-,
four- and 5-year horizons, the increment turned out
to be statistically significant at the 10% level (test for
equality of median AUC-PR validation splits with the
alternative of superiority of the 20 × 20 model). In
terms of the AUC-PR metric, the CNN models after
the variable generating technique were even superior
to the XGBoost models for 2-, 3-, and 4-year horizons
and also recording lower overtraining. Moreover, at the

expense of higher overfitting, the maximum results in
the context of epochs were achieved even faster than
in models with fewer features. On the test sets it was
decided to test only one type of convolutional neural
networks, the decision whether it was an 8 × 8 or 20 ×
20 variant was made on the basis of Wilcoxon tests: if
the increment of metrics caused by the generation of
new variables was statistically significant at the 10%
level then the more comprehensive model was chosen.

4.4. Results on the test set

We present the results of the best-in-class models
(best logit, random forest, XGBoost, MLP, and CNN)
trained on the entire training sample, the data used
to train and validate the individual models in the
previous subsections. The hyperparameters and
architecture of the models are presented in Tables
1 and 2. The test data were processed separately for
each model considering the components by which
the results presented in the previously mentioned
tables were obtained, using the characteristics of the
training data.

The graphs presented in Figure 3, in addition to
the results of the trained models – the curves and the
areas below them (legend) – also contain information
about the results that would be obtained from a
naive classifier, ie one that assigns each observation
a bankrupt label. This makes it possible to quantify
the number of dependencies that the model actually
learned. It turns out that the results obtained in some
cases differ from those obtained in cross-validation,
with generally higher results obtained on the test
set. The differences between the validation and test
results may suggest that too few data were used as a
test set. However, owing to the huge imbalance and
the number of observations, it was considered better
that more data were used for training and validation.
It can be surmised that generally higher test metrics
are the result of the strategy adopted, and by doing
the opposite there would be a risk of undertraining
the models. The biggest surprise is the positive
deviation of the PR curves for the four-year horizon.
As expected, the MLP models outclassed all others in
terms of the area under the PR curve at almost every
prediction horizon, recording excellent precision
for horizons 1–3 for the longest time. The excellent
precision of the logit at the 5-year horizon, which is
maintained for the longest time, is also a surprise.
The convolutional neural network model in the 20 ×
20 variant maintained excellent precision the longest

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 364

Table 2. MLP and convolutional neural networks: hyperparameters and results for best networks, all horizons

Network Horizon (balance) 1 year
(6.94%)

2 years
(5.25%)

3 years
(4.71%)

4 years
(3.93%)

5 years
(3.86%)

MLP neural
networks

Architecture

dense layer + + + + +

neurons 60 60 60 60 60

activation tanh tanh tanh tanh tanh

dropout 0.4 0.4 0.4 0.4 0.4

regularisation L1 0.00005 L1 0.00005 L2 0.00005 L1 0.00005

dense layer + + + + +

neurons 60 60 60 60 60

activation sigmoid sigmoid sigmoid sigmoid sigmoid

dropout 0.4 0.4 0.4 0.4 0.4

regularisation L1 0.00005 L1 0.00005 L2 0.00005 L1 0.00005

dense layer + + + + +

Neurons 1 1 1 1 1

activation sigmoid sigmoid sigmoid sigmoid sigmoid

early stopping 4,873 3,972 4,892 6,843 7,243

batch size 394 394 394 394 394

Optimiser Adam Adam Adam Adam Adam

Results

AUC-PR 0.717 0.611 0.632 0.629 0.519

overfitting PR 0.238 0.214 0.35 0.282 0.34

AUC-ROC 0.929 0.895 0.9 0.909 0.883

overfitting ROC 0.065 0.079 0.098 0.085 0.106

8×8
convolutional
neural
networks

Architecture

inception module + + - + +

 #F1 4 4 4 4

 #F2in/#F2out 1/4 1/4 1/4 1/4

 #F3in/#F3out 1/4 1/4 1/4 1/4

 #F4out 4 4 4 4

Activation ReLU ReLU ReLU ReLU

inception module + + - + +

 #F1 8 8 8 8

 #F2in/#F2out 4/8 4/8 4/8 4/8

 #F3in/#F3out 4/8 4/8 4/8 4/8

 #F4out 8 8 8 8

Activation ReLU ReLU ReLU ReLU

Convolution - - + - -

Size 3 × 3

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 365

Network Horizon (balance) 1 year
(6.94%)

2 years
(5.25%)

3 years
(4.71%)

4 years
(3.93%)

5 years
(3.86%)

8×8
convolutional
neural
networks

 #F 32

Padding same

Stride 1 × 1

Activation ReLU

Convolution - - + - -

Size 3 × 3

#F 64

Padding same

Stride 1 × 1

Activation ReLU

Max pooling - - + - -

Size 2 × 2

Padding Valid

Stride 2 × 2

Convolution - - + - -

Size 1 × 1

#F 32

Stride 1 × 1

Activation ReLU

Average pooling + + - + +

Size 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2

Padding valid valid valid valid

Stride 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2

flatten layer + + + + +

dense layer + + + + +

Neurons 256 256 512 256 256

Activation ReLU ReLU sigmoid ReLU ReLU

Dropout 0.4 0.4 0.4 0.4

regularisation L1 0.000025 L2 0.00005 L2 0.00005 L2 0.0001 L2 0.00005

dense layer - - + + -

neurons 256 128

activation sigmoid ReLU

dropout

regularisation L2 0.00005 L2 0.00005

dense layer + + + + +

neurons 1 1 1 1 1

activation sigmoid sigmoid sigmoid sigmoid sigmoid

Continued

Table 2. MLP and convolutional neural networks: hyperparameters and results for best networks, all horizons

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 366

for the four-year horizon. The MLP model (best
results of AUC-PR for each horizon and AUC-ROC
for horizons 1–3) should undoubtedly be considered
the best model for the set analysed for the purpose of
this paper, preprocessing proved to be crucial. Thanks
to outlier reduction technique, power transformation
and normalization it was possible to train the model
for many epochs, which with smooth and increasing
learning curves affected the results very positively.
With the exception of the five-year horizon, logistic
regression turned out to be the worst model (the
lowest AUC-PR results from the two–four year
horizon and AUC-ROC every time). It is worth noting
that decision tree-based models proved to be resistant
to the preprocessing variant used, which resulted in
second-to-last results for random forests compared
with significant improvements for all other models.
XGBoost ranked near the top despite its resistance to
transformations of the predictor distributions. While
feedforward neural networks are undoubtedly the
best model, identifying the second-best algorithm is a
difficult task, because depending on the time horizon,
XGBoost and convolutional neural networks were
alternately better.

In response to the main research question,
convolutional neural networks, despite the fact that

they were not created for modelling cross-sectional
tabular data, do really well, recording some of
the leading results. The undoubted advantage of
convolutional models is the possibility to look at the
analysis and presentation of data in a different way,
because it is much easier for humans to analyse images
than tables. The disadvantage of convolutional models
in the context of this study is the need to spend a lot
of time on data processing, development of vector-
to-image conversion methods and their computation,
and the selection of appropriate architecture and
hyperparameters. The presented vector-to-image
conversion method, along with the algorithm
generating new predictors, seems to be suitable and
perhaps would also find application in fields other
than corporate bankruptcy prediction. The XGBoost
model is definitely advantageous, owing to its ease of
application, construction, and optimisation. Of course,
during the development of the models presented, it was
not possible to use GPUs, which would significantly
speed up the process of training convolutional
networks, perhaps making them competitive in this
field. Before we started this work, it was expected
that by extending the prediction horizon, the results
would be weaker and weaker. In the context of the
results obtained, this hypothesis cannot be confirmed,
because it turns out that the amount of information

Network Horizon (balance) 1 year
(6.94%)

2 years
(5.25%)

3 years
(4.71%)

4 years
(3.93%)

5 years
(3.86%)

8×8
convolutional
neural
networks

early stopping 418 350 112 220 326

batch size 394 394 394 394 394

optimiser Adam Adam RMSprop Adam Adam

Results

AUC-PR 0.547 0.393 0.392 0.342 0.306

overfitting PR 0.219 0.404 0.43 0.414 0.392

AUC-ROC 0.885 0.828 0.84 0.814 0.793

overfitting ROC 0.07 0.147 0.136 0.156 0.169

20 × 20
convolutional
neural
networks

early stopping 189 157 137 155 239

Results

AUC-PR 0.542 0.456 0.401 0.394 0.345

overfitting PR 0.233 0.447 0.489 0.576 0.553

AUC-ROC 0.881 0.846 0.837 0.847 0.811

overfitting ROC 0.074 0.143 0.152 0.151 0.173

Source: Authors’ calculations

Continued

Table 2. MLP and convolutional neural networks: hyperparameters and results for best networks, all horizons

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 367

that can be extracted from the financial indicators
on the probability of bankruptcy of the company is
much greater than assumed and goes beyond a linear
analysis in relation to the parameters.

5. Conclusion

Modelling the likelihood of corporate bankruptcy
using financial indicators is definitely a difficult topic
but one worthy of attention. Research in this area may
be of interest to state decision makers, economists,
investors, entrepreneurs, and due to the specificity of
the phenomenon, also to specialists in data analysis.

Early detection of a potential bankrupt can save many
fatal situations such as increased unemployment or
loss of capital; on the other hand such a possibility
creates opportunities for market speculators and
allows effective control by the state by stimulating
appropriate economic sectors. The lack of a real
process generating data excludes the possibility of
correct causal inference, which increases interest in
models treated in other fields as ‘black boxes’, because
all the attention is focused on prediction. This state
of affairs focuses researchers on methodology, which
contributes to the development of novel methods
of analysis. Although there is no data generating
process between financial indicators and bankruptcy
probability, the correlation between these variables

(a) 1-year horizon (b) 2-year horizon

(c) 3-year horizon (d) 4-year horizon

(e) 5-year horizon

Figure 3. PR and ROC curves for all prediction horizons, test data
Source: Authors’ calculations

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 368

is evident. Some of the indicators fit directly into
the definition of bankruptcy (for example, debt or
liquidity ratios).

The right approach seems to be to treat the
problem as a binary classification, distinguishing
only the state of formal bankruptcy and the entity
constantly prospering.

The fundamental problems indicated in the
literature and detected in this study include the strong
skewness of the label distribution, the presence of
many missing data, outliers, the insufficient number
of observations, and the skewness of the predictor
distributions. The class imbalance was resolved
by using appropriate success metrics (precision-
recall curve and the area under it) and stratified
randomisation to training, validation, and test
sets. The problem of the insufficient number of
observations was solved by using a 6-fold stratified
cross-validation and simulating a real production
process (separating the test set and excluding it from
the analyses). Missing data were supplemented with
the author’s algorithm based on random forests,
which seems to be a slightly more sophisticated
method than median supplementation, and due to the
small number of observations their removal should
not be considered at all. Addressing the problems of
outliers and skewness of the predictor distributions
proved crucial. Outliers were reduced using a
method that consisted of limiting the top and bottom
distributions (0.5%); this limitation did not consist of
removing observations, but of assigning a boundary
value to a given attribute if it exceeded the boundary
value. Owing to the skewness of distributions, a
generalisation of the Box-Cox transformation, ie
the Yeo-Johnson transformation was applied. The
result of applying data preprocessing methods was a
significant improvement of the obtained results, both
in terms of models and generated images.

The main conclusion of the study is that
convolutional neural networks, after appropriate
data preparation, can be successfully used to analyse
cross-sectional tabular data, especially in the problem
of modeling the probability of corporate bankruptcy.
The second, very important conclusion is the necessity
of using appropriate preprocessing techniques in
order to achieve good results with models based on
parameters updated with a gradient – neural networks
and logit. At the same time, models based on decision
trees proved to be insensitive to the applied data
transformations.

References

Altman, E. I. (1968). Financial ratios, discriminant
analysis and the prediction of corporate bankruptcy.
The Journal of Finance, 23(4), 589–609

Box, G. E., Cox, D.R. (1964). An analysis of
transformations. Journal of the Royal Statistical Society:

Series B (Methodological), 26(2), 211–243

Chen, M. Y. (2011). Predicting corporate financial
distress based on integration of decision tree
classification and logistic regression. Expert Systems

with Applications, 38(9), 11,261–11,272

Heo, J., & Yang, J. Y. (2014). AdaBoost based
bankruptcy forecasting of Korean construction
companies. Applied Soft Computing, 24, 494–499

Hinton, G., Nitish S. & Swersky K. (2012). Divide
the gradient by a running average of its recent
magnitude. Coursera: Neural Networks for Machine

Learning. Technical Report.

Hosaka, T. (2019). Bankruptcy prediction using
imaged financial ratios and convolutional neural
networks. Expert Systems with Applications, 117, 287–299

Kim, M. J., & Kang, D. K. (2010). Ensemble with
neural networks for bankruptcy prediction. Expert

Systems with Applications, 37(4), 3,373–3,379

Krizhevsky, A., Sutskever, I., & Hinton, G. E.
(2012). Imagenet classification with deep convolutional
neural networks. Advances in Neural Information

Processing Systems, 25, 1,097–1,105

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P.
(1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 2278-2324

Lin, M., Chen, Q., & Yan, S. (2013). Network in
network. arXiv preprint arXiv:1312.4400. 57

Ohlson, J. A. (1980). Financial ratios and the
probabilistic prediction of bankruptcy. Journal of

Accounting Research, 109–131

Pawełek, B. (2019). Extreme Gradient Boosting
Method in the Prediction of Company Bankruptcy.
Statistics in Transition. New Series, 20(2), 155–171

Simonyan, K., & Zisserman, A. (2014). Very
deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556

Son, H., Hyun, C., Phan, D., & Hwang, H. J. (2019).
Data analytic approach for bankruptcy prediction.
Expert Systems with Applications, 138, 112,816

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 369

Szegedy, C. et al. (2015). Going deeper with
convolutions. Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 1–9

Tomczak, S. (2014). Comparative analysis of
liquidity ratios of bankrupt manufacturing companies.
Business and Economic Horizons, 10(3), 151–164

Tomczak, S. (2014). Comparative analysis of
the bankrupt companies of the sector of animal
slaughtering and processing. Equilibrium. Quarterly

Journal of Economics and Economic Policy, 9(3), 59–86

Tomczak, S. (2014). The early warning system.
Journal of Management and Financial Sciences, 7(16),
51–74

Veganzones, D., & Séverin, E. (2018). An
investigation of bankruptcy prediction in imbalanced
datasets. Decision Support Systems, 112, 111–124

Vellamcheti, S., & Singh, P. (2020). Class Imbalance
Deep Learning for Bankruptcy Prediction. In 2020 First

International Conference on Power, Control and Computing

Technologies (ICPC2T), 421–425. IEEE

Wyrobek, J., & Kluza, K. (2018). Efficiency of
gradient boosting decision trees technique in Polish
companies’ bankruptcy prediction. In International

Conference on Information Systems Architecture and

Technology, 24–35

Yeo, I. K., & Johnson, R. A. (2000). A new family
of power transformations to improve normality or
symmetry. Biometrika, 87(4), 954–959

Zhang, G., Hu, M. Y., Patuwo, B. E., & Indro, D.
C. (1999). Artificial neural networks in bankruptcy
prediction: General framework and cross-validation
analysis. European Journal of Operational Research, 116(1),
16–32

Zięba, M., Tomczak, S. K., & Tomczak, J. M.
(2016). Ensemble boosted trees with synthetic features
generation in application to bankruptcy prediction.
Expert Systems with Applications, 58, 93–101

Zmijewski, M. E. (1984). Methodological issues
related to the estimation of financial distress prediction
models. Journal of Accounting Research, 59–82

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 370

Appendix

1

Figure A1. 8 × 8 images, raw data, normalised, validation, one-year horizon.

(a) fold 1 (b) fold 2

(c) fold 3 (d) fold 4

(e) fold 5 (f) fold 6

Source: Authors’ calculations.

Figure A1: 8 × 8 images, raw data, normalised, validation, one-year horizon
Source: Authors’ calculations

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 371

2

Figure A2. 8 × 8 images, outlier-free, normalised, validation, one-year horizon.

(a) fold 1 (b) fold 2

(c) fold 3 (d) fold 4

(e) fold 5 (f) fold 6

Source: Authors’ calculations.

Figure A2: 8 × 8 images, outlier-free, normalised, validation, one-year horizon
Source: Authors’ calculations

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 372

3

Figure A3. 8 × 8 images, outlier-free, power transformation, normalised, validation, one-year
horizon.

(a) fold 1 (b) fold 2

(c) fold 3 (d) fold 4

(e) fold 5 (f) fold 6

Source: Authors’ calculations.

Figure A3: 8 × 8 images, outlier-free, power transformation, normalised, validation, one-year horizon
Source: Authors’ calculations.u

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 373

4

Figure A4. 20 × 20 images, raw data, normalised, validation, one-year horizon.

(a) fold 1 (b) fold 2

(c) fold 3 (d) fold 4

(e) fold 5 (f) fold 6

Source: Authors’ calculations.

Figure A4: 20 × 20 images, raw data, normalised, validation, one-year horizon
Source: Authors’ calculations

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 374

5

Figure A5. 20 × 20 images, data without outliers, normalised, validation, one-year horizon.

(a) fold 1 (b) fold 2

(c) fold 3 (d) fold 4

(e) fold 5 (f) fold 6

Source: Authors’ calculations.

Figure A5: 20 × 20 images, data without outliers, normalised, validation, one-year horizon
Source: Authors’ calculations

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 375

6

Figure A6. 20 × 20 images, outlier-free, power transformation, normalised, validation, one-year
horizon.

(a) fold 1 (b) fold 2

(c) fold 3 (d) fold 4

(e) fold 5 (f) fold 6

Source: Authors’ calculations.

Figure A6: 20 × 20 images, outlier-free, power transformation, normalised, validation, one-year horizon
Source: Authors’ calculations

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 376

(a) raw data (b) normalised data

(c) outlier-free data, normalised (d) outlier-free data, power transformation, normalised

Figure A7: Learning curves depending on the variant of preprocessing with early stopping
for the MLP model example.
Source: Authors’ calculations

 CEEJ • 8(55) • 2021 • pp. 352-377 • ISSN 2543-6821 • DOI: 10.2478/ceej-2021-0024 377

(a) normalised data, inadequate architecture (b) outlier-free data, normalised, inadequate
architecture

(c) outlier-free data, power transformation, normalised, (d) outlier-free data, power transformation, ,
inadequate architecture normalised,appropriate architecture

Figure A8: Learning curves depending on the variant of preprocessing with early stopping
for CNN model examples
Source: Authors’ calculations

