Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2025 | 12 | 59 | 120-137

Article title

Possibilities of Using Decision Support Systems for Agriculture in Areas with High Agrarian Fragmentation

Authors

Content

Title variants

Languages of publication

Abstracts

EN
The capabilities of farms often limit the possibility of using technologically advanced agricultural digital solutions. However, the experience of many countries shows that several easily accessible digital solutions can bring results in the form of optimising agricultural production processes. Hence, the research aimed to recognise the usefulness of digital solutions for systems supporting decision-making in farms operating in areas with sizeable agrarian fragmentation and to determine the barriers to their implementation. In order to achieve the research objective, the survey questionnaire method was used-389 farms from the Małopolskie and Podkarpackie voivodeships (areas with the most significant scale of agrarian fragmentation in Poland) were examined. The study showed that 34% of the surveyed farms used at least one technology that can be classified as a decision-support system. Financial constraints, insufficient equipment, and insufficient IT knowledge were indicated as the most critical barriers to their use. From the perspective of the surveyed farms, the functions of the systems above considered to be the most useful were the possibility of estimating resource consumption, the possibility of receiving information on the occurrence of the risk of plant diseases and access to an accurate weather forecast for individual agricultural plots. It is worth noting that respondents noticed the usefulness of the systems mentioned above in the remote exchange of information.

Year

Volume

12

Issue

59

Pages

120-137

Physical description

Dates

published
2025

Contributors

  • Szkoła Główna Gospodarstwa Wiejskiego

References

  • Ara, J., Turner, L., Harrison, M. T., Monjardino, M., deVoil, P., & Rodriguez, D. (2024). Application, Adoption and Opportunities for Improving Decision Support Systems in Irrigated Agriculture: A Review. Agricultural Water Management, 257, 1–16. https://doi.org/10.1016/j.agwat.2021.107161
  • Balkrishna, B. B., & Desmukh, A. A. (2017). A Study on Role of Social Media in Agriculture Marketing and its Scope. Global Journal of Management and Business Research, 17(1), 32–36.
  • Bellon-Maurel, V., Brossard, L., Garcia, F., Inria, N. M., & Termier, A. (2022). Agriculture and Digital Technology. France: INRIA.
  • Bentley, W. (1987). Economic and Ecological Approaches to Land Fragmentation: In Defence of a Much-Maligned Phenomenon. Annual Review of Anthropology, 16, 31–67.
  • Bournaris, T., & Papathanasiou, J. (2012). A DSS for Planning the Agricultural Production. Int. J. Business Innovation and Research, 6(1), 117–134.
  • CDR. (2019). Wykorzystanie Programów Komputerowych i Aplikacji Mobilnych w Gospodarstwie Rolnym [The Use of Computer Programs and Mobile Applications on the Farm]. Poznań: Centrum Doradztwa Rolniczego w Brwinowie Oddział w Poznaniu.
  • Chi, L., Han, S., Huan, M., Li, Y., & Liu, J. (2022). Land Fragmentation, Technology Adoption and Chemical Fertilizer Application: Evidence from China. International Journal of Environmental Research and Public Health, 19, 8147. https://doi.org/10.3390/ijerph19138147.
  • Choudhary, K., Jadoun, R. S., & Mandoriya, H. L. (2016). Role of Cloud Computing Technology in Agriculture Fields. Computer Engineering and Intelligent Systems, 7(3), 1–7.
  • Cordel, P. (2021). Overcoming Barriers to Uptake of Digital Agriculture by Farmers. Report. Retrieved from https://www.h2020fairshare.eu/wpcontent/uploads/2023/03/FAIRshare_D3.6_Overcoming_barriers_to_uptake_of_DA_by_farmers_FINAL.pdf.
  • CTA. (2018). Serving Smallholder Farmers in a Digital Age. Brussels Development Briefings, 190. Brussels: CTA.
  • Cupiał, M., & Kowalczyk, Z. (2018). Computer-Aided Fertilisation Using the Nawozy-5 (Fertiliser-5) Software. BIO Web of Conferences – Contemporary Research Trends in Agricultural Engineering, 10, 1–4. http://dx.doi.org/10.1051/bioconf/20181002002
  • Czapiewski, K. Ł., Kulikowski, R., Bański, J., Bednarek-Szczepańska, M., Mazur, M., & Ferenc, M. (2012). Wykorzystanie ICT w Rolnictwie Mazowsza - Ujęcie Przestrzenne. [Use of ICT in Mazovian Agriculture - Spatial Approach]. Studia Obszarów Wiejskich, tom XXX. Warszawa: PAN.
  • Daum, T. (2018). ICT Applications in Agriculture. In P. Ferranti, E. Berry, & A. Jock (Eds.), Encyclopedia of Food Security and Sustainability. Edition 1 (pp. 255–260). Elsevier. http://dx.doi.org/10.1016/B978-0-08-100596-5.22591-2
  • Demetriou, D. (2013). Land Fragmentation. In D. Demetriou (Ed.), The Development of an Integrated Planning and Decision Support System (IPDSS) for Land Consolidation (pp. 11–37). Springer. http://dx.doi.org/10.1007/978-3-319-02347-2
  • Dhillon, R., Moncur, Q., Lowell, C., Kumaran, S., Folck, A., & Cao, D. (2023). Precision Agriculture (PA) Techniques for Smallholder Farmers in the US: Status and Potential Opportunities. Proceedings of the National Conference on Next-Generation Sustainable Technologies for Small-Scale Producers. Springer Nature, 34, 166–175. https://doi.org/10.2991/978-94-6463-282-8_19
  • Dibbern, T., Santos Romani, L. A., & Silveira Massruh, S. M. F. (2024). Main Drivers and Barriers to the Adoption of Digital Agriculture Technologies. Smart Agricultural Technology, 8, 1–10. https://doi.org/10.1016/j.atech.2024.100459
  • Caffaro, F., Cremasco, M. M., Roccato, M. & Cavallo, E. (2020). Drivers of Farmers’ Intention to Adopt Technological Innovations in Italy: The Role of Information Sources, Perceived Usefulness, and Perceived Ease of Use. Journal of Rural Studies 76: 264–27. http://dx.doi.org/10.1016/j.jrurstud.2020.04.028
  • Dhehibi, B., Rudiger, U., Moyo, H. P., & Dhraief, M. Z. (2020). Agricultural Technology Transfer Preferences of Smallholder Farmers in Tunisia’s Arid Regions. Sustainability, 12(1), 1–18. http://dx.doi.org/10.3390/su12010421
  • González-Andújar, J.L. (2020). Introduction to Decision Support Systems. In G. Chantre, & L. González-Andújar (Eds.), Decision Support Systems for Weed Management. Springer (pp. 25–38). https://doi.org/10.1007/978-3-030-44402-0_2
  • Dittmer, K. M., Burns, S., Shelton, S., & Wollenberg, E. (2022). Principles for Socially Inclusive Digital Tools for Smallholder Farmers: A Guide. Agroecological TRANSITIONS: Inclusive Digital Tools to Enable Climate-informed Agroecological Transitions (ATDT). Cali, Colombia: Alliance of Bioversity & CIAT. https://cgspace.cgiar.org/server/api/core/bitstreams/49d17f1e-eb5a-4f27-823f-25e20e916e43/content
  • Dutta, M., & Ketan, A. (2023). Role of Information Communication Technology in Agriculture. International Journal of Novel Research and Development, 8(10), 863–870.
  • Eastwood, C., Turner, J. A., Selbie, D., Henwood, R., Espig, M., & Wever, M. (2023). A Review of Multi-Scale Barriers to Transitioning from Digital Agriculture to a Digital Bioeconomy. Retrieved from https://www.cabidigitallibrary.org/doi/full/10.1079/cabireviews.2023.0002
  • Eder, A. (2024). The Effect of Land Fragmentation on Risk and Technical Efficiency of Crop Farms. DFG Research Unit 2569, Humboldt-Universität zu Berlin, Berlin.
  • Elbehri, A., & Chestnov R. (2021). Digital Agriculture in Action – Artificial Intelligence for Agriculture. FAO and ITU, Bangkok.
  • Foray, D., David, P. A., & Hall, B. (2009). Smart Specialisation – The Concept. Knowledge Economists Policy Brief no 9. Brussels.
  • Fountas, S., Espejo-Garcıa, B., Kasimati, A., Mylonas, N., & N. Darra. (2020). The Future of Digital Agriculture: Technologies and Opportunities. IT Professional, 22(1), 24–28. http://dx.doi.org/10.1109/MITP.2019.2963412
  • Gebresenbet, G., Techane, B., Patterson, D., Henrik, P., Fischer, B., Mandaluniz, N., … Nasirahmadi, A. (2023). A Concept for Application of Integrated Digital Technologies to Enhance Future Smart Agricultural Systems. Smart Agricultural Technology, 5, 1–12. https://doi.org/10.1016/j.atech.2023.100255
  • Geppert, F., Krachunova, T., & Bellingrath-Kimura, S. D. (2024). Digital and Smart Technologies in Agriculture in Germany: Identification of Key Recommendations for Sustainability Actions. Studien zum deutschen Innovationssystem, No 4. Berlin: Expertenkommission Forschung und Innovation (EFI).
  • Gokool, S., Mahomed, M., Brewer, K., Naiken, V., Clulow, A., Sibanda, M., & Mabhaudhi, T. (2024). Crop Mapping in Smallholder Farms Using Unmanned Aerial Vehicle Imagery and Geospatial Cloud Computing Infrastructure. Heliyon, 10(5), 1–25. https://doi.org/10.1016/j.heliyon.2024.e26913
  • Hänisch, T. (2017). Grundlagen Industrie 4.0. In V. Andelfinger, & T. Hänisch (Eds.), Industrie 4.0 (pp. 9–31). Wiesbaden: Springer Gabler. http://dx.doi.org/10.1007/978-3-658-15557-5
  • Härtel, I. (2019). Agrar-Digitalrecht für eine nachhaltige Landwirtschaft 4.0. Natur und Recht, 41, 577–586. https://link.springer.com/article/10.1007/s10357-019-3571-y
  • Herd, D. (2014). Network Systems and Cloud Applications in Livestock Farming. Landtechnik, 69(5), 245–249.
  • Hornung, G., & Hofmann, K. (2017). Rechtsfragen bei Industrie 4.0: Rahmenbedingungen, Herausforderungen und Lösungsansätze. In G. Reinhart (Ed.), Handbuch Industrie 4.0 – Geschäftsmodelle, Prozesse, Technik (pp. 191–212). München: GmbH. http://dx.doi.org/10.3139/9783446449893.008
  • Herhem, T., Rooijakkers, L., Berckmans, D., Pena Fernández, A., Norton, T., Berckmans, D., & Vranken, E. (2017). Appropriate Data Visualisation is Key to Precision Livestock Farming Acceptance. Computers and Electronics in Agriculture, 138, 1–10. http://dx.doi.org/10.1016/j.compag.2017.04.003
  • Ivanochkoa, I., Jr., Greguša, M., & Melnykb, O. (2024). Smart Farming System Based on Cloud Computing Technologies. Procedia Computer Science, 238, 857–862. http://dx.doi.org/10.1016/j.procs.2024.06.103
  • Irish Farm Centre. (2019). Digital Agriculture Technology. Adoption & Attitudes Study. https://www.ifa.ie/wp-content/uploads/2020/11/Digital-Ag-Tech-Adoption-Attitudes.pdf
  • Jiao X., Zhang, H., Ma, W., Wang, Ch., Li, X., & Zhang, F. (2019), Science and Technology Backyard: A Novel Approach to Empower Smallholder Farmers for Sustainable Intensification of Agriculture in China. Journal of Integrative Agriculture, 18(8), 1657–1666. http://dx.doi.org/10.1016/S2095-3119(19)62770-X
  • Kadigi, R. M. J., Kashaigili, J. J., Sirima, A., Kamau, F., Sikira, A. & Mbungu. W. (2017). Land Fragmentation, Agricultural Productivity and Implications for Agricultural Investments in the Southern Agricultural Growth Corridor of Tanzania (SAGCOT) Region, Tanzania. Journal of Development and Agricultural Economics, 9(2), 26–36. http://dx.doi.org/10.5897/JDAE2016.0797
  • Kamal M., & Bablu, T. A. (2023). Mobile Applications Empowering Smallholder Farmers: A Review of the Impact on Agricultural Development. International Journal of Social Analytics, 8, 36–50.
  • Kassambara, A., Mondal, M. A. H., & Nguyen, T. T. (2019). AI for Decision-Making in Agriculture. Agriculture, 9(3), 56
  • Kramarz, P., & Runowski, H. (2025). Trust and Communication in Agriculture. In J. Paliszkiewicz, K. Chen, & M. Mendel (Eds.), Trust in Social and Business Relations: Theory and Practice (pp. 178–191). New York: Routledge. http://dx.doi.org/10.4324/9781032633749-18
  • Krasowicz, S., Oleszek, W., Horabik, J., Dębicki, R., Jankowiak, J., Stuczyński, J. & Jadczyszyn, J. (2011). Racjonalne Gospodarowanie Środowiskiem Glebowym Polski. Polish Journal of Agronomy, 7, 43–58.
  • Lin, Y., Huixiang, L., Li, A., Shi, Y., & Zhuang, S. (2024). Application of AI-driven Cloud Services in Intelligent Agriculture Pest and Disease Prediction. Applied and Computational Engineering, 67(1), 61–67. https://www.ewadirect.com/proceedings/ace/article/view/13335#
  • Linsner, S., Kuntke, F., Steinbrink, E., Franken, J., & Reuter, Ch. (2021). The Role of Privacy in Digitalization – Analyzing Perspectives of German Farmers. Proceedings on Privacy Enhancing Technologies, 3, 334–350. http://dx.doi.org/10.2478/popets-2021-0050
  • Piwowar, A. (2018). Opportunities and Barriers to the Development of Agriculture 4.0 in the Context of Low Carbon Agriculture in Poland. Retrieved from http://dx.doi.org/10.36689/uhk/hed/2018-02-016
  • Reichardt, M., Jürgens, C., Kloble, U., Hüueter, J., & Moser, K. (2009). Dissemination of Precision Farming in Germany. Acceptance, Adoption, Obstacles, Knowledge Transfer, and Training Activities. Precision Agriculture, 10(6), 525–545. http://dx.doi.org/10.1007/s11119-009-9112-6
  • Rybicki, R. (2021). Environmental Effects of Reducing Land Fragmentation in Land Consolidation at West Roztocze at the Slope Scale. Journal of Ecological Engineering, 22(1), 240–248. http://dx.doi.org/10.12911/22998993/129580
  • Runowski, H. (2019). Digitalization in Agriculture – Development Opportunities and Barriers. In J. Paliszkiewicz (Ed.), Management and Information Technology: New Challenges (pp. 233–246). Warsaw: Warsaw University of Life Sciences Press.
  • Runowski, H., & Kramarz, P. (2025). Trust in Artificial Intelligence in Agriculture. In J. Paliszkiewicz, & J. Gołuchowski (Eds.), Trust and Artificial Intelligence: Development and Application of AI Technology (pp. 229–241). New York: Routledge. http://dx.doi.org/10.4324/9781032627236-21
  • Singh, A. K, Balabaygloo, B. J., Bekee, B., Blair, S. W., Fey, S., Fotouhi, F., … Valdivia, C. (2024). Smart Connected Farms and Networked Farmers to Improve Crop Production, Sustainability and Profitability. Front. Agron., 6, 1–18. doi: https://doi.org/10.3389/fagro.2024.1410829
  • Singh, N. K., Sunitha, N. H., Tripathi, G., Saikanth, D. R. K., Sharma, A., Jose, A. E., & Karuna Jeba Mary, M. V. (2023). Impact of Digital Technologies in Agricultural Extension. Asian Journal of Agricultural Extension, Economics & Sociology, 41(9), 963–970. http://dx.doi.org/10.9734/AJAEES/2023/v41i92127
  • Shilomboleni, H., Pelletier, B., & Gebru, B. (2020). ICT 4 Scale in Smallholder Agriculture: Contributions and Challenges. Information Technologies & International Development, 16, 47–65.
  • Sridevy, S., & Djanaguiraman, M. (2023). A Glance at Agricultural Decision Support Systems. The Pharma Innovation Journal, 12(5), 755–757.
  • Szymańska, E. (2021). Zmiany w Powierzchni Gospodarstw Rolnych w Polsce w Latach 2010–2018 [Changes in the Agrarian Structure of the Polish Countryside in the Years 1918–2018]. Zeszyty Wiejskie, 27, 31–58. http://dx.doi.org/10.18778/1506-6541.27.02
  • Stępień, S., Smędzik-Ambroży, K., Matuszczak, A., & Tošović-Stevanović. A. (2022). Small-Scale Farms in the Environmental Sustainability of Rural Areas. Opinions of Farmers from Poland, Romania and Lithuania. Economics and Environment, 9, 168–185. http://dx.doi.org/10.34659/eis.2022.81.2.450
  • Stępień, S., Smędzik-Ambroży, K., Polcyn, J., Kwiliński, A., & Maican, I. (2023). Are Small Farms Sustainable and Technologically Smart? Evidence from Poland, Romania, and Lithuania. Central European Economic Journal, 10(57), 116–132. http://dx.doi.org/10.2478/ceej-2023-0007
  • Subejo, Untari, D. W., Wati, R. I., & Mewasdinta, G. (2019). Modernization of Agriculture and Use of Information and Communication Technologies by Farmers by Costal Yogyakarta. Indonesian Journal of Geography, 51, 332–345. http://dx.doi.org/10.22146/ijg.41706
  • Tomaszewska, W. (2013). Dostęp do Technologii Informacyjno-Komunikacyjnych w Społeczeństwie Informacyjnym. Przykład Polskich Regionów. [The Access to Information and Communication Technologies in the Information Society. The Example of Polish Regions]. Acta Universitatis Lodziensis, Folia Oeconomica, 290, 23–37.
  • Trendov, N. M., Varas, S., & Zeng, M. (2019). Digital technologies in agriculture and rural areas. Briefing paper. Food and Agriculture Organization of the United Nations, Rome.
  • Wang, B., & Dong, H. (2023). Research on the Farmers’ Agricultural Digital Service Use Behavior Under the Rural Revitalization Strategy-Based on the Extended Technology Acceptance Model. Frontiers in Environmental Science, 11:1180072. https://doi.org/10.3389/fenvs.2023.1180072.
  • Wayessa, B. G. (2017). The Role of Farmers to Farmers Knowledge Sharing in Improved Sesame Technology Adoption in Case of Meisso District West Hararghe Zone. Journal of Poverty, Investment and Development, 39, 13–21.
  • Wójtowicz, A., Pasternak, M., Zacharczuk, M., & Mroczek, M. (2016). Systemy Wspomagające Podejmowanie Decyzji w Ochronie Roślin – Wyzwanie Dla Nauki i Doradztwa Rolniczego [Decision Support Systems in Plant Protection – The Challenges for Science and Extension Service]. Zagadnienia Doradztwa Rolniczego, 1, 62–75.
  • Yadav, A. L., Khare, S., & Talwandi, N. S. (2024). Cloud-Based Agricultural Monitoring System for Precision Farming. Retrieved from https://www.researchgate.net/publication/380587749_Cloud-Based_Agricultural_Monitoring_System_for_Precision_Farming.
  • Zhai, Z., Martínez, J. F., Beltran, V., & Martínez, N. L. (2020). Decision Support Systems for Agriculture 4.0: Survey and Challenges. Computers and Electronics in Agriculture, 170, 1–16. http://dx.doi.org/10.1016/j.compag.2020.105256

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
60553734

YADDA identifier

bwmeta1.element.ojs-doi-10_2478_ceej-2025-0008
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.