Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2019 | 304 | 5-14

Article title

Zastosowanie technologii wysokoprzepustowego sekwencjonowania DNA w genetyce sądowej

Content

Title variants

EN
Application of high-throughput DNA sequencing technology in forensic genetics

Languages of publication

Abstracts

EN
The turn of the 20th and 21st centuries marks the beginning of high-throughput DNA sequencing methods, which, owing to increasing efficiency and gradual cost reduction, have led to the revolutionization of biomedical research. This article discusses the most popular next generation sequencing technologies and their practical application in forensic genetic analysis.
PL
Przełom XX i XXI wieku to początek wysokoprzepustowych metod sekwencjonowania DNA, które dzięki coraz większej skuteczności i stopniowej redukcji kosztów doprowadziły do zrewolucjonizowania badań w naukach biomedycznych. W niniejszym artykule omówiono najbardziej popularne technologie sekwencjonowania następnej generacji oraz ich praktyczne zastosowanie w analizach genetycznych w kryminalistyce.

Year

Issue

304

Pages

5-14

Physical description

Dates

published
2019

Contributors

author
  • Centralne Laboratorium Kryminalistyczne Policji
  • Centralne Laboratorium Kryminalistyczne Policji
  • Centralne Laboratorium Kryminalistyczne Policji
  • Centralne Laboratorium Kryminalistyczne Policji

References

  • Anderson, S., Bankier, A.T., Barrel, B.G., de Bruijn, M.H., Coilson, A.R., Drouin, J., Eperon, I.C., Nierlich, D.P., Roe, B.A., Sanger, F., Schreier, P.H., Smith, A.J., Staden, R., Young, I.G. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290(5806).
  • Feng, Y., Zhang, Y., Ying, C., Wang, D., Du, C. (2015). Nanopore-based Fourth-generation DNA Sequencing Technology. Genomics, Proteomics & Bioinformatics, 13(1).
  • Franca, L.T.C., Carrilho, E., Kist, T.B.L. (2002). A review of DNA sequencing techniques. Quarterly Reviews of Biophysics, 35(2).
  • Gill, P., Werrett, D.J., Budowle, B., Guerrieri, R. (2004). An assessment of whether SNPs will replace STRs in national DNA databases – joint considerations of the DNA working group of the European Network of Forensic Science Institutes (ENFSI) and the Scientific Working Group on DNA Analysis Methods (SWGDAM). Science and Justice: Journal of the Forensic Science Society, 44(1).
  • Gupta, A.K., Gupta, U.D. (2014). Next generation sequencing and its applications. W: A.S. Verma (red.), Animal Biotechnology: Models in Discovery and Translation. Amsterdam–Boston: Elsevier.
  • Hanson, E., Ingold, S., Haas, C., Ballantyne, J. (2018). Messenger RNA biomarker signatures for forensic body fluid identification revealed by targeted RNA sequencing. Forensic Science International: Genetics, 34
  • Heather, M., Chain, B. (2016). The sequence of sequencers: The history of sequencing DNA. Genomics, 107(1).
  • Holland, M.M., Makova, K.D., McElhoe, J.A. (2018). Deep-coverage MPS analysis of heteroplasmic variants within the mtGenome allows for frequent differentiation of maternal relatives. Genes (Basel), 9(3).
  • Just, R.S., Irwin, J.A., Parson, W. (2015). Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing. Forensic Science International: Genetics, 18.
  • Kayser, M. (2015). Forensic DNA Phenotyping: Predicting human appearance from crime scene material for investigative purposes. Forensic Science International: Genetics, 18.
  • Kotowska M., Zakrzewska-Czerwińska J. (2010). Kurs szybkiego czytania DNA – nowoczesne techniki sekwencjonowania. Biotechnologia, 4(91).
  • Laver, T., Harrison, J., O’Neil, P.A., Moore, K., Farbos, A., Paszkiewicz, K., Studholme, D.J. (2015). Assessing the performance of the Oxford Nanopore Technologies MinION. Biomolecular Detection and Quantification, 3.
  • Lilje, L., Lillsaar, T., Rätsep, R., Simm, J., Aaspõllu, A. (2013). Soil sample metagenome NGS data management for forensic investigation. Forensic Science International: Genetics, 4(1).
  • Loveliness, D., Dennis, S., Salvador, J., Calacal, G., De Ungria, M. (2017). Comparison of two massively parallel sequencing platforms using 83 single nucleotide polymorphisms for humanidentification. Scientific Reports, 7, Article number: 398 (2017); doi:10.1038/s41598-017-00510-3.
  • Maxam, A.M., Gilbert, W. (1977). A new method for sequencing DNA. Proceedings of the National Academy of Sciences of the United States of America, 74.
  • Pakstis, A.J., Speed, W.C., Fang, R., Hylan, F.C.L., Furtado, M.R., Kidd, J.R., Kidd, K.K. (2009). SNPs for a universal individual identification panel. Human Genetics, 127(3), doi: 10.1007/s00439-009-0771-1.
  • Piątkowski, J., Skalniak, A., Bodzioch, M., Pach, D., Hubalewska-Dydejczyk, A. (2013). Wprowadzenie do sekwencjonowania ludzkiego genomu w diagnostyce. Przegląd Lekarski, 70(7).
  • Płoski, R. (2016). Next generation sequencing – general information about the technology, possibilities, and limitations. W: U. Demkow, R. Płoski (red.), Clinical Applications for Next Generation Sequencing. London: Academic Press.
  • Regalado, A. (2014). Radical new DNA sequencer finally gets into researchers hands. Biomedicine, 17 września.
  • Rhoads, A., Au, K. (2015). PacBio sequencing and its applications. Genomics, Proteomics & Bioinformatics, 13(5).
  • Sanger, F., Nicklen, S., Coulson, A.R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74.
  • Shih, S.Y., Bose, N., Goncalves, A., Erlich, H., Calloway, C. (2018). Applications of probe capture enrichment next generation sequencing for whole mitochondrial genome and 426 nuclear SNPs for forensically challenging samples. Genes (Basel), 9(1).
  • Silva, S., Lopes, C., Teixeira, A.L., Sousa, M., Medeiros, R. (2014). Forensic miRNA: Potential biomarker for body fluids. Forensic Science International: Genetics, 14, https://doi.org/10.101/j.fsigen. 2014.09.002
  • Van Dijk, E.L., Auger, H., Jaszczyszyn, Y., Thermes, C. (2014). Ten years of next-generation sequencing technology. Trends in Genetics, 30(9).
  • Yang, Y., Xie, B., Yan, J. (2014). Application of next-generation sequencing technology in forensic science. Genomics, Proteomics & Bioinformatics, 12(5).
  • Zbieć-Piekarska, R., Spólnicka, M., Kupiec, T., Parys-Proszek, A., Makowska, Ż., Pałeczka, A., Kucharczyk, K., Płoski, R., Branicki, W. (2015). Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Science International: Genetics, 17.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
2057848

YADDA identifier

bwmeta1.element.ojs-doi-10_34836_pk_2019_304_1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.