Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2022 | 318 |

Article title

Identyfikacja bliźniąt monozygotycznych w dobie sekwencjonowania nowej generacji

Content

Title variants

EN
Identification of monozygotic twins in the era of next‑generation sequencing

Languages of publication

Abstracts

EN
Monozygotic twins pose a challenge to forensic science due to the lack of standardized tools to differentiate them within a pair, and thus making it difficult or impossible for a court to determine which of the twins is the perpetrator of the crime. The advent of next‑generation sequencing technologies, whole‑genome sequencing, and analyses of the human epigenome, has opened the way to the identification of monozygotic twins for forensic purposes. The percentage of monozygotic twins that can be differentiated and the level of reliability of results remain an issue open for investigation. Identification of monozygotic twins through whole‑genome sequencing raises doubts in the courts. New technologies raised a number of questions regarding the parameters: the power of differentiation, the level of reliability of the result, validation method and legal issues. New twin identification technologies require adapting to the requirements for forensic methods: verification, validation and standardization, as well as a uniform approach to the interpretation of results, so that they can be widely used in forensics and recognized by courts as reliable evidence.
PL
Bliźnięta monozygotyczne stanowią wyzwanie dla kryminalistyki ze względu na brak standaryzowanych narzędzi do ich różnicowania w obrębie pary, utrudniający lub uniemożliwiający sądowi ustalenie, które z bliźniąt jest sprawcą przestępstwa. Pojawienie się technologii sekwencjonowania nowej generacji, sekwencjonowania całogenomowego oraz analiz epigenomu ludzkiego otworzyło drogę do identyfikacji bliźniąt monozygotycznych w celach kryminalistycznych. Kwestią otwartą pozostaje odsetek bliźniąt monozygotycznych, który można różnicować, oraz poziom wiarygodności uzyskanych wyników. Dowody uzyskane za pomocą sekwencjonowania całogenomowego, w sprawach dotyczących identyfikacji bliźniąt monozygotycznych, budzą wątpliwości sądów. Wraz z nowymi technologiami pojawiał się szereg pytań odnośnie do ich parametrów: siły różnicowania, poziomu wiarygodności wyniku, sposobów walidacji metod oraz zagadnień natury prawnej. Nowe technologie identyfikacji bliźniąt wymagają dostosowania do wymagań stawianych metodom kryminalistycznym: weryfikacji, walidacji i standaryzacji tych metod oraz jednolitego podejścia do interpretacji wyników, aby mogły być powszechnie stosowane w kryminalistyce i uznawane przez sądy za wiarygodne dowody.

Year

Issue

318

Physical description

Dates

published
2022

References

  • Angers, A., Drabek, J., Fabbri, M., Petrillo, M., Querci, M., & European Commission. Joint Research Centre. (2021). Whole genome sequencing and forensics genomics. https://doi.org/10.2760/864087.
  • Bell, C. G., Lowe, R., Adams, P. D., Baccarelli, A. A., Beck, S., Bell, J. T., Christensen, B. C., Gladyshev, V. N., Heijmans, B. T., Horvath, S., Ideker, T., Issa, J. P. J., Kelsey, K. T., Marioni, R. E., Reik, W., Relton, C. L., Schalkwyk, L. C., Teschendorff, A. E., Wagner, W., Zhang, K., Rakyan, V. K. (2019). DNA methylation aging clocks: challenges and recommendations. Genome Biology, 20(1), 1–24. https://doi.org/10.1186/s13059‑ 019‑1824‑y.
  • Carmona, J. J., Accomando, W. P., Binder, A. M., Hutchinson, J. N., Pantano, L., Izzi, B., Just, A. C., Lin, X., Schwartz, J., Vokonas, P. S., Amr, S. S., Baccarelli, A. A., & Michels, K. B. (2017). Empirical comparison of reduced representation bisulfite sequencing and Infinium BeadChip reproducibility and coverage of DNA methylation in humans. Npj Genomic Medicine, 2(1), 1–9. https://doi.org/10.1038/s41525‑017‑0012‑9.
  • Cavalli, G., & Heard, E. (2019). Advances in epigenetics link genetics to the environment and disease. Nature, 571(7766), 489–499. https://doi.org/10.1038/s41586‑019‑1411‑0.
  • Chen, L., Wang, J., Tan, L., Lu, C., Fu, G., Fu, L., Zhang, X., Wang, Q., Ma, C., Cong, B., & Li, S. (2020). Highly accurate mtGenome haplotypes from long‑read SMRT sequencing can distinguish between monozygotic twins. Forensic Science International. Genetics, 47(November 2019), 102306. https://doi.org/10.1016/j.fsigen.2020.102306.
  • Davis, R. L., Kumar, K. R., Puttick, C., Liang, C., Ahmad, K. E., Edema‑Hildebrand, F., Park, J. S., Minoche, A. E., Gayevskiy, V., Mallawaarachchi, A. C., Christodoulou, J., Schofield, D., Dinger, M. E., Cowley, M. J., & Sue, C. M. (2022). Use of Whole‑Genome Sequencing for Mitochondrial Disease Diagnosis. Neurology, 99(7), E730–E742. https://doi.org/10.1212/WNL.0000000000200745.
  • Dor, Y., & Cedar, H. (2018). Principles of DNA methylation and their implications for biology and medicine.The Lancet, 392(10149), 777–786. https://doi.org/10.1016/S0140‑6736(18)31268‑6.
  • Du, Q., Zhu, G., Fu, G., Zhang, X., Fu, L., Li, S., & Cong, B. (2015). A Genome‑Wide Scan of DNA Methylation Markers for Distinguishing Monozygotic Twins. Twin Research and Human Genetics, 18(6), 670–679. https://doi.org/10.1017/thg.2015.73.
  • ENFSI. (2019). DNA Database Management. Review and Reccommendations. 1–85. https://enfsi.eu/wp‑content/uploads/2016/09/final_version_enfsi_2016_document_on_dna‑database_management_0.pdf.
  • Fitzgerald, K. N., Hodges, R., Hanes, D., Stack, E., Cheishvili, D., Szyf, M., Henkel, J., Twedt, M. W., Giannopoulou, D., Herdell, J., Logan, S., & Bradley, R. (2021). Potential reversal of epigenetic age using a diet and lifestyle intervention: a pilot randomized clinical trial. Aging, 13(7), 9419–9432. https://doi.org/10.18632/aging.202913.
  • Freire‑Aradas, A., Pośpiech, E., Aliferi, A., Girón‑Santamaría, L., Mosquera‑Miguel, A., Pisarek, A., Ambroa‑Conde,A., Phillips, C., Casares de Cal, M. A., Gómez‑Tato, A., Spólnicka, M., Woźniak, A., Álvarez‑ Dios, J., Ballard, D., Court, D. S., Branicki, W., Carracedo, Á., & Lareu, M. V. (2020). A Comparison of Forensic Age Prediction Models Using Data From Four DNA Methylation Technologies. Frontiers in Genetics, 11, 1–12. https://doi.org/10.3389/fgene.2020.00932.
  • Frommer, M., McDonald, L. E., Millar, D. S., Collis, C. M., Watt, F., Grigg, G. W., Molloy, P. L., & Paul, C. L. (1992). A genomic sequencing protocol that yields a positive display of 5‑methylcytosine residues in individual DNA strands. Proceedings of the National Academy of Sciences, 89(5), 1827–1831. https://doi.org/10.1073/pnas.89.5.1827.
  • Hayatsu, H. (2008). Discovery of bisulfite‑mediated cytosine conversion to uracil, the key reaction for DNA methylation analysis – A personal account. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 84(8), 321–330. https://doi.org/10.2183/pjab.84.321.
  • Higgins‑Chen, A. T., Thrush, K. L., Wang, Y., Minteer, C. J., Kuo, P., Wang, M., Niimi, P., Sturm, G., Lin, J., Moore, A. Z., Bandinelli, S., Vinkers, C. H., Vermetten, E., & Rutten, B. P. F. (2022). A computational solution for bolstering reliability of epigenetic clocks: Implications for clinical trials and longitudinal tracking. Nature Aging, 2(7), 644–661. https://doi.org/doi:10.1038/s43587‑022‑00248‑2.
  • Holliday, R., & Pugh, J. E. (1975). DNA modification mechanisms and gene activity during development. Science, 187(4173), 226–232. https://doi.org/10.1126/science.187.4173.226.
  • Horsthemke, B. (2018). A critical view on transgenerational epigenetic inheritance in humans. Nature Communications, 9(1), 1–4. https://doi.org/10.1038/s41467‑018‑05445‑5.
  • Horvath, S., & Raj, K. (2018). DNA methylation‑based biomarkers and the epigenetic clock theory of ageing. Nature Reviews Genetics, 19(6), 371–384. https://doi.org/10.1038/s41576‑018‑0004‑3.
  • Jones, P. A. (2012). Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nature Reviews Genetics, 13(7), 484–492. https://doi.org/10.1038/nrg3230.
  • Jonsson, H., Magnusdottir, E., Eggertsson, H. P., Stefansson, O. A., Arnadottir, G. A., Eiriksson, O., Zink, F., Helgason, E. A., Jonsdottir, I., Gylfason, A., Jonasdottir, A., Jonasdottir, A., Beyter, D., Steingrimsdottir, T., Norddahl, G. L., Magnusson, O. T., Masson, G., Halldorsson, B. V., Thorsteinsdottir, U., Helgason, A., Sulem, P., Gudbjartsson, D. F., & Stefansson, K. (2021). Differences between germline genomes of monozygotic twins. Nature Genetics, 53(1), 27–34. https://doi.org/10.1038/s41588‑020‑00755‑1.
  • Klutstein, M., Nejman, D., Greenfield, R., & Cedar, H. (2016). DNA methylation in cancer and aging. Cancer Research, 76(12), 3446–3450. https://doi.org/10.1158/0008‑5472.CAN‑15‑3278.
  • Krawczak, M., Budowle, B., Weber‑Lehmann, J., & Rolf, B. (2018). Distinguishing genetically between the germlines of male monozygotic twins. PLoS Genetics, 14(12), 1–9. https://doi.org/10.1371 journal.pgen.1007756.
  • Kukla‑Bartoszek, M., Pośpiech, E., Woźniak, A., Boroń, M., Karłowska‑Pik, J., Teisseyre, P., Zubańska, M., Bronikowska, A., Grzybowski, T., Płoski, R., Spólnicka, M., & Branicki, W. (2019). DNA‑ based predictive models for the presence of freckles. Forensic Science International: Genetics, 42, 252–259. https://doi.org/10.1016/j.fsigen.2019.07.012.
  • Li, C., Zhang, S., Que, T., Li, L., & Zhao, S. (2011). Identical but not the same: The value of DNA methylation profiling in forensic discrimination within monozygotic twins. Forensic Science International: Genetics Supplement Series, 3(1), 337–338. https://doi.org/10.1016/j.fsigss.2011.09.031.
  • Li, C., Zhao, S., Zhang, N., Zhang, S., & Hou, Y. (2013). Differences of DNA methylation profiles between monozygotic twins’ blood samples. Molecular Biology Reports, 40(9), 5275–5280. https://doi.org/10.1007/s11033‑013‑2627‑y.
  • Lister, R., & Ecker, J. R. (2009). Finding the fifth base: Genome‑wide sequencing of cytosine methylation. Genome Research, 19(6), 959–966. https://doi.org/10.1101/gr.083451.108.
  • Liu, Y., Cheng, J., Siejka‑ Zielińska, P., Weldon, C., Roberts, H., Lopopolo, M., Magri, A., D’Arienzo, V., Harris, J. M., McKeating, J. A., & Song, C. X. (2020). Accurate targeted long‑read DNA methylation and hydroxymethylation sequencing with TAPS. Genome Biology, 21(1), 54. https://doi.org/10.1186/s13059‑020‑01969‑6.
  • Logue, M. W., Smith, A. K., Wolf, E. J., Maniates, H., Stone, A., Schichman, S. A., McGlinchey, R. E., Milberg, W., & Miller, M. W. (2017). The correlation of methylation levels measured using Illumina 450K and EPIC BeadChips in blood samples. Epigenomics, 9(11), 1363–1371. https://doi.org/10.2217/epi‑2017‑0078.
  • Maksimovic, J., Gagnon‑Bartsch, J. A., Speed, T. P., & Oshlack, A. (2015). Removing unwanted variation in a differential methylation analysis of Illumina Human Methylation 450 array data. Nucleic Acids Research, 43(16). https://doi.org/10.1093/nar/gkv526.
  • Marqueta‑Gracia, J. J., Álvarez‑ Álvarez, M., Baeta, M., Palencia‑Madrid, L., Prieto‑Fernández, E., Ordoñana, J. R., & de Pancorbo, M. M. (2018). Differentially methylated CpG regions analyzed by PCR‑ high resolution melting for monozygotic twin pair discrimination. Forensic Science International: Genetics, 37, e1–e5. https://doi.org/10.1016/j.fsigen.2018.08.013.
  • Pang, A. P. S., Higgins‑Chen, A. T., Comite, F., Raica, I., Arboleda, C., Went, H., Mendez, T., Schotsaert, M., Dwaraka, V., Smith, R., Levine, M. E., Ndhlovu, L. C., & Corley, M. J. (2022). Longitudinal Study of DNA Methylation and Epigenetic Clocks Prior to and Following Test‑Confirmed COVID‑19 and mRNA Vaccination. Frontiers in Genetics, 13, 1–16. https://doi.org/10.3389/fgene.2022.819749.
  • Planterose Jiménez, B., Kayser, M., & Vidaki, A. (2021a). Revisiting genetic artifacts on DNA methylation microarrays exposes novel biological implications. Genome Biology, 22(1), 1–29. https://doi.org/10.1186/ s13059‑021‑02484‑y.
  • Planterose Jiménez, B., Liu, F., Caliebe, A., Montiel González, D., Bell, J. T., Kayser, M., & Vidaki, A. (2021b). Equivalent DNA methylation variation between monozygotic co‑twins and unrelated individuals reveals universal epigenetic inter‑individual dissimilarity. Genome Biology, 22(1), 1–23. https://doi.org/10.1186/s13059‑020‑02223‑9.
  • Pośpiech, E., Kukla‑Bartoszek, M., Karłowska‑Pik, J., Zieliński, P., Woźniak, A., Boroń, M., Dąbrowski, M., Zubańska, M., Jarosz, A., Grzybowski, T., Płoski, R., Spólnicka, M., & Branicki, W. (2020). Exploring the possibility of predicting human head hair greying from DNA using whole‑exome and targeted NGS data. BMC Genomics, 21(1), 1–18. https://doi.org/10.1186/s12864‑020‑06926‑y.
  • Price, E. M., & Robinson, W. P. (2018). Adjusting for batch effects in DNA methylation microarray data, a lesson learned. Frontiers in Genetics, 9, 1–7. https://doi.org/10.3389/fgene.2018.00083.
  • Riggs, A. D. (1975). X inactivation, differentiation, and DNA methylation. Cytogenetic and Genome Research, 14(1), 9–25. https://doi.org/10.1159/000130315.
  • Rolf, B., & Krawczak, M. (2021). The germlines of male monozygotic (MZ) twins: Very similar, but not identical. Forensic Science International: Genetics, 50, 102408. https://doi.org/10.1016/j.fsigen.2020.102408.
  • Ryan, J., Wrigglesworth, J., Loong, J., Fransquet, P. D., & Woods, R. L. (2020). A systematic review and meta‑analysis of environmental, lifestyle, and health factors associated with DNA methylation age. Journals of Gerontology: Series A Biological Sciences and Medical Sciences, 75(3), 481–494. https://doi.org/10.1093/gerona/glz099.
  • Seethy, A., Pethusamy, K., Chattopadhyay, I., Sah, R., Chopra, A., Dhar, R., & Karmakar, S. (2021). TETology: Epigenetic Mastermind in Action. Applied Biochemistry and Biotechnology, 193(6), 1701–1726. https://doi.org/10.1007/s12010‑021‑03537‑5.
  • Siejka‑Zielińska, P., Cheng, J., Jackson, F., Liu, Y., Soonawalla, Z., Reddy, S., Silva, M., Puta, L., McCain, M. V., Culver, E. L., Bekkali, N., Schuster‑Böckler, B., Palamara, P. F., Mann, D., Reeves, H., Barnes, E., Sivakumar, S., &Song, C. X. (2021). Cell‑free DNA TAPS provides multimodal information for early cancer detection. Science Advances, 7(36). https://doi.org/10.1126/sciadv.abh0534.
  • Sims, D., Sudbery, I., Ilott, N. E., Heger, A., & Ponting, C. P. (2014). Sequencing depth and coverage: Key considerations in genomic analyses. Nature Reviews Genetics, 15(2), 121–132. https://doi.org/10.1038/nrg3642.
  • Spólnicka, M., Pośpiech, E., Adamczyk, J. G., Freire‑Aradas, A., Pepłońska, B., Zbieć‑Piekarska, R., Makowska, Z., Pieta, A., Lareu, M. V., Phillips, C., Płoski, R., Zekanowski, C., & Branicki, W. (2018). Modified aging of elite athletes revealed by analysis of epigenetic age markers. Aging, 10(2), 241–252. https://doi.org/10.18632/aging.101385.
  • Szurek R. (2022). Gorlice. Winny śmierci Angeliki. Karol F., jeden z bliźniaków, usłyszał wyrok sześciu lat więzienia. Gorlice Nasze Miasto, 4 maja. https://gorlice.naszemiasto.pl gorlice‑winny‑smierci‑angeliki‑karol‑f‑jeden‑z‑blizniakow/ar/c16‑8802241.
  • Turrina, S., Bortoletto, E., Giannini, G., & De Leo, D. (2021). Monozygotic twins: Identical or distinguishable for science and law? Medicine, Science and the Law, 61(1_suppl), 62–66. https://doi.org/10.1177/0025802420922335.
  • Tvedebrink, T., & Morling, N. (2015). Identical twins in forensic genetics – Epidemiology and risk based estimation of weight of evidence. Science and Justice, 55(6), 408–414. https://doi.org/10.1016/j.scijus.2015.07.001.
  • Van Dongen, J., Slagboom, P. E., Draisma, H. H. M., Martin, N. G., & Boomsma, D. I. (2012). The continuing value of twin studies in the omics era. Nature Reviews Genetics, 13(9), 640–653. https://doi.org/10.1038/nrg3243.
  • Vidaki, A., Díez López, C., Carnero‑Montoro, E., Ralf, A., Ward, K., Spector, T., Bell, J. T., & Kayser, M. (2017). Epigenetic discrimination of identical twins from blood under the forensic scenario. Forensic Science International: Genetics, 31, 67–80. https://doi.org/10.1016/j.fsigen.2017.07.014.
  • Vidaki, A., Kalamara, V., Carnero‑Montoro, E., Spector, T. D., Bell, J. T., & Kayser, M. (2018). Investigating the epigenetic discrimination of identical twins using buccal swabs, saliva, and cigarette butts in the forensic setting. Genes, 9(5). https://doi.org/10.3390/genes9050252.
  • Vidaki, A., Kayser, M., & Nothnagel, M. (2019). Unsupported claim of significant discrimination between monozygotic twins from multiple pairs based on three age‑related DNA methylation markers. Forensic Science International: Genetics, 39, e1–e2. https://doi.org/10.1016/j.fsigen.2019.01.003.
  • Wang, L. F., Yang, Y., Zhang, X. N., Quan, X. L., & Wu, Y. M. (2015). Tri‑allelic pattern of short tandem repeats identifies the murderer among identical twins and suggests an embryonic mutational origin. Forensic Science International: Genetics, 16, 239–245. https://doi.org/10.1016/j.fsigen.2015.01.010.
  • Wang, Z., Zhu, R., Zhang, S., Bian, Y., Lu, D., & Li, C. (2015). Differentiating between monozygotic twins through next‑generation mitochondrial genome sequencing. Analytical Biochemistry, 490, 1–6. https://doi. org/10.1016/j.ab.2015.08.024.
  • Weber‑Lehmann, J., Schilling, E., Gradl, G., Richter, D. C., Wiehler, J., & Rolf, B. (2014). Finding the needle in the haystack: Differentiating „identical” twins in paternity testing and forensics by ultra‑ deep next generation sequencing. Forensic Science International: Genetics, 9(1), 42–46. https://doi.org/10.1016/j.fsigen.2013.10.015.
  • Yuan, L., Chen, X., Liu, Z., Liu, Q., Song, A., Bao, G., Wei, G., Zhang, S., Lu, J., & Wu, Y. (2020). Identification of the perpetrator among identical twins using next‑generation sequencing technology: A case report. Forensic Science International: Genetics, 44, 102167. https://doi.org/10.1016/j.fsigen.2019.102167.
  • Zbieć‑Piekarska, R., Spólnicka, M., Kupiec, T., Parys‑Proszek, A., Makowska, Z., Pałeczka, A., Kucharczyk, K., Płoski, R., & Branicki, W. (2015). Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Science International: Genetics, 17, 173–179. https://doi.org/10.1016/j.fsigen.2015.05.001.
  • Zhang, N., Zhao, S., Zhang, S. H., Chen, J., Lu, D., Shen, M., & Li, C. (2015). Intra‑monozygotic twin pair discordance and longitudinal variation of whole‑genome scale DNA methylation in adults. PLoS ONE, 10(8), 1–21. https://doi.org/10.1371/journal.pone.0135022.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
27177759

YADDA identifier

bwmeta1.element.ojs-doi-10_34836_pk_2022_318_1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.