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ABSTRACT 
 

I propose and discuss some principles that I believe are substantial for percep-
tion, various kinds of memory, expectations and the capacity for imagination in the 
mammal brain, as well as for the design of a biologically inspired artificial cognitive 
architecture. I also suggest why these same principles could explain our ability to 
represent novel concepts and imagine non-existing and perhaps impossible objects, 
while there are still limits to what we can imagine and think about. Some ideas re-
garding how these principles could be relevant for an autonomous agent to become 
functionally conscious are discussed as well. 

Keywords: perception, memory, expectations, imagination, consciousness, self-
organization, feature maps, associative learning, multimodal integration, cognitive 
architecture. 

 
  

1. INTRODUCTION 
 
The astonishing abilities of the mammalian brain raise the question of 

the principles by which it is organized. Since it is evolved rather than de-
signed, such principles should be simple rather than complicated. This 
seems to be contradicted by the brain's remarkably advanced abilities. I be-
lieve that this contradiction is false and that the advanced capabilities of the 
brain are indeed based on fairly simple principles, but which are reused over 
and over again at different levels of complexity. 

Below I explain and motivate why I think rather simple principles re-
garding self-organization; internal self-supervision; and associatively, hier-
archically, recurrently connected topology preserving feature representa-
tions that reflect the probability distribution of their input are important in 
the mammal brain as well as how that insight can be used artificially. 

Simple principles, I believe, employed over and over again by nature at 
various levels of complexity, are behind astonishingly complex abilities, 
such as perception, imagery, and functional consciousness in the mammal 
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brain. The same principles can explain why we sometimes tend to perceive 
our expectations rather than what is really out there; how we construct and 
fill in the gaps in our perceptions within and between various sensory mo-
dalities when the sensory input is limited; multimodal integration. How 
various memory systems, imagery and perception fit together and can be 
explained by the same principles. 

I will also discuss how the corresponding faculties could be implemented 
in an artificial biologically inspired cognitive architecture by employing the 
same principles in the same way as has presumably been done through evo-
lution by nature. By looking at how the mammal brain is structured and by 
identifying its crucial components and how these are interconnected, 
knowledge can be obtained that together with the identified principles ena-
bles a systems level approach to modeling perception as well as the integra-
tion of various sensory modalities, memory, imagery, the generation of an 
inner world and functional consciousness in a biologically inspired cognitive 
architecture modeled on the mammal brain. 

This systems level modeling approach means that, though not modeling 
crucial components and their interconnections in detail, general principles 
also adhered to by their biological counterparts should be identified and 
followed in the design of the cognitive architecture. 

7KH� FRPSRQHQWV¶� IXQFWLRQDOLW\� FDQ� EH� LPSOHPHQWHG� ZLWK� PHFKDQLVPV�
that model the systems at a suitable level of accuracy. Later they can be re-
implemented by other mechanisms for accuracy and performance reasons, 
or if more efficient implementations are found.  

We could go about working on a bio-inspired systems-level cognitive ar-
chitecture in various ways. At one extreme, we could work from a more ho-
listic starting point by identifying crucial components and interactions 
found in the neural systems of biological organisms. Then we could imple-
ment maximally simplified versions of these and try to make them work 
together as well as possible. Examples of components in such an architec-
ture inspired by a mammal brain could be a maximally simplified visual 
system and a maximally simplified mechanism, or set of mechanisms, corre-
sponding to the Basal ganglia etc. Inspired by the work of Valentino Brait-
enberg (Braitenberg, 1984) and the robotics physicist Mark W. Tilden,  
I believe such simplified but complete cognitive architectures would still 
enact interesting behaviors. 

At the other extreme, we could work on individual components while try-
ing to optimize these to perform at a human level or beyond. Many artificial 
perception researchers work at this extreme, e.g. by creating computer vi-
sion systems that in some respects even exceed the abilities of humans. 

 My approach is somewhere in the middle. I try to figure out general 
principles for not necessarily complete, but more composed architectures at 
an intermediary level. Hence my focus is not whether component imple-
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mentations are optimized for performance. Following a systems level ap-
proach, individual components can be reimplemented iteratively at later 
stages for performance, accuracy or for other reasons, but this is not the 
focus here. Thus, the work on general principles can be isolated from the 
engineering questions of performance. 

The perceptual parts of a cognitive architecture built according to these 
ideas employ to a large extent self-organizing topographical feature repre-
sentations. Such feature representations are somewhat reminiscent of what 
has been found in mammal brains. These topographical representations are 
connected hierarchically, associatively and recurrently. Hierarchies of in-
creasingly complex feature representations²and in the extension different 
architectural components, possibly distributed²self-organize while super-
YLVLQJ� HDFK�RWKHU¶V� DVVRFLDWLYH� OHDUQLQJ�DGDSWDWLRQ�RYHU space (by associa-
tive connections) and over time (by recurrent associative connections). For 
example, such an architecture contains hierarchies of topographically or-
dered feature representations within sensory submodalities. To an extent, 
these hierarchies also cross the borders of different sensory submodalities, 
and even the borders of different sensory modalities. The topographically 
ordered feature representations connect associatively at various hierarchical 
levels within, but also across, sensory submodalities, modalities and to sys-
tems outside the perceptual parts, e.g. motor representations. 

Below I discuss some principles that I believe are substantial to percep-
tion, various kinds of memory, expectations and imagery in the mammal 
brain and for the design of a bio-inspired artificial cognitive architecture.  
I also suggest why these principles could explain our ability to represent 
novel concepts and imagine non-existing and perhaps impossible objects, 
while there are still limits to what we can imagine and think about.  

I will also present some ideas regarding how these principles could be 
relevant for an autonomous agent to become p-conscious (Block, 1995) in 
the sense defined by %RáWXü���������L�H��DV�UHIHUULQJ�WR�first-person function-
al awareness of phenomenal information. Whether such an autonomous 
agent would also be conscious in a non-functional first-person phenomeno-
logical sense, i.e. h-conscious, adopting again the terminology of %RáWXü�
(2009), and thus experience qualia of its own subjective first-person experi-
ences of external objects and inner states, is another matter. The latter ques-
tion belongs to the hard problem of consciousness (Chalmers, 2003). The 
difficulty with that problem is that a physical explanation in terms of brain 
processes is an explanation in terms of structure and function, which  
can explain how a system's behavior is produced, but it is harder to see  
why the brain processes are accompanied by subjective awareness of qualia. 
According to Chalmers (2003) all metaphysical views on phenomenal  
consciousness are either reductive or nonreductive, and he considers the 
latter to be more promising. Nonreductive views require a re-conception  
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of physical ontology. I suggest that the bio-inspired principles proposed in 
this paper have relevance for p-consciousness. Hence a cognitive architecture 
employing these ideas would probably become at least p-conscious. However, 
it is possible that h-consciousness is not a computational process, and I will 
not take a final position on the issue of phenomenal h-consciousness in this 
paper. 

 
 

2. FEATURE REPRESENTATIONS 
 

Topographically ordered maps are inherent parts of the human brain. 
There are continuously ordered representations of receptive surfaces across 
various sensory modalities, e.g. in the somatosensory and visual (van Essen, 
1985) areas, in neuron nuclei and in the cerebellum. 

The size of the representational area in such ordered representations de-
pends on the behavioral importance and frequency of the represented input. 
For example, the representation of the fovea is much larger than the rest of 
the retina, and the representation of the fingertip is proportionally larger 
than the rest of the finger. 

There are also more abstract topographically ordered representations in 
the brain, e.g. frequency preserving tonotopic maps (Tunturi, 1950; 1952; 
Reale, Imig, 1980) in primary auditory areas, and color maps in V4 (Zeki, 
1980) in the visual areas. 

In a model of such self-organized topographically ordered representa-
tions, essential relations among data should be made explicit. This could be 
achieved by forming spatial maps at an appropriate abstraction level de-
pending on the purpose of the model. For a reasonable computational effi-
ciency, the focus should be on main properties without any accurate replica-
tion of details. Reasonable candidates for a basic model corresponding to  
a topographically ordered representation in the brain satisfying these condi-
tions are the Self-Organizing Map, SOM (Kohonen, 1988) and its variants. 
Such a basic model forms a fundamental building block²not to be confused 
with the crucial components discussed above²in the perceptual parts of  
a bio-inspired cognitive architecture. 

Examples of suitable candidates, beside the SOM, are the Growing Grid 
(Fritzke, 1995) and the Growing Cell Structure (Fritzke, 1994). In addition to 
the adaptation of the neurons, these models also find suitable network 
structures and topologies through self-organizing processes. Other examples 
are the Tensor-Multiple Peak SOM, T-MPSOM (Johnsson et al., 2006) or 
the Associative Self-Organizing Map (Johnsson et al., 2009). The latter, or 
rather the principles it instantiates, are crucial for the principles of the per-
ceptual parts of a cognitive architecture discussed in this paper and will be 
elaborated on below. 
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The SOM develops a representation that reflects the distance relations of 
the input, which is characteristic of lower levels of perception. If trained 
with a representative set of input, the SOM self-organizes into a dimension-
ality reduced and discretized topographically ordered feature representation 
also mirroring the probability distribution of received input. The latter 
means that frequent types of input will be represented with better resolution 
in the SOM. This corresponds to, for example, the development of a larger 
representational area of the fingertip than the rest of the finger in the brain, 
which was discussed above. Hence the SOM is reminiscent of the topo-
graphically ordered representations found in mammalian brains. 

In a sense, the topographically ordered map generated by a SOM²and in 
the extension an interconnected system of SOMs²iV� D� FRQFHSWXDO� VSDFH�
�*lUGHQIRUV�� ������ JHQHUDWHG� IURP� WKH� WUDLQLQJ� GDWD� WKURXJK� D� VHOI-
organizing process. 

Due to the topology-preserving property of the SOM similar input elicit 
similar activity, which provides systems based on the SOM with an ability to 
generalize to novel input.  

A SOM can be trained to represent various kinds of feature, including 
phenomenal ones. The latter would turn the SOM into a phenomenal con-
tent map (Damasio, 2010). For example, a SOM can be trained to represent 
directions of lines/contours (as in V1), colors (as in V4), or more complex 
features such as the postures and gesture movements of an observed agent 
(Buonamente et al., 2016), or the words of a text corpus ordered in a way 
that reflects their semantic relations (Ritter, Kohonen, 1989). Employing 
SOMs or other topographically ordered feature representations to represent 
phenomenal features together with the general design principles for a bio-
inspired cognitive architecture suggested in this paper, would enable strong 
semantic computing (%RáWXü�������� 

Other models of a self-organizing topology preserving feature representa-
tion are possible and might turn out to be more suitable for various reasons 
such as performance and accuracy. However, as also mentioned above, that 
is beyond the point of this paper, which aims at presenting higher level ar-
chitectural principles where models of self-organizing topographically or-
dered representations are building blocks. Since I adhere to a systems-level 
modeling approach, subsystems of the cognitive architecture can be updated 
and substituted in an iterative fashion for improvement. 

 
 

3. HIERARCHICAL FEATURE REPRESENTATIONS 
 

How can self-organized topographically-ordered representations of  
a more abstract kind, e.g. a representation with semantically related sym-
bols that occupy neighboring places be obtained in a cognitive architecture? 
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In the mammal brain there seems to be a principle of hierarchical order-
ing of representations, e.g. the executive and motor areas seem to be hierar-
chically ordered from more abstract to less abstract representations. Con-
straining the discussion to the perceptual parts of the mammal brain, we 
find that the different sensory modalities (visual, somatosensory, auditory, 
«�� DGKHUH� WR� D� KLHUDUFKLFDO�RUJDQL]DWLRQDO� SULQFLSOH��For example, we find 
hierarchically-organized topology and probability-density preserving feature 
maps in the ventral visual stream of the visual system. These feature maps 
rely on the consecutive input from each other and tend to be hierarchically-
ordered from representations of features of a lower complexity to represen-
tations of features of a higher complexity. Thus, we find ordered representa-
tions of contour directions in V1 in the Occipital lobe, of shapes in V2, of 
objects in V4, and of faces or complex facial features in the inferior temporal 
(IT) area of the Temporal lobe. 

The hierarchical organization principle is employed artificially in Deep 
Neural Networks, i.e. in artificial neural networks with several hidden lay-
ers. A neural network that has been applied very successfully within the field 
of computer vision is the Deep Convolutional Neural Network (LeCun et al., 
1998). 

Here, when I discuss the hierarchical ordering principle for perceptual 
parts of a bio-inspired cognitive architecture, this principle is instantiated 
by hierarchical SOMs. The choice of SOMs is not based on performance, but 
on the fact that the hierarchical organization principle is also to be com-
bined with other principles in the cognitive architecture elaborated on be-
low. For the moment the SOM and its variants are considered good choices 
to explain and test principles.  

Together with collaborators, the author has shown the validity of this hi-
erarchical organizational principle repeatedly with hierarchical SOMs when 
applied to different sensory modalities. For example, in the case of the so-
matosensory modality, several experiments have been conducted to show 
how haptic features of an increasing complexity can be extracted in hierar-
chical self-organizing representations, e.g. from proprioceptive and tactile 
representations at the lower complexity end to self-organizing representa-
tions of shapes and sizes of the haptically explored objects (Johnsson et al., 
2011a). Another example in the case of the visual domain where experi-
ments have been done to show that hierarchies of ordered representations 
of postures at the lower complexity end to ordered representations of ges-
ture movements of the observed agent can be self-organized (Buonamente et 
al., 2016). 
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4. SUPPLEMENTING SENSORY SIGNALS IN PERCEPTION 
 

The brain supplements perceptions when the sensory input is not com-
plete. This is evident from various visual illusions, e.g. the Kanizsa Triangle 
(Kanizsa, 1976) where the contours of a triangle can be perceived even 
though they are actually not there. Moreover, when our eyes scan the scen-
ery before us, they are doing so by semi-random eye movements known as 
saccades directing the movements toward particularly conspicuous and, in 
some sense interesting features. Supposedly we carry out similar semi-
random movements with our hands and fingers to gain particularly interest-
ing and useful tactile sensory input when we, for example, ransack our 
pockets for a particular key, or grope about to find the doorknob in the dark. 
When we perceive our brains seem to fill in the gaps of sensory input with 
expectations, from memory, of what is likely to be there. 

A crucial aspect of biological cognition is an ability to simulate or influ-
ence perceptual activity in some brain areas due to the activity in other brain 
areas (Hesslow, 2002; Grush, 2004), e.g. the activity in areas of other senso-
ry modalities. For example, when the visual perception of a lightning evokes 
an expectation of the sound of thunder, or when visual images/expectations 
of an object is evoked when it is felt in the pocket. Hence, one supplement to 
the afferent sensory signals in perception could be such simulated Cross 
Modal Expectations. These could even override actual input, which is evi-
dent from the McGurk-MacDonald effect (McGurk, MacDonald, 1976). If  
a person sees a video with someone making the sound /da/ on which the 
lips cannot be seen closing and the actual sound played is /ba/, the expecta-
tions evoked by the visual perception may have such an influence on the 
activity caused by the actual afferent auditory sensor signals that the person 
may still hear the sound /da/. 

A variant of the SOM, the A-SOM (Johnsson et al., 2009), that adds 
adaptable associative connections between feature representations has been 
used to build artificial systems, e.g. (Johnsson, Balkenius, 2008), that 
demonstrate the supplementation of sensory input and the elicitation of 
cross-modal expectations. 

 
 

5. NETWORKS OF FEATURE REPRESENTATIONS 
 

In perception, sensory signals from receptors, together with information 
about involved exploratory actions, such as eye or hand movements, activate 
sets of feature maps. Those parts of the associated networks of feature rep-
resentations that are not elicited directly by sensory input, are activated 
through the activity in other feature representations via associative connec-
tions. Hence the perceptions will be complete even with scarce sensory in-
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put, because missing parts are filled in with likely guesses through internal 
simulations. 

Through adaptable associative connections between hierarchies of  
topographically ordered feature representations self-organizing intra- and 
intermodal Networks of Feature Representations (NFRs) are obtained. 
Some feature representations can be part of several NFRs, and the particular 
division of the feature maps into NFRs depend on how we look at it and  
how we choose to categorize the system into subsystems. The adaptive  
associative connections learn to associate simultaneous, or temporarily 
close, activity in various feature representations elicited by simultaneous, or 
temporarily close, but different ordinary input. This means that feature rep-
resentations that later lack ordinary input will be activated by activity pat-
terns associated with the ongoing activity in other feature representations in 
the NFR. For example, hearing the voice of a particular person would elicit 
activity patterns not only in the auditory hierarchies of feature representa-
tions that directly receives sensory input, but also in other, e.g. visual, fea-
ture representations in an intermodal NFR through associative activation. 
The total activity in the NFR will constitute episodic memories, imagination 
etc. 

 
 

6. MEMORY 
 

Although there are hierarchically-organized feature representations in 
the brain, it is questionable whether there are neurons²aka grandmother 
cells²that are the exclusive representatives of distinct individual objects. 
Though there is no total consensus regarding this, I consider it more likely 
that distinct individual objects are coded in a more distributed way as an 
ensemble of feature representations in the NFR, at various complexity lev-
els, across several sensory (as well as non-sensory) modalities. Hence, the 
recognition of distinct individual objects consists in the simultaneous activa-
tion of a sufficiently large and unique subset of this ensemble of representa-
tions across various modalities.  

Thus, the representation of a real or imagined concept or object is consti-
tuted by a set of associated activity patterns in various feature representa-
tions of the NFR distributed over multiple modalities. Such associated acti-
vations of topologically ordered feature representations preserve an internal 
ordering of activation and could be seen as forming a Conceptual Space 
�*lUGHQIRUV�������� 

The activation of some feature representations will tend to trigger expec-
tations/imaginations of features of the distinct individual object in other 
representations across various modalities, presumably associated by associ-
ative connections in a way similar to the activation of more features of high-
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er²or lower²complexity in hierarchically connected feature representa-
tions (which can as well be cross-modal). 

I believe that such connectivity²associative and hierarchical²between 
feature representations of various modalities and at various complexity lev-
els are what enables the filling in of missing parts of our perception by imag-
ination, but also that they enable our various kinds of memory. 

Different kinds of memory are, I believe, using the same kind of feature 
representations across modalities in our brains. What differs between dif-
ferent kinds of memory is rather how they are activated and precisely what 
ensemble of feature representations in the NFRs that are activated.  

For example, one could speculate²in a simplified way²that the working 
memory supposedly again employs networks of the same building blocks of 
feature representations obtained during early developmental phases, but 
now activated in a more transient and temporary way, perhaps from, in the 
case of the mammal brain, the frontal lobes, whereas perception as such, is 
the activation of an ensemble of feature representations due to afferent sen-
sory signals, together with the filling-in of missing parts due to cross-modal 
as well as top-down expectations at various levels of hierarchies.  

In episodic memory and imagination (i.e. internal simulation) the sets of 
associated networks of feature representations (which can also be non-
sensory, such as motor representations) are activated internally (at least 
partly) in the cognitive architecture/brain. The associatively connected rep-
resentations (actually associated activity patterns in the underlying wetware 
/ hardware) are what lends memory and imaginations their associative 
characters. 

The important point here is that it is reasonable to believe that the same 
(simple) principles are behind both the supplementation of perception and 
the associative character of memory and imagination; and the distributed, 
associative and hierarchical character of the intra- (and inter) modal repre-
sentations they all (perception, imagination and memory) rely on. That dif-
ferent faculties go into each other also explains why we tend to both keep 
memories alive (by strengthening associative connections through reactiva-
tion) and sometimes change them over time (via imagination) when we re-
capitulate. 

Semantic memory presumably corresponds to more persistent associa-
tions due to repeatedly overlapping activity from many various perceptual 
and episodic examples over time, thus forming prototypes in conceptual 
spaces. This also makes semantic memory more persistent, as well as more 
resistant in a deteriorating/aging system. 

The point here is that all kinds of memory, perceptions, imaginations, 
and expectations are proposedly using simultaneous and / or sequential 
activations of ensembles / subsets of the same NFRs across various modali-
ties in the brain. In fact, I think that there is no reason that the representa-
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tions should be constrained to the brain only, but that associated represen-
tations could also be various kinds of activity in / of the body, such as e.g. 
postural / breathing patterns, hormonal configurations etc. This would also 
explain why the change of posture / breathing patterns can change the state 
RI�WKH�PLQG��,Q�WKH�H[WHQVLRQ��HYHQ�³UHSUHVHQWDWLRQV´�WKDW�ZH�LQWHUDFW�ZLWK²
and continuously reconfigure²in the environment outside the body²
including the representations within other agents, such as humans, pets, 
machines etc.²are presumably included. 

To learn to represent novel concepts, objects or possible objects, there is 
no need for new feature representations, because they are formed through 
associating activity patterns in existing feature maps in novel ways. 

This kind of feature ensemble coding also enables / explains the ability to 
represent completely novel categories / concepts in the brain / cognitive 
architecture, and the ability to create and imagine non-existing and perhaps 
impossible concepts, objects, etc. This is because representations are com-
posed of sufficiently large ensembles of associated multi-modal features, 
and novel associated ensembles and sometimes associated ensembles corre-
sponding to concepts and imaginations that do exist (but have not yet been 
seen or reached) or do not exist in our physical reality (e.g. unicorns) can 
emerge. 

Of course, there are limits to what we can imagine and conceptualize, and 
perhaps even think about. For example, we are unable to visualize objects in 
spaces of a higher dimensionality than three. However, such limitations are 
just to be expected if all perceptions, memories and imaginations are made 
up of distributed (in space and time) activations of ensembles of associated 
features, and there are constraints on what kind of features can be repre-
sented in the brain (or cognitive architecture), which is likely. The con-
straints are probably set by biological limitations that exist due to a lack of 
evolutionary pressure, as well as determined by the development of the or-
ganism in its environment. An example of the latter is that cats raised in an 
environment consisting entirely of vertical lines during a critical develop-
mental phase during infancy will be unable to see horizontal lines (Blake-
more and Cooper, 1970). That there are constraints on what kind of features 
that can be represented also implies the possibility that all that we can think 
about regarding reality is not necessarily corresponding to all that there 
would have been to think about, had we been wired differently. 

In accordance with the reasoning above, it is reasonable to assume that 
the need for associative connections²corresponding to axon bundles in the 
neural system of a biological organism²between feature maps at various 
complexity levels within as well as between different modalities are of signif-
icance in a cognitive architecture based on self-organizing topographically-
ordered feature representations. Such associative connections need to be 
adaptive (by adjustable parameters corresponding to modifiable synapses in 
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the neural system of a biological organism) to enable the learning of associa-
tions between the activity in various feature representations. 

 
 

7. IMAGINATION 
 

In addition to an ability to automatically develop, and continuously rea-
dapt, sensory and other representations, and their interconnections that 
connect simultaneous activity within them spatially, a bio-inspired autono-
mous agent needs an ability to learn to associate activations of representa-
tions over time. This is desirable because it enables the autonomous agent to 
remember and re-enact sequences of perceptual²and other²activity across 
modalities and levels of hierarchy. 

With such an ability an autonomous agent can remember sequences of 
perceptions, and if the ability is generalized, other things as well, e.g. motor 
activities. Such perceptual sequences could, for example, be visual land-
marks. To the perceived visual landmarks, appropriate motor activity could 
be associated. With perceptual sequences simultaneously learned in other 
modalities together with cross-modal associations, the sequential memories 
are reinforced and thus diminish the influence of noise and limitations in 
sensory input. The perceptions (and preparatory responses etc.) corre-
sponding to missing input in some modalities²sensory and other²will be 
imagined, i.e. elicited through cross-modal activation. If suddenly the agent 
would lack input to some, or all, sensory modalities, it would still be able to 
operate and to some extent carry out actions associated with imagined per-
ceptions of the environment. With this kind of ability an agent would also be 
able to sit idle imagining various scenarios and the likely consequences of 
carrying out different kinds of actions. The latter is valuable for survival and 
ZLOO�DOVR�DFFHOHUDWH�WKH�DJHQW¶V�OHDUQLQJ� 

The idea to internally elicit activity patterns in perceptual, motor and 
other circuits over time (activation sequences) and in space (in various fea-
ture maps across different modalities), corresponding to the patterns that 
would have been elicited had there been sensory input and had the actions 
been carried out, is closely related to the simulation hypothesis by Hesslow 
(2002). It could in the extension also be the foundation for providing agents 
with an ability to guess the intentions of other agents, either by directly sim-
ulating the likely perceptual continuations of the perceived behavior of an 
observed agent, or by internally simulating its own likely behavior in the 
same situation under the assumption that the other agent is similar in its 
assessments, experiences and values that drives it. 

A mechanism that implements self-organizing topographically ordered 
feature representations that can be associatively and recurrently connected 
with an arbitrary number of other representations and with arbitrary time 
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delays is the Associative Self-Organizing Map (A-SOM). Hence the A-SOM 
would in some cases be a better choice, than the standard SOM, to use as 
one of the basic building blocks in the perceptual parts of a cognitive archi-
tecture. An A-SOM can learn to associate the activity in its self-organized 
representation of input data with arbitrarily many sets of parallel inputs and 
with arbitrarily long-time delays. For example, it can learn to associate its 
activity with the activity of other self-organization maps, or with its own 
activity at one or more earlier times. This allows for cross-modal expecta-
tions. For example, if a sensory modality, say the visual system in a cognitive 
architecture, produces a certain internal pattern of activity due to sensory 
input, then activity patterns are elicited in other sensory modalities corre-
sponding to the patterns of activity that are often triggered in these other 
sensory modalities through sensory inputs that usually occur simultaneous-
ly, even when they do not. Due to the ability of the A-SOM to associate its 
activity with its own activity at one or more earlier times, a mechanism for 
sequence completion that can be used for internal simulation is made possi-
ble. This is consistent with those abilities necessary for an autonomous 
agent described above. The A-SOM has been successfully tested in many 
simulations (e.g., Johnsson et al., 2011b) in several different domains, as 
well as together with real sensors such as tactile sensors (Johnsson,  
Balkenius, 2008) and cameras (Buonamente et al., 2015), and when simu-
lating likely continuations of sequences of strings of symbols and words (Gil 
et al., 2014). It has been used to simulate the sensory activity patterns likely 
to follow some initially perceived movements of actions/gestures (Buona-
mente et al., 2015). In the domain of music, a further developed and more 
mature and generalized version of the A-SOM has been used to simulate the 
sensory activity patterns likely to follow those elicited by the initial parts of 
perceived Bach chorale melodies (Buonamente et al., 2018). 

Associative connections are in place between different representations at 
various levels of feature complexity. Simultaneously-activated feature repre-
sentations develop stronger associative connectivity. The result is that we 
will find strongly interconnected sets of feature representations²and other 
kinds of circuits²in the brain/architecture. As humans, we label these and 
call them systems/components of one kind or another (depending on the 
particular discipline, the prevailing paradigm and zeitgeist), though we 
should keep in mind that these categorizations and demarcations are our 
inventions and thus somewhat arbitrary. 

The inter-connectivity of the feature representations within a modality/ 
submodality tend to be strong because it has been reinforced by simultane-
ous activations originating from the receptors of the modality specific senso-
ry organs. Thus, connective configurations / subsystems in the brain / archi-
tecture develop through the repeated simultaneous activation of sets of self-
organizing feature representations. 
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However, the feature representations within a modality also connect to 
feature representations in other modalities / systems, only to a lesser extent. 
This is due to the statistically fewer simultaneous activations of feature rep-
resentations in other modalities. Various systems activate each other 
through these associative connections that have learned to associate activity 
that normally come together. Hence, if the activity within one system, per-
haps triggered through afferent signals from sensory organs or from some 
other part of the brain/architecture, tend to correlate with the activity of 
other systems, perhaps triggered by the afferent signals from other sensory 
organs or other parts of the brain/architecture, then the inter-connectivity 
of the systems is reinforced. The foundation for these correlated activities in 
YDULRXV�V\VWHPV�LV�WKDW�VHQVRU\�VWLPXOL��DQG�WKH�FRQVHTXHQFHV�RI�DQ�DJHQW¶V�
actions, are related in a non-random way due to the statistical regularities of 
the properties of the world. These statistical regularities will be reflected in 
the associative connectivity between various systems. 

In reality the various cognitive functions are not separated from each 
other in a neat way. Rather, they blend and mix into each other. For exam-
ple, the perception of hearing a familiar person's voice can trigger both epi-
sodic memories, internal visual simulations of the person, corresponding to 
reality but also pure fantasies, etc. Internally simulated perceptual expecta-
tions in turn may trigger exploratory behavior and attention aiming at con-
firming the expectations by obtaining additional sensory input. All this 
founded on associatively connected networks of topologically ordered fea-
ture representations. 

Taken together, all this means that NFRs containing topologically  
ordered feature representations with intra- and intermodal adaptable  
associative connections enable perception, various forms of memory  
and imagination. In addition, it provides a mechanism for representing  
the ongoing activity in one system/NFR with the activity of other sys-
tems/NFRs. 

 
 

8. CONSCIOUSNESS 
 

Consciousness is about experiencing perceptions, including the percep-
tions of our own actions; imagery; memories. But who is experiencing it?  
I am considering functional consciousness here, thus leave the problem of 
qualia out of the discussion. 

In the discussion about cross-modal expectations and internal simula-
tions above, I discussed how activity in some feature representations can 
elicit reasonable activity in other feature representations through associative 
connections. The elicited activity in the latter representations correspond to 
the activity that normally would or could occur simultaneously, or timed, 
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with the activity in the first representations even though the latter lack any 
afferent input ultimately originating from sensors. 

I believe that the same mechanism with adaptive associative connections 
in the case of a bio-inspired cognitive architecture, or nerve bundles with 
synapses in the case of a neural system of a biological organism, between 
different subsets of feature representations, at various levels of abstraction, 
is significant for the realization of at least p-consciousness. From this per-
spective, the elicitations of activity in some feature representations by the 
activity in other feature representations via associative connections can be 
viewed as if the activity in the latter system (composed of the activity in 
connected, perhaps distributed, feature representations), in a sense, is rep-
resented by the activity in the former system (of associatively connected 
feature maps).  

9DULRXV�V\VWHPV�FRXOG�SHUKDSV�DOVR� µREVHUYH¶�HDFK�RWKHU�VLPXOWDQHRXVO\�
as well. The mechanisms and principles sketched above could be behind or 
be used for a kind of summarization oI�WKH�REVHUYHG�VXEV\VWHP¶V�RU�VXEV\s-
WHPV¶�DFWLYLW\�DW�D�SRVVLEO\�GLIIHUHQW�DQG�PRUH�DEVWUDFW�OHYHO� 

As also argued by Hesslow and Jirenhed (2007), perceptual simulation 
could explain the appearance of an inner world. A remaining question is 
µZKR¶�LV�REVHUYing regardless of whether it is perceptions ultimately elicited 
from sensory organs, internal simulations originating from within the brain, 
or some combination thereof. My proposal is that they are observed by other 
connected configurations of systems whose activity summarizes/represents 
the observed internal simulations and perceptions, because their corre-
sponding activity correlates due to the learning represented in the adaptive 
associated connections. The same systems could perhaps have multiple 
functions while also ³observing´ each other simultaneously as well.  

Put differently, this could be seen as one system observing the various 
Phenomenal Maps of another system, whether these are activated due to 
sensory signals or through internal simulations (imagination, episodic 
memory, working memory etc.). 

Still another way to put it is that some systems are aware of, i.e. p-
conscious / functionally conscious RI��RWKHU�V\VWHPV¶�SHUFHSWXDO�DFWLYLW\� 

The activity of associatively connected configurations of feature repre-
sentations correlates because the adaptations of the associative connections 
between the representations, and the adaptions of the representations 
themselves happens simultaneously, continuously and dynamically. At  
a lower perceptual level this means that the activation of feature representa-
tions in some sensory modalities will elicit activity in feature representations 
in other sensory modalities and consequently sensory expectations / sup-
plementations in those other modalities, as discussed above. 

Thus, I believe that adaptive associative connections between and within 
various configurations of strongly connected feature representations at vari-
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ous levels of complexity or abstraction are of significant importance for real-
izing p-consciousness, i.e. functional consciousness, in a cognitive architec-
ture. 
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