Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2023 | XXIII | 1 | 151-160

Article title

Polimorfizmy genetyczne a efekty metaboliczne działania olanzapiny

Content

Title variants

EN
Genetic polymorphisms and the metabolic effects of olanzapine

Languages of publication

Abstracts

EN
Olanzapine is an atypical antipsychotic (neuroleptic) used primarily to treat schizophrenia. The drug is mainly metabolized by the hepatic cytochrome P450 enzymes, CYP1A2 and CYP2D6. The glucuronide enzymes UGT1A and UGT2B10 are also involved in its metabolism. In some patients, olanzapine causes metabolic side effects, such as weight gain, an increase in glucose and lipid levels, and an increase in prolactin levels. Pharmacogenetic studies indicate that polymorphisms in genes encoding drug-metabolizing enzymes, transporters, and other proteins involved in metabolic pathways, may help explain the interindividual differences in response to olanzapine treatment. Thus, genetic profiling could be useful in clinical practice, mainly to identify patients with an increased risk of adverse events. The ability to personalize therapy would facilitate maximizing therapeutic efficacy and minimizing side effects.
PL
Olanzapina to atypowy lek przeciwpsychotyczny (neuroleptyk) stosowany przede wszystkim w leczeniu schizofrenii. Lek metabolizowany jest głównie przez wątrobowe enzymy cytochromu P450, CYP1A2 i CYP2D6. W metabolizm zaangażowane są również enzymy glukuronidowe, UGT1A i UGT2B10. Olanzapina u niektórych pacjentów wywołuje metaboliczne efekty uboczne, takie jak przyrost masy ciała, a także wzrost poziomu: glukozy, lipidów oraz prolaktyny. Badania farmakogenetyczne wskazują, że polimorfizmy w genach kodujących enzymy metabolizujące lek, transportery oraz inne białka zaangażowane w procesy metaboliczne mogą pomóc wyjaśnić zróżnicowaną odpowiedź pacjentów na leczenie olanzapiną. Zatem profilowanie genetyczne mogłoby być przydatne w praktyce klinicznej, głównie w celu wytypowania pacjentów z podwyższonym ryzykiem wystąpienia działań niepożądanych. Możliwość spersonalizowania terapii ułatwiłaby osiągnięcie pożądanego efektu terapeutycznego i zminimalizowała efekty uboczne.

Year

Volume

Issue

1

Pages

151-160

Physical description

Dates

published
2023

Contributors

  • Krakowska Akademia im. Andrzeja Frycza Modrzewskiego, Wydział Lekarski i Nauk o Zdrowiu, Katedra Genetyki
  • Krakowska Akademia im. Andrzeja Frycza Modrzewskiego, Wydział Lekarski i Nauk o Zdrowiu, Katedra Genetyki

References

  • Thomas K, Saadabadi A. Olanzapine. National Library of Medicine; https://www.ncbi.nlm.nih.gov/books/NBK532903/ [dostęp: 13.06.2023].
  • Monahan C, McCoy L, Powell J, Gums JG. Olanzapine/Samidorphan: New Drug Approved for Treating Bipolar I Disorder and Schizophrenia. Ann Pharmacother. 2022; 56(9): 1049–1057. https://doi.org/10.1177/10600280211070330.
  • Miyamoto S, Duncan GE, Marx CE, Lieberman JA. Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry. 2005; 10(1): 79–104. https://doi.org/10.1038/sj.mp.4001556.
  • Podogrodzka M, Jarema M. Praktyczne aspekty zastosowania olanzapiny w leczeniu schizofrenii i choroby afektywnej dwubiegunowej. Psychiatria. 2010; 7(5): 180–188.
  • Tollens F, Gass N, Becker R, Schwarz AJ, Risterucci C, Künnecke B, Lebhardt P, Reinwald J, Sack M, Weber-Fahr W, Meyer-Lindenberg A, Sartorius A. The affinity of antipsychotic drugs to dopamine and serotonin 5-HT2 receptors determines their effects on prefrontal-striatal functional connectivity. Eur Neuropsychopharmacol. 2018; 28(9): 1035–1046. https://doi.org/10.1016/j.euroneuro.2018.05.016.
  • Karlsgodt KH, Sun D, Cannon TD. Structural and Functional Brain Abnormalities in Schizophrenia. Curr Dir Psychol Sci. 2010; 19(4): 226–231. https://doi. org/10.1177/0963721410377601.
  • Joshi RS, Panicker MM. Identifying the In Vivo Cellular Correlates of Antipsychotic Drugs. eNeuro. 2018; 5(5), ENEURO.0220-18.2018. https://doi.org/10.1523/ENEURO.0220-18.2018.
  • Green WH. Child & adolescent clinical psychopharmacology. 3rd ed. LippincottWilliams & Wilkins Publishers, Philadelphia 2001.
  • Söderberg MM, Dahl ML. Pharmacogenetics of Olanzapine Metabolism. Pharmacogenomics. 2013; 14(11): 1319–1336. https://doi.org/10.2217/pgs.13.120.
  • Korprasertthaworn P, Polasek TM, Sorich MJ, McLachlan AJ, Miners JO, Tucker GT, Rowland A. In Vitro Characterization of the Human Liver Microsomal Kinetics and Reaction Phenotyping of Olanzapine Metabolism. Drug Metab Dispos. 2015; 43(11): 1806–1814. https://doi.org/10.1124/dmd.115.064790.
  • Ng CH, Lin KM, Singh BS, Chiu EYK (eds.). Ethno-Psychopharmacology: Advances in Current Practice. Cambridge University Press, New York 2008.
  • Callaghan JT, Bergstrom RF, Ptak LR, Beasley CM. Olanzapine. Pharmacokinetic and pharmacodynamic profile. Clin Pharmacokinet. 1999; 37(3): 177–193. https://doi.org/10.2165/00003088-199937030-00001.
  • Citrome L. A systematic review of meta-analyses of the efficacy of oral atypical antipsychotics for the treatment of adult patients with schizophrenia. Expert Opin Pharmacother. 2012; 13(11): 1545–1573. https://doi.org/10.1517/14656566.2011.626769.
  • Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Keefe RSE, Davis SM, Davis CE, Lebowitz BD, Severe J, Hsiao JK; Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Investigators. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med. 2005; 353(12): 1209–1223. https://doi.org/10.1056/NEJMoa051688.
  • Leucht S, Tardy M, Komossa K, Heres S, Kissling W, Davis JM. Maintenance treatment with antipsychotic drugs for schizophrenia. Cochrane Database Syst Rev. 2012; 5, CD008016. https://doi.org/10.1002/14651858.CD008016.pub2.
  • Soria-Chacartegui P, Villapalos-García G, Zubiaur P, Abad-Santos F, Koller D. Genetic Polymorphisms Associated With the Pharmacokinetics, Pharmacodynamics and Adverse Effects of Olanzapine, Aripiprazole and Risperidone. Front Pharmacol. 2021; 12, 711940. https://doi.org/10.3389/fphar.2021.711940.
  • Czerwensky F, Leucht S, Steimer W. CYP1A2*1D and *1F Polymorphisms Have a Significant Impact on Olanzapine Serum Concentrations. Ther Drug Monit. 2015: 37(2): 152–160. https://doi.org/10.1097/FTD.0000000000000119.
  • Erickson-Ridout KK, Zhu J, Lazarus P. Olanzapine Metabolism and the Significance of UGT1A448V and UGT2B1067Y Variants. Pharmacogenet Genomics. 2011;21(9): 539–551. https://doi.org/10.1097/FPC.0b013e328348c76b.
  • Ma X, Maimaitirexiati T, Zhang R, Gui X, Zhang W, Xu G, Hu G. HTR2C polymorphisms, Olanzapine-Induced Weight Gain and Antipsychotic-Induced Metabolic Syndrome in Schizophrenia Patients: A Meta-Analysis. Int J Psychiatry Clin Pract. 2014; 18(4): 229–242. https://doi.org/10.3109/13651501.2014.957705.
  • Koller D, Almenara S, Mejía G, Saiz-Rodríguez M, Zubiaur P, Román M, Ochoa D, Navares-Gómez M, Santos-Molina E, Pintos-Sánchez E, Abad-Santos F. Metabolic Effects of Aripiprazole and Olanzapine Multiple-Dose Treatment in a Randomised Crossover Clinical Trial in Healthy Volunteers: Association with Pharmacogenetics.Adv Ther. 2021; 38(2): 1035–1054. https://doi.org/10.1007/s12325-020-01566-w.
  • Templeman LA, Reynolds GP, Arranz B, San L. Polymorphisms of the 5-HT2C Receptor and Leptin Genes Are Associated with Antipsychotic Drug-Induced Weight Gain in Caucasian Subjects with a First-Episode Psychosis. Pharmacogenet Genomics. 2005: 15(4): 195–200. https://doi.org/10.1097/01213011-200504000-00002.
  • López-Rodríguez R, Román M, Novalbos J, Pelegrina ML, Ochoa D, Abad-Santos F. DRD2 Taq1A Polymorphism Modulates Prolactin Secretion Induced by Atypical Antipsychotics in Healthy Volunteers. J Clin Psychopharmacol. 2011; 31(5): 555–562. https://doi.org/10.1097/JCP.0b013e31822cfff2.
  • Lencz T, Robinson DG, Napolitano B, Sevy S, Kane JM, Goldman D, Malhotra AK. DRD2 Promoter Region Variation Predicts Antipsychotic-Induced Weight Gain in First Episode Schizophrenia. Pharmacogenet Genomics. 2010; 20(9): 569–572. https://doi.org/10.1097/FPC.0b013e32833ca24b.
  • Zubiaur P, Soria-Chacartegui P, Koller D, Navares-Gómez M, Ochoa D, Almenara S, Saiz-Rodríguez M, Mejía-Abril G, Villapalos-García G, Román M, Martín-Vílchez S, Abad-Santos F. Impact of Polymorphisms in Transporter and Metabolizing Enzyme Genes on Olanzapine Pharmacokinetics and Safety in Healthy Volunteers. Biomed Pharmacother. 2021; 133, 111087. https://doi.org/10.1016/j. biopha.2020.111087.
  • Blasi G, Selvaggi P, Fazio L, Antonucci LA, Taurisano P, Masellis R, Romano R, Mancini M, Zhang F, Caforio G, Popolizio T, Apud J, Weinberger DR, Bertolino A. Variation in Dopamine D2 and Serotonin 5-HT2A Receptor Genes is Associated with Working Memory Processing and Response to Treatment with Antipsychotics. Neuropsychopharmacology. 2015; 40(7): 1600–1608. https://doi.org/10.1038/ npp.2015.5.
  • Brennan MD. Pharmacogenetics of Second-Generation Antipsychotics. Pharmacogenomics. 2014: 15(6): 869–884. https://doi.org/10.2217/pgs.14.50.
  • Söderberg MM, Haslemo T, Molden E, Dahl ML. Influence of FMO1 and 3 Polymorphisms on Serum Olanzapine and its N-Oxide Metabolite in Psychiatric Patients. Pharmacogenomics J. 2013; 13(6): 544–550. https://doi.org/10.1038/tpj.2012.47.
  • Skogh E, Sjödin I, Josefsson M, Dahl ML. High Correlation between Serum and Cerebrospinal Fluid Olanzapine Concentrations in Patients with Schizophrenia or Schizoaffective Disorder Medicating with Oral Olanzapine as the Only Antipsychotic Drug. J Clin Psychopharmacol. 2011; 31(1): 4–9. https://doi.org/10.1097/ JCP.0b013e318204d9e2.
  • Saiz-Rodríguez M, Belmonte C, Román M, Ochoa D, Jiang-Zheng C, Koller D, Mejía G, Zubiaur P, Wojnicz A, Abad-Santos F. Effect of ABCB1 C3435T Polymorphism on Pharmacokinetics of Antipsychotics and Antidepressants. Basic Clin Pharmacol Toxicol. 2018; 123(4): 474–485. https://doi.org/10.1111/bcpt.13031.
  • Sicard MN, Zai CC, Tiwari AK, Souza RP, Meltzer HY, Lieberman JA, Kennedy JL, Müller DJ. Polymorphisms of the HTR2C gene and Antipsychotic-Induced Weight Gain: an Update and Meta-Analysis. Pharmacogenomics. 2010; 11(11): 1561–1571.https://doi.org/10.2217/pgs.10.123.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
7454770

YADDA identifier

bwmeta1.element.ojs-doi-10_48269_2451-0858-pis-2023-1-011
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.