Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2024 | XXIV | 2 | 137-151

Article title

Kardioprotekcja – analiza publikacji dotyczących protekcji mięśnia sercowego

Content

Title variants

EN
Cardioprotection: an analysis of publications on myocardial protection

Languages of publication

Abstracts

EN
The pathophysiology of a reperfusion injury, which poses a challenge after a cardiac ischemic episode, is not fully understood. Several molecular processes show possible ways to counteract this phenomenon. One is to prepare the heart for the onset of an ischemic episode, which can be achieved by physical training of the patient or pharmacotherapy. Another approach is to act pharmacologically on the miRNA or NRF2 family of transcription factors. Crucial for cardiac surgery is the use of an appropriate cardioplegin solution and to administer it correctly. Recent studies have focused particularly on the use of del Nido cardioplegin, which, when administered, allows for the extension of safe myocardial ischemia for up to 120 minutes in higher-risk patients. The use of trimetazidine makes it possible to reduce cardiovascular risk in older patients after surgery, and the administration of Alfacalcidol before valve surgery reduces the risk of perioperative complications. By inducing pathological conditions in animals, it is possible to test compounds that can counteract these phenomena or reduce their severity. Compounds such as disulfiram, crocin, stachytin, gosypine, or metformin in combination with hydrogen can reduce the risk of cardiovascular complications and cardiac remodelling. Cardioprotection is important in the pediatric population because of the effects of some therapies that cause iatrogenic myocardial damage. Administration of dexrazoxane or glutathione in combination with doxarubicin therapy can reduce myocardial damage in the pediatric population without reducing the efficacy of the chemotherapeutics. The cardioprotective effects of carvedilol, captopril, simvastatin and L-carnitine, as well as some supplements, have also been demonstrated.
PL
Patofizjologia uszkodzenia reperfuzyjnego, będącego wyzwaniem po epizodzie niedokrwiennym serca, nie została do końca poznana. Kilka procesów molekularnych wykazuje ewentualne możliwości przeciwdziałania temu zjawisku. Jeden z nich polega na przygotowaniu serca na powstanie epizodu niedokrwiennego przez trening fizyczny pacjenta czy farmakoterapię. Innym podejściem jest bezpośrednie farmakologiczne działanie na miRNA czy rodzinę czynników transkrypcyjnych NRF2. Kardioprotekcja śródoperacyjna dotyczy zarówno zabiegów kardiochirurgicznych, jak i niekardiochirurgicznych. Kluczowe w przypadku operacji kardiochirurgicznych jest zastosowanie odpowiedniego roztworu kardiopleginy oraz protokołu jej podawania. Ostatnie badania koncentrują się zwłaszcza na zastosowaniu kardiopleginy del Nido, która pozwala na wydłużenie bezpiecznego niedokrwienia mięśnia sercowego nawet do 120 min w grupie pacjentów wyższego ryzyka. Stosowanie trimetazydyny pozwala na ograniczenie ryzyka sercowo-naczyniowego w grupie starszych pacjentów po operacjach, a podawanie alfacalcidolu przed operacjami zastawkowymi zmniejsza ryzyko powikłań okołozabiegowych. Wywoływanie u zwierząt stanów patologicznych pozwala testować związki mogące przeciwdziałać tym zjawiskom lub zmniejszać ich nasilenie. Związki takie jak disulfiram, krocyna, stachydryna, gossypina, czy też metformina w połączeniu z wodorem mogą zmniejszać ryzyko nie tylko powikłań sercowo- -naczyniowych, ale także zmniejszać remodeling serca. Kardioprotekcja ma duże znaczenie w populacji pacjentów poniżej 18 r.ż. z uwagi na skutki niektórych terapii powodujących jatrogenne uszkodzenia mięśnia sercowego. Podawanie deksrazoksanu czy glutationu w połączeniu z terapią doksarubicyną pozwala ograniczyć uszkodzenie miokardium u dzieci, nie zmniejszając skuteczności działania chemioterapeutyku. Wykazano również działanie kardioprotekcyjne karwedilolu, kaptoprylu, simwastatyny i L-karnityny oraz niektórych suplementów.

Year

Volume

Issue

2

Pages

137-151

Physical description

Dates

published
2024

Contributors

  • Uniwersytet Andrzeja Frycza Modrzewskiego w Krakowie
  • Uniwersytet Andrzeja Frycza Modrzewskiego w Krakowie
author
  • Uniwersytet Andrzeja Frycza Modrzewskiego w Krakowie
  • Uniwersytet Andrzeja Frycza Modrzewskiego w Krakowie
author
  • Uniwersytet Andrzeja Frycza Modrzewskiego w Krakowie
  • Uniwersytet Andrzeja Frycza Modrzewskiego w Krakowie

References

  • Fischesser DM, Bo B, Benton RP, Su H, Jahanpanah N, Haworth KJ. Controlling Reperfusion Injury With Controlled Reperfusion: Historical Perspectives and New Paradigms. J Cardiovasc Pharmacol Ther. 2021; 26(6): 504–523.
  • Donato M, Bin EP, D’Annunzio V, Gelpi RJ. Myocardial remote ischemic preconditioning: from cell biology to clinical application. Mol Cell Biochem. 2021; 476(10): 3857–3867.
  • Quindry JC, Franklin BA. Exercise Preconditioning as a Cardioprotective Phenotype. Am J Cardiol. 2021; 148: 8–15, https://doi.org/10.1016/j.amjcard.2021.02.030.
  • Bahgat N, Abdel-Salam M, Abdel-Latif M, Abdel-Hady EA. Low-intensity exercise improves cardiac tolerance to ischemia/reperfusion injury in aged female rats with metabolic syndrome. Exp Gerontol. 2022; 160: 111711.
  • Boovarahan SR, Kurian GA. Preconditioning the rat heart with 5-azacytidine attenuates myocardial ischemia/reperfusion injury via PI3K/GSK3β and mitochondrial KATP signaling axis. J Biochem Mol Toxicol. 2021; 35(12): e22911.
  • Makkos A, Ágg B, Petrovich B, Varga ZV, Görbe A, Ferdinandy P. Systematic review and network analysis of microRNAs involved in cardioprotection against myocardial ischemia/reperfusion injury and infarction: Involvement of redox signalling. Free Radic Biol Med. 2021; 172: 237–251.
  • Suades R. miRNA-346-3p/CaMKIId axis: In’DEX’ing a new pharmacological strategy for cardioprotection. Int J Cardiol. 2021; 334: 102–103.
  • Chen M, Li X, Mu G. Myocardial protective and anti-inflammatory effects of dexmedetomidine in patients undergoing cardiovascular surgery with cardiopulmonary bypass: a systematic review and meta-analysis. J Anesth. 2022; 36(1): 5–16.
  • Cui M, Atmanli A, Morales MG, Tan W, Chen K, Xiao X, Xu L, Liu N, Bassel-Duby R, Olson EN. Nrf1 promotes heart regeneration and repair by regulating proteostasis and redox balance. Nat Commun. 2021; 12(1): 5270.
  • Mata A, Cadenas S. The Antioxidant Transcription Factor Nrf2 in Cardiac IschemiaReperfusion Injury. Int J Mol Sci. 2021; 22(21): 11939.
  • Ge H, Lin W, Lou Z, Chen R, Shi H, Zhao Q, Lin Z. Catalpol alleviates myocardial ischemia reperfusion injury by activating the Nrf2/HO-1 signaling pathway. Microvasc Res. 2022; 140: 104302.
  • El Farissi M, Keulards DCJ, Zelis JM, van ‘t Veer M, Zimmermann FM, Pijls NHJ, Otterspoor LC. Hypothermia for Reduction of Myocardial Reperfusion Injury in Acute Myocardial Infarction: Closing the Translational Gap. Circ Cardiovasc Interv. 2021; 14(8): e010326.
  • Bashtawi Y, Almuwaqqat Z. Therapeutic Hypothermia in STEMI. Cardiovasc Revasc Med. 2021; 29: 77–84.
  • Nishi M, Ogata T, Kobayakawa K, Kobayakawa R, Matsuo T, Cannistraci CV, Tomita S, Taminishi S, Suga T, Kitani T, Higuchi Y, Sakamoto A, Tsuji Y, Soga T, Matoba S. Energy-sparing by 2-methyl-2-thiazoline protects heart from ischaemia/ reperfusion injury. ESC Heart Fail. 2022; 9(1): 428–441.
  • Popov SV, Prokudina ES, Mukhomedzyanov AV, Naryzhnaya NV, Ma H, Zurmanova JM, der Ven PFMV, Maslov LN. Cardioprotective and Vasoprotective Effects of Corticotropin-Releasing Hormone and Urocortins: Receptors and Signaling. J Cardiovasc Pharmacol Ther. 2021; 26(6): 575–584.
  • Calderón-Sánchez EM, Falcón D, Martín-Bórnez M, Ordoñez A, Smani T. Urocortin Role in Ischemia Cardioprotection and the Adverse Cardiac Remodeling. Int J Mol Sci. 2021; 22(22): 12115.
  • Zhang H, Yang N, He H, Chai J, Cheng X, Zhao H, Zhou D, Teng T, Kong X, Yang Q, Xu Z. The zinc transporter ZIP7 (Slc39a7) controls myocardial reperfusion injury by regulating mitophagy. Basic Res Cardiol. 2021; 116(1): 54.
  • Ye J, Wang R, Wang M, Fu J, Zhang Q, Sun G, Sun X. Hydroxysafflor Yellow A Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Calcium Overload and Apoptosis. Oxid Med Cell Longev. 2021; 2021: 6643615.
  • Liu Y, Chen J, Xia P, Stratakis CA, Cheng Z. Loss of PKA regulatory subunit 1α aggravates cardiomyocyte necrosis and myocardial ischemia/reperfusion injury. J Biol Chem. 2021; 297(1): 100850.
  • Zhang Y, Nie H, Li S, Deng Y, Zhou W, Wu W, Xu X, Yu H, Li T. Carbon MonoxideSaturated Polymerized Placenta Hemoglobin Optimizes Mitochondrial Function and Protects Heart Against Ischemia-Reperfusion Injury. J Cardiovasc Pharmacol. 2021; 77(6): 814–821.
  • Jelemenský M, Kovácsházi C, Ferenczyová K, Hofbauerová M, Kiss B, Pállinger É, Kittel Á, Sayour VN, Görbe A, Pelyhe C, Hambalkó S, Kindernay L, Barančík M, Ferdinandy P, Barteková M, Giricz Z. Helium Conditioning Increases Cardiac Fibroblast Migration Which Effect Is Not Propagated via Soluble Factors or Extracellular Vesicles. Int J Mol Sci. 2021; 22(19): 10504.
  • Kalkhoran SB, Kriston-Vizi J, Hernandez-Resendiz S, Crespo-Avilan GE, Rosdah AA, Lees JG, Costa JRSD, Ling NXY, Holien JK, Samangouei P, Chinda K, Yap EP, Riquelme JA, Ketteler R, Yellon DM, Lim SY, Hausenloy DJ. Hydralazine protects the heart against acute ischaemia/reperfusion injury by inhibiting Drp1-mediated mitochondrial fission. Cardiovasc Res. 2022; 118(1): 282–294.
  • Noszczyk W. Chirurgia: repetytorium. PZWL, Warszawa 2009.
  • Fibak J (red.). Chirurgia dla studentów medycyny: podręcznik. Wydawnictwo Lekarskie PZWL, Warszawa 1996.
  • Karaarslan K, Abud B. Effects of Del Nido and Terminal Warm Blood Cardioplegia on Myocardial Protection and Rhythm in Isolated CABG Patients. Heart Surg Forum. 2021; 24(5): E808–E813, https://doi.org/10.1532/hsf.4103.
  • Cayir MC, Yuksel A. The Use of del Nido Cardioplegia for Myocardial Protection in Isolated Coronary Artery Bypass Surgery. Heart Lung Circ. 2020; 29(2): 301–307, https://doi.org/10.1016/j.hlc.2018.12.006.
  • Moktan Lama PB, Khakural P, Sigdel S, Raj Bhatta M, Sah Teli R, Baral RK, Bhattarai A, Pradhan B, Koirala B. Del Nido Cardioplegia in Coronary Artery Bypass Grafting Surgery: A safe, efficacious and economic alternative to St. Thomas solution; an experience from a developing nation. Perfusion. 2021; 36(5): 470–475, https://doi.org/10.1177/0267659121991033.
  • Sanetra K, Gerber W, Shrestha R, Domaradzki W, Krzych Ł, Zembala M, Cisowski M. The del Nido versus cold blood cardioplegia in aortic valve replacement: A randomized trial. J Thorac Cardiovasc Surg. 2020; 159(6): 2275–2283.e1, https:// doi.org/10.1016/j.jtcvs.2019.05.083.
  • Duan L, Hu G-H, Wang E, Zhang C-L, Huang L-J, Duan Y-Y. Del Nido versus HTK cardioplegia for myocardial protection during adult complex valve surgery: a retrospective study. BMC Cardiovasc Disord. 2021; 21(1): 604, https://doi.org/10.1186/ s12872-021-02411-w.
  • Dai Z-L, Song Y-F, Tian Y, Li Y, Lin M, Lin J, Wang Q, Wang P, Gao W-L. Trimetazidine offers myocardial protection in elderly coronary artery disease patients undergoing non-cardiac surgery: a randomized, double-blind, placebo-controlled trial. BMC Cardiovasc Disord. 2021; 21(1): 473, https://doi.org/10.1186/s12872021-02287-w.
  • Zhao K, Zhang Y, Li J, Cui Q, Zhao R, Chen W, Liu J, Zhao B, Wan Y, Ma X-L, Yu S, Yi D, Gao F. Modified Glucose-Insulin-Potassium Regimen Provides Cardioprotection With Improved Tissue Perfusion in Patients Undergoing Cardiopulmonary Bypass Surgery. J Am Heart Assoc. 2020; 9(6): e012376, https://doi.org/10.1161/ JAHA.119.012376.
  • Ellenberger C, Sologashvili T, Kreienbühl L, Cikirikcioglu M, Diaper J, Licker M. Myocardial Protection by Glucose-Insulin-Potassium in Moderate- to High-Risk Patients Undergoing Elective On-Pump Cardiac Surgery: A Randomized Controlled Trial. Anesth Analg. 2018; 126(4): 1133–1141, https://doi.org/10.1213/ ANE.0000000000002777.
  • Aslanabadi N, Entezari-Maleki T, Rezaee H, Jafarzadeh HR, Vahedpour R. Curcumin for the prevention of myocardial injury following elective percutaneous coronary intervention; a pilot randomized clinical trial. Eur J Pharmacol. 2019; 858: 172471, https://doi.org/10.1016/j.ejphar.2019.172471.
  • Venkatesh P, Chawla R, Kumar V. Re: Agrawal et al.: Collaborative Ocular Tuberculosis Study consensus guidelines on the management of tubercular uveitis-report 1: Guidelines for initiating antitubercular therapy in tubercular choroiditis (Ophthalmology. 2020 Jan 111;S0161-6420(20)30013-0. https://doi.org/10.1016/j. ophtha.2020.01.008 [Epub ahead of print]). Ophthalmology. 2020; 127(11): e100– e101, https://doi.org/10.1016/j.ophtha.2020.06.006.
  • Wei S, Xiao Z, Huang J, Peng Z, Zhang B, Li W. Disulfiram inhibits oxidative stress and NLRP3 inflammasome activation to prevent LPS-induced cardiac injury. Int Immunopharmacol. 2022; 105: 108545, https://doi.org/10.1016/j.intimp.2022.108545.
  • Zhang H, Lin J, Shen Y, Pan J, Wang C, Cheng L. Protective Effect of Crocin on Immune Checkpoint Inhibitors-Related Myocarditis Through Inhibiting NLRP3 Mediated Pyroptosis in Cardiomyocytes via NF-κB Pathway. J Inflamm Res. 2022; 15: 1653–1666, https://doi.org/10.2147/JIR.S348464.
  • Vilas-Boas DF, Oliveira RRG, Gonçalves-Santos E, Silva LS, Diniz LF, Mazzeti AL, Brancaglion GA, Carvalho DT, Caldas S, Novaes RD, Caldas IS. 4-nitrobenzoylcoumarin potentiates the antiparasitic, anti-inflammatory and cardioprotective effects of benznidazole in a murine model of acute Trypanosoma cruzi infection. Acta Trop. 2022; 228: 106314.
  • Zou R, Nie C, Pan S, Wang B, Hong X, Xi S, Bai J, Yu M, Liu J, Yang W. Co-administration of hydrogen and metformin exerts cardioprotective effects by inhibiting pyroptosis and fibrosis in diabetic cardiomyopathy. Free Radic Biol Med. 2022; 183: 35–50, https://doi.org/10.1016/j.freeradbiomed.2022.03.010.
  • Huang C-Y, Su Y-C, Lu C-Y, Chiu P-L, Chang Y-M, Ju D-T, Chen R-J, Yang L-Y, Ho T-J, Kao H-C. Edible folic acid and medicinal folinic acid produce cardioprotective effects in late-stage triple-transgenic Alzheimer’s disease model mice by suppressing cardiac hypertrophy and fibrosis. Environ Toxicol. 2022; 37(7): 1740–1749.
  • Kumar A, Williamson M, Hess A, DiPette DJ, Potts JD. Alpha-Calcitonin Gene Related Peptide: New Therapeutic Strategies for the Treatment and Prevention of Cardiovascular Disease and Migraine. Front Physiol. 2022; 13: 826122, https://doi. org/10.3389/fphys.2022.826122.
  • Cinar I, Yayla M, Tavaci T, Toktay E, Ugan RA, Bayram P, Halici H. In Vivo and In Vitro Cardioprotective Effect of Gossypin Against Isoproterenol-Induced Myocardial Infarction Injury. Cardiovasc Toxicol. 2022; 22(1): 52–62, https://doi.org/10.1007/ s12012-021-09698-3.
  • Lipshultz SE, Sambatakos P, Maguire M, Karnik R, Ross SW, Franco VI, Miller TL. Cardiotoxicity and cardioprotection in childhood cancer. Acta Haematol. 2014; 132(3–4): 391–399.
  • van Dalen EC, Caron HN, Dickinson HO, Kremer LCM. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. 2008; (2): CD003917, https://doi.org/10.1002/14651858.CD003917.pub3. Update in: Cochrane Database Syst Rev. 2011; (6): CD003917.
  • Bassareo PP, Monte I, Romano C, Deidda M, Piras A, Cugusi L, Coppola C, Galletta F, Mercuro G. Cardiotoxicity from anthracycline and cardioprotection in paediatric cancer patients. J Cardiovasc Med. 2016; 17 Suppl 1: S55–63, https://doi. org/10.2459/JCM.0000000000000375.
  • Spallarossa P, Garibaldi S, Altieri P, Fabbi P, Manca V, Nasti S, Rossettin P, Ghigliotti G, Ballestrero A, Patrone F, Barsotti A, Brunelli C. Carvedilol prevents doxorubicininduced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol. 2004; 37(4): 837–846, https://doi.org/10.1016/j.yjmcc.2004.05.024.
  • Matsui H, Morishima I, Numaguchi Y, Toki Y, Okumura K, Hayakawa T. Protective effects of carvedilol against doxorubicin-induced cardiomyopathy in rats. Life Sci. 1999; 65(12): 1265–1274, https://doi.org/10.1016/s0024-3205(99)00362-8.
  • Granados-Principal S, Quiles JL, Ramirez-Tortosa CL, Sanchez-Rovira P, Ramirez-Tortosa MC. New advances in molecular mechanisms and the prevention of adriamycin toxicity by antioxidant nutrients. Food Chem Toxicol. 2010; 48(6): 1425–1438, https://doi.org/10.1016/j.fct.2010.04.007.
  • Iarussi D, Auricchio U, Agretto A, Murano A, Giuliano M, Casale F, Indolfi P, Iacono A. Protective effect of coenzyme Q10 on anthracyclines cardiotoxicity: control study in children with acute lymphoblastic leukemia and non-Hodgkin lymphoma. Mol Aspects Med. 1994; 15 Suppl: s207–212. https://doi.org/10.1016/00982997(94)90030-2.
  • De Leonardis V, Neri B, Bacalli S, Cinelli P. Reduction of cardiac toxicity of anthracyclines by L-carnitine: preliminary overview of clinical data. Int J Clin Pharmacol Res. 1985; 5(2): 137–142.
  • Suttorp N, Toepfer W, Roka L. Antioxidant defense mechanisms of endothelial cells: glutathione redox cycle versus catalase. Am J Physiol. 1986; 251(5 Pt 1): C671– 680, https://doi.org/10.1152/ajpcell.1986.251.5.C671.
  • Mohamed HE, El-Swefy SE, Hagar HH. The protective effect of glutathione administration on adriamycin-induced acute cardiac toxicity in rats. Pharmacol Res. 2000; 42(2): 115–121, https://doi.org/10.1006/phrs.1999.0630.
  • Bansal N, Amdani SM, Hutchins KK, Lipshultz SE. Cardiovascular disease in survivors of childhood cancer. Curr Opin Pediatr. 2018; 30(5): 628–638, https://doi. org/10.1097/MOP.0000000000000675.
  • Badreldeen A, El Razaky O, Erfan A, El-Bendary A, El Amrousy D. Comparative study of the efficacy of captopril, simvastatin, and L-carnitine as cardioprotective drugs in children with type 1 diabetes mellitus: a randomised controlled trial. Cardiol Young. 2021; 31(8): 1315–1322, https://doi.org/10.1017/S1047951121000226.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
59581502

YADDA identifier

bwmeta1.element.ojs-doi-10_48269_2451-0858-pis-2024-2-010
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.