Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2016 | 63 | 3 | 309-328

Article title

The Copula-Based Total Claim Amount Regression Model with an Unobserved Risk Factor

Content

Title variants

PL
Regresyjny model łącznej wartości szkód z uwzględnieniem nieobserwowalnego czynnika ryzyka

Languages of publication

Abstracts

PL
W masowych portfelach ryzyk zakłady ubezpieczeń przeprowadzają tzw. taryfikację, której celem jest wyznaczenie składki czystej dla pojedynczego ryzyka. Modele statystyczne stosowane obecnie w praktyce należą najczęściej do klasy uogólnionych modeli liniowych (GLM), w których szacuje się w osobnych modelach wartości oczekiwane dwóch zmiennych losowych: średniej wartości szkody oraz liczby szkód dla ryzyka. Składka czysta definiowana jest wtedy jako iloczyn uzyskanych wartości. Takie podejście wymaga założenia niezależności pomiędzy rozpatrywanymi dwoma zmiennymi losowymi. Jednak w literaturze to założenie jest podważane. Celem tego artykułu jest zaproponowanie modelu z kopulą uwzględniającego nieobserwowalny czynnik ryzyka w modelowaniu liczby szkód. Model ten służy do oszacować oczekiwanej wartości iloczynu dwóch zmiennych losowych: średniej wartości szkody oraz liczby szkód dla pojedynczego ryzyka przy założeniu zależności oraz występowaniu czynnika nieobserwowalnego. W pracy szczegółowo opisano aspekty teoretyczne związane z budową modelu oraz szacowaniem wartości oczekiwanej. Ponadto w licznych przykładach przedstawiono numeryczne rozwiązania obliczeniowe w programie R. Dodatkowo udostępniono kody programu R na stronie internetowej http://web.ue.katowice.pl/woali/.
EN
Nowadays a common practice of any insurance company is ratemaking, which is defined as the process of classification of the mass risk portfolio into risk groups where the same premium corresponds to each risk. As generalised linear models are usually applied, the process requires the independence between the average value of claims and the number of claims. However, in literature this assumption is called into question. The interest of this paper is to propose the copula-based total claim amount model taking into account an unobservable risk factor in the claim frequency model. This factor, called also as unobserved heterogeneity, is treated as a random variable influencing the number of claims. The goal is to estimate the expected value of the product of two random variables: the average value of claims and the number of claims for a single risk assuming the dependence between the average value of claims and the number of claims for a single risk and the dependence between the number of claims for a single risk and the unobservable risk factor. We give details of the theoretical aspects of the model as well as the empirical example. To acquaint the reader with the model operation, every step of the process of the expected value estimation in described and the R code is available for download, see http://web.ue.katowice.pl/woali/.

Year

Volume

63

Issue

3

Pages

309-328

Physical description

Dates

published
2016

Contributors

  • University of Economics in Katowice, Faculty of Economics, Department of Statistical and Mathematical Methods in Economics

References

  • Antonio K., Valdez E. A., (2012), Statistical Concepts of A Priori and A Posteriori Risk Classification in Insurance, Advances in Statistical Analysis, 96 (2), 187–224.
  • Boucher J. P., Denuit M., Guillén M., (2007), Risk Classification for Claim Counts: A Comparative Analysis of Various Zeroinflated Mixed Poisson and Hurdle Models North American Actuarial Journal, 11 (4), 110–131.
  • Boucher J. P., Denuit M., Guillén M., (2009), Number of Accidents or Number of Claims? An Approach with Zero-Inflated Poisson Models for Panel Data, Journal of Risk and Insurance, 76 (4), 821–846.
  • Bühlmann H., Gisler A., (2005), A Course in Credibility Theory and its Applications, Springer.
  • Cizek P., Härdle W. K., Weron R., (2011), Statistical Tools for Finance and Insurance, Springer Science & Business Media.
  • De Jong P., Heller G. Z., (2008), Generalized Linear Models for Insurance Data, Cambridge University Press.
  • Denuit M., Maréchal X., Pitrebois S., Walhin J. F., (2007), Actuarial Modelling of Claim Vounts: Risk Classification, Credibility and Bonus–malus Systems, John Wiley & Sons, Chichester.
  • Dimakos X. K., Di Rattalma A. F., (2002), Bayesian Premium Rating with Latent Structure, Scandinavian Actuarial Journal, 2002 (3), 162–184.
  • Frees E. W., (2009), Regression Modeling with Actuarial and Financial Applications, Cambridge University Press.
  • Joe H., (1997), Multivariate Models and Multivariate DSependence Concepts, CRC Press.
  • Karlis D., (2001), A General EM Approach for Maximum Likelihood Estimation in Mixed Poisson Regression Models, Statistical Modelling, 1 (4), 305–318.
  • Krämer N., Brechmann E. C., Silvestrini D., Czado C., (2013), Total Loss Estimation using Copula-based Regression Models, Insurance: Mathematics and Economics, 53, 829–839.
  • Nelsen R. B., (1999), An Introduction to Copulas, Springer Science & Business Media.
  • Ohlsson E., Johansson B., (2010), Non-life Insurance Pricing with Generalized Linear Models, Springer.
  • R Core Team (2014), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R–project.org/.
  • Sheather S. J., Jones M. C., (1991), A Reliable Data-based Bandwidth Selection Method for Kernel Density Estimation, Journal of the Royal Statistical Society, Series B (Methodological), 683–690.
  • Shi P., Feng X., Ivantsova A., (2015), Dependent Frequency–severity Modeling of Insurance Claims, Insurance: Mathematics and Economics, 64, 417–428.
  • Sklar M., (1959), Fonctions de Répartition a n Dimensions et Leurs Marges, Université de Paris 8.
  • Sun J., Frees E. W., Rosenberg M. A., (2008), Heavy-tailed Longitudinal Data Modeling Using Copulas, Insurance: Mathematics and Economics, 42 (2), 817–830.
  • Trzęsiok M., Wolny-Dominiak A., (2015), Złożony Mieszany Rozkład Poissona – Zastosowania Ubezpieczeniowe, Studia Ekonomiczne, 227, 85–95.
  • Wanat S., (2012), Modele Zależności w Agregacji Ryzyka Ubezpieczyciela. Zeszyty Naukowe, Uniwersytet Ekonomiczny w Krakowie, Seria Specjalna, Monografie.
  • Wolny-Dominiak A., (2014), Taryfikacja w Ubezpieczeniach Majątkowych z Wykorzystaniem Modeli Mieszanych, Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach.
  • Wolny-Dominiak A., Trzęsiok M., (2014), insuranceData: A Collection of Insurance Datasets Useful in Risk Classification in Non-life Insurance, R package version 1.0.
  • Wolny-Dominiak A., Trzpiot G., (2013), GLM and Quantile Regression Models in A Priori Ratemaking, Insurance Review, 4, 49–57.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
1050537

YADDA identifier

bwmeta1.element.ojs-doi-10_5604_01_3001_0014_1211
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.