Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2024 | 25 | 4 | 137-155

Article title

On some statistical properties of a stationary Gaussian process in the presence of measurement errors

Content

Title variants

Languages of publication

Abstracts

EN
Process outputs of many production processes like chemical, food processing and pharmaceutical industry follow a stationary Gaussian process. Some amount of measurement error always present in the measured data due to inaccurate measuring processes. Throughout this paper, we discuss some statistical properties like the mean and variance of a stationary Gaussian process when observed data are affected by measurement errors. As a special case, we discuss a stationary autoregressive process of order one with Gaussian white noise where measurement error follows an independent Gaussian distribution.

Year

Volume

25

Issue

4

Pages

137-155

Physical description

Dates

published
2024

Contributors

author
  • Indian Statistical Institute, SQC & OR Unit, India
author
  • Indian Statistical Institute, SQC & OR Unit, India

References

  • Abay, K. A., Wossen, T., Abate, G. T., Stevenson, J. R., Michelson, H., & Barrett, C. B., (2023). Inferential and behavioral implications of measurement error in agricultural data. Annual Review of Resource Economics, 15(1), pp. 63-83.
  • Blackwell, M., Honaker, J., & King, G., (2017). A unified approach to measurement error and missing data: overview and applications. Sociological Methods & Research, 46(3), pp. 303-341.
  • Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M., (2015). Time series analysis: forecasting and control. John Wiley & Sons.
  • Brockwell, P. J., Davis, R. A. (Eds.), (2002). Introduction to time series and forecasting. New York, NY: Springer New York.
  • Carroll, R. J., (1998). Measurement error in epidemiologic studies. Encyclopedia of biostatistics, 3, pp. 2491-2519.
  • Costa, A. F., Castagliola, P., (2011). Effect of measurement error and autocorrelation on the X chart. Journal of Applied Statistics, 38(4), pp. 661-673.
  • Garza-Venegas, J. A., Tercero-Gómez, V. G., Lee Ho, L., Castagliola, P., & Celano, G., (2018). Effect of autocorrelation estimators on the performance of the X control chart. Journal of Statistical Computation and Simulation, 88(13), pp. 2612-2630.
  • Kotz, S., Balakrishnan, N., & Johnson, N. L., (2019). Continuous multivariate distributions, Volume 1: Models and applications (Vol. 334). John Wiley & Sons.
  • Koutsoyiannis, A., (1977). Theory of econometrics: an introductory exposition of econometric methods. (No Title).
  • Linna, K. W., Woodall, W. H., (2001). Effect of measurement error on Shewhart control charts. Journal of Quality technology, 33(2), pp. 213-222.
  • Maleki, M. R., Amiri, A., & Castagliola, P., (2017). Measurement errors in statistical process monitoring: A literature review. Computers & Industrial Engineering, 103, pp. 316-329.
  • Noor-ul-Amin, M., Javaid, A., Hanif, M., & Dogu, E., (2022). Performance of maximum EWMA control chart in the presence of measurement error using auxiliary information. Communications in Statistics-Simulation and Computation, 51(9), pp. 5482- 5506.
  • Runger, G. C., Willemain, T. R., (1995). Model-based and model-free control of autocorrelated processes. Journal of Quality Technology, 27(4), pp. 283-292.
  • Schennach, S. M., (2016). Recent advances in the measurement error literature. Annual Review of Economics, 8(1), pp. 341-377.
  • Shongwe, S. C., Malela-Majika, J. C., (2021). A new double sampling scheme to monitor the process mean of autocorrelated observations using an AR (1) model with a skip sampling strategy. Computers & Industrial Engineering, 153, p. 107084.
  • Shongwe, S. C., Malela-Majika, J. C., & Castagliola, P., (2021). A combined mixed-s-skip sampling strategy to reduce the effect of autocorrelation on the X scheme with and without measurement errors. Journal of Applied Statistics, 48(7), pp. 1243-1268.
  • Shongwe, S. C., Malela-Majika, J. C., & Molahloe, T., (2019). One-sided runs-rules schemes to monitor autocorrelated time series data using a first-order autoregressive model with skip sampling strategies. Quality and Reliability Engineering International, 35(6), pp. 1973-1997.
  • Shumway, R. H., Stoffer, D. S., (2017). Time series analysis and its applications: with R examples. Springer
  • Wu, C. W., (2011). Using a novel approach to assess process performance in the presence of measurement errors. Journal of Statistical Computation and Simulation, 81(3), pp. 301-314.
  • Zhang, N. F., (1998). Estimating process capability indexes for autocorrelated data. Journal of Applied Statistics, 25(4), pp. 559-574.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
59193266

YADDA identifier

bwmeta1.element.ojs-doi-10_59139_stattrans-2024-007
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.