Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2025 | 26 | 1 | 1-8

Article title

Generalised spatial autocorrelation coefficients

Content

Title variants

Languages of publication

Abstracts

EN
The article focuses on properties generalised to the multidimensional case of known coefficients of spatial correlation. The main result of the work is the decomposition of the introduced generalised autocorrelation coefficients into the sum of ordinary autocorrelation coefficients, but calculated on the basis of the principal components of the originally observed multidimensional variable. The development is illustrated with an empirical example. The coefficients provide a more detailed description of the spatial relationships of a set of variables defined in a population.

Year

Volume

26

Issue

1

Pages

1-8

Physical description

Dates

published
2025

Contributors

  • University of Economics in Katowice, Econometrics and Mathematics, Deaprtment of Statistics

References

  • Cliff, A. D., Ord, J. K., (1981). Spatial Processes: Models and Applications. Pion, London.
  • Du, Z., Jeong, J. S., Jeong, M. K. and Kong, S. G., (2012). Multidimensional local spatial autocorrelation measure for integrating spatial and spectral information in hyperspectral image band selection. Applied Intelligence, 36, pp. 542-552.
  • Geary, R. C., (1954). The contiguity ratio and statistical mapping. The Incorporated Statistician, 5 (3), pp. 115-145.
  • Getis, A., Ord, J. K., (1992). The analysis of spatial association by use of distance statistic. Geographical Analysis, 24(3), pp. 189-206.
  • Griffith, D. A., Chun, Y., (2022). Some useful details about Moran coefficient, Geary ratio and the joint count indices of spatial autocorrelation. Journal of Spatial Econometric, 3:12.
  • Harville, D. A., (1997). Matrix Algebra from a Statistician's Perspective, Springer New York, Berlin, Heidelberg, Barcelona, Hong Kong, London, Milan, Paris, Singapore, Tokyo.
  • Krzys´ko, M., Nijkamp, P., Ratajczak, W., Wołyn´ski, W., Wojtyła, A. and Wenerska, B., (2023). A novel spatio-temporal principal component analysis based on Geary's contiguity ratio. Computers, Environment and Urban Systems, 103, pp. 1-8.
  • Krzys´ko, M., Nijkamp, P., Ratajczak, W.,Wołyn´ski, W., Wojtyła, A. and Wenerska, B., (2024). Spatio-temporal principal component analysis. Spatial Economic Analysis, 19:1, pp. 8-29. doi: 10.1080/17421772.2023.2237532.
  • Leontief, W. W., (1986). Input - Output Economics, Oxford University Press, New York.
  • Moran, P. A. P., (1950). Notes on Continuous Stochastic Phenomena. Biometrika, 37 (1), pp. 17-23. doi:10.2307/2332142.
  • Morrison, D. F., (1976). Multidimensional Statistical Methods, McGraw-Hill New York.
  • Overmars, K. P., de Koning, G. H. J. and Veldkamp, A., (2003). Spatial autocorrelation in multi-scale land use models. Ecological Modelling, 164, pp. 257-270.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
59315514

YADDA identifier

bwmeta1.element.ojs-doi-10_59139_stattrans-2025-001
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.