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On representativeness, informative sampling, nonignorable
nonresponse, semiparametric prediction and calibration

Abdulhakeem Eideh'

Abstract

Informative sampling refers to a sampling design for which the sample selection
probabilities depend on the values of the model outcome variable. In such cases the model
holding for the sample data is different from the model holding for the population data.
Similarly, nonignorable nonresponse refers to a nonresponse mechanism in which the
response probability depends on the value of a missing outcome variable. For such
a nonresponse mechanism the model holding for the response data is different from the
model holding for the population data. In this paper, we study, within a modelling
framework, the semi-parametric prediction of a finite population total by specifying the
probability distribution of the response units under informative sampling and nonignorable
nonresponse. This is the most general situation in surveys and other combinations of
sampling informativeness and response mechanisms can be considered as special cases.
Furthermore, based on the relationship between response distribution and population
distribution, we introduce a new measure of the representativeness of a response set and
anew test of nonignorable nonresponse and informative sampling, jointly. Finally,
a calibration estimator is obtained when the sampling design is informative and the
nonresponse mechanism is nonignorable.

Key words: calibration, representative measure, response distribution, nonignorable
nonresponse, informative sampling esign.

1. Introduction

Informative sampling refers to sampling design for which the sample selection
probabilities depend on the values of the model outcome variable (or the model
outcome variable is correlated with design variables not included in working model).
In such cases the model holding for the sample data (after sampling) is different from
the model holding for the population data (before sampling); see Pfeffermann et al.
(1998). In the same way, nonignorable nonresponse refers to nonresponse mechanism
in which the response probability depends on the value of a missing outcome variable;
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see Little (1982). For such nonresponse mechanism the model holding for the response
data (after responding) is different from the model holding for the population data;
Eideh (2007, 2012). From the literature review on survey sampling, it is clear that
ignoring informative sampling or nonignorable nonresponse yield biased descriptive
and analytics inferences about finite population parameters; see, for example,
Chambers and Skinner (2003) and Eideh (2009). In recent articles, Eideh (2016, 2020)
considers parametric prediction of finite population total under informative sampling
design and nonignorable nonresponse. The author proved that, the failure to account
informative sampling and nonignorable nonresponse in the analysis of survey data
leads to biased inferences about the population of interest. In this paper, we study,
within a modeling framework, the semi-parametric prediction of finite population
total, by specifying the probability distribution of the observed measurements under
informative sampling and nonignorable nonresponse. This is the most general situation
in surveys and other combinations of sampling informativeness and response
mechanisms can be considered as special cases. Furthermore, based on the relationship
between response distribution and population distribution, we introduced a new
measure of representativeness of a response set, called generalized R-indicator,
and a new test of nonignorable nonresponse and informative sampling, jointly.

The paper is structured as follows. Section 2 is devoted to notations. In Section 3
we review the definition of sample, sample-complement, response, and nonresponse
distributions, and relationships between their mathematical expectations. Section 4
describes estimation of response probabilities under nonignorable nonresponse.
In Section 5 a new test of nonignorable nonresponse and informative sampling was
developed. In Section 6 we discuss different ways to generalize a measure of
representativeness. Section 7 is devoted to the basic idea of prediction. In Section 8 we
present the methodology of the semiparametric prediction of finite population total
under informative sampling and nonignorable nonresponse. Finally, Section 9 provides
the conclusions.

2. Notations

Let U = {1,..., N} denote a finite population consisting of N units. Let y be the
study or outcome variable of interest and let y; be the value of y for the i-th population
unit. A probability sample s is drawn from U according to a specified sampling design.
The sample size is denoted by n. Let x; = (xil, v xip)’, i € U be the values of a vector
of auxiliary variables, x4, ..., x,, and z = {z;,..., zy} be the values of known design
variables, used for the sample selection process not included in the model under
consideration. In what follows, we consider a sampling design with selection
probabilitiest; = Pr(i € s) > 0, and sampling weight w; =1/m; i=1,...,N.
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In practice, themr;’s may depend on the population values(x,y,z). We express this
dependence by writing: m; = Pr(i € s|x,y,z) for all unitsi € U. Denote by
I=(I,...,Iy) the N by 1 sample indicator (vector) variable, such that I; = 1 if unit
i € U is selected to the sample and I; = 0 if otherwise. Therefore, s = {ili € U,I; = 1}
and its complement is§ = ¢ = {i|i € U,I; = 0}. We consider the population values
Y1,--.,Yn as random variables, which are independent realizations from a distribution
with probability density functions (pdf) f,(y;|x;;0), indexed by a vector of
parameters 6.

In addition to the effect of complex sample design, one of the major problems in the
analysis of survey data is that of missing values. Denote by R = (R4, ..., Ry)’ the N by
1 response indicator (vector) variable such that R; = 1 if unit i € s is observed and
R; = 0 if otherwise. We assume that these random variables are independent of one
another and of the sample selection mechanism. The response set is defined accordingly
as v = {i € s|R; = 1} and the nonresponse set by 7 = {i € s|R; = 0}. We assume
probability sampling so that 7; = Pr(i € s) > 0 for all units i € U. Let y; = Pr(i €
r|x,y,z) > 0and ¢; = 1/1;be the response probability and response weights for all
units i € s. Let 0 = {(x;,[;),i € U}, {m;,R;,i € s}U {(y;,x;),i €} and N, n,and m,
be the available information from the sample and response sets. Furthermore, the
following notations are frequently used in the paper: let f, , E,(-) 5fs .Es()sfs, Es();
frEr(*); and f7, Ez(-)denote the probability density functions and mathematical
expectations of the population, sample, and sample-complement, response and
nonresponse distributions, respectively.

3. Key equations

This section is based on Eideh (2020) and the references therein. The methodology
in this paper is based on the following equations:

E, (yilx) = E (@iwyilx) /Er(@iw;|xy), (1)
_ Er(puwyilx)

Es(yilxi) - E-(@ilx) > (2)

Es(yilx)) = E-{oi(w; — Dyilxi}/E-{oi(w; — Dx;}, (3)

E;(yilx) = E-{(; — Dy;lx;}/E-{(9; — Dlx;}, (4)

frilx) = £r WD (g 1), (5)

Er(@iwilxyyy)
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Consequently, E,(y;lx;), Es(yilx:), Es(vilxi), Er(yilx;) and Ez(y;lx;) can be

estimated based on {xi, Vi, ¢l ,Wi; 1 € r}. For estimation of ¢;, see Section 4.

4. Estimation of response probabilities under nonignorable nonresponse

Under nonignorable nonresponse, the values of y; for i € r are available, but for
i & rare not available, so we cannot fit the following nonresponse model:

o Pr(Ri = 1]i € ‘ exp(Yo+y1Xi+V2yi) 6
1_/) T( |l Sy Xi yl) 1+exp (Yo +v1Xi+V2Yi) ©

directly using the maximum likelihood method. A recent approach of estimation ;
under nonignorable nonresponse is discussed by Sverchkov (2008) using missing
information principle. AssumeR;: Bernoulli(y;(x;, y;,v)), then

Ti 1_Ti
failxny) = Wil yey)) (1= yuy)) (7)
The maximum likelihood estimator of y satisfies:

al(y) Z alo.g(lp (xuyi 7))
— 4ier

i i =0. (8)

+ Dier 3y

Using (4), the observed log-likelihood equation is:

[tpl(xl yiy)—=118 log(1=vi(xyi.¥))
Zalog(lpl(xuyuy)) + z aay )|xi}
((pz(xuyu ]/) 1)|xi]

[<m(xl i) o og(1tileiyin)

_y  2lgWitiy) 5 oL B
= Yier ay + Lier J(@iCeyi) - D frilx)dy; =0 ®)

ier

Hence, ¥; = ¥;(7) = ¥ (x;, ¥, 7) = Pr(i € rlx;,y;,7) and then @; = 1/;.
From now on, to simplify notation, we will use 1; to denote ;or ;.

5. New test of nonignorable nonresponse and informative sampling,
jointly
According to (5), the response distribution f,.(y;|x;) of y;, i € r, is different from

the population distribution, f,(y;|x;), unless E.(@;w;|x;, ;) = E,(@;w;|x;) for all
units i € U, that is when the sampling design is noninformative and nonresponse
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mechanism is ignorable. In such cases, the model holding for the response data
(after sampling) is the same as the model holding for the population data (before
sampling). The main target of inference is estimationE), (y;|x;). According to Eideh
(2020), we have:

Es(Wilxy,yiy) Ep(milxiyiy)
Erilx) = Ep {Ess(lpﬂxife‘;‘]/) Ei(ﬂilxi.9.y) yi| xi} * B Oilxo). (10)

This relationship illustrates that the failure to account nonignorable nonresponse
and informative sampling design can bias the inference. So, testing the ignorable of
nonresponse and the informativeness of sampling design is necessary, which is the aim
of this section.

Recall that if E,.(@;w;|x;, ¥;) = E.(@;w;|x;), for all units i € U, thenf, (y;|x;) =
fp(¥ilx;). Consequently, in the spirit of equation (5), we introduce the following new
test of ignorable nonresponse and informative sampling, jointly, by testing

Ho: Ex(@wi|xi, yi) = Er(@wilx;) versus Hy: Er(@iwilx;, yi) # Er(@owilx;) (1)
at a level of significance.
In addition to that, testing of noninformative sampling design and nonresponse
mechanism is missing completely at random, and can be approached by testing:
Hy: E-(@;w;|x;, y;) = constant versus H;: E.(¢;w;|x;, y;) # constant (12)
at a level of significance.
Particular cases:

(a) If the sampling design is noninformative, that is, the sample selection process can
be ignored, then the test of nonignorable nonresponse is determined by testing:

Ho: E,(@;lx;, ¥) = E(@;lx;) versus Hy: E,.(@;]x;, ¥:) # E-(@;]x;) (13)
at a level of significance.
(b) If nonresponse mechanism is ignorable, then the test of informativeness can be

conducted by testing:
Ho: Ex(Wi|x;, yi) = Er(wilx;) versus Hy: Ep(wilx, y;) # Er-(wilx;) (14)

at a level of significance.
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The above hypotheses can be tested by using the general regression test approach,
by specifying the full model. For example, in (11) and (12), assume the full model is
given by:

E-(@iwilxi, yi) = Bo + Prxi + Bayi- (15)

Then, (11) becomesHy: f, = 0, and (12) says Hy: f; = f, = 0.

6. Generalized Measure of Representativeness

Schouten et al. (2009) proposed an indicator which we call an R-indicator (‘R’ for
representativeness), for the similarity between the response to a survey and the sample
or the population under investigation. This similarity can be referred to as
“representative response”. The R-indicator that they proposed employs estimated
response probabilities.

Definition 1 (strong): A response subset is representative with respect to the sample if
the response propensities p; are the same for all units in the population. That is,

pi =Pr(R;=1|l;=1) = pforall unitsi € U (16)
and if the response of a unit is independent of the response of all other units.

Under the assumption that the individual response propensities p; are known,
Schouten et al. (2009) defined the R-indicator as:

R(p) =1-25(p), (17)

where

S() = 75210 = P)% p =7 Tl pi (18)

One may view R as a lack of the association measure. When R(p) = 1 there is no
relation between any survey item and the missing-data mechanism. The R-indicator
takes values on the interval [0, 1] with the value 1 being strong representativeness and
the value 0 being the maximum deviation from strong representativeness.

Schouten et al. (2009) pointed that “in practice these propensities are unknown.
Furthermore, in a survey, we only have information about the response behaviour of
sample units. We, therefore, have to find alternatives to the indicators R. Let p; denote
an estimator for p; which uses all or a subset of the available auxiliary variables.
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Methods that support such estimation are, for instance, logistic or probit regression
models”. The authors replace R by the estimatorsR:

R() =1-25(0).5(0) = |7 Sit (b= P)% 5 =y Zly i (19)

N-1“1=

The R-indicator introduced by Schouten et al. (2009) assumed that the sampling
design is noninformative and nonresponse mechanism is ignorable. In this section we
develop a new indicator of representative response of the survey and the population
when the sampling design is informative and the nonresponse mechanism
nonignorable. It should be pointed here that, under nonignorable nonresponse,
we cannot compute the propensity scores for all units in the sample, see Section 4,
consequently, the formulas defined in equation (19) are not applicable in such cases.

For simplicity, assume no auxiliary variables are available. In the essence of
equation (5), let us consider the following four cases.

Case 1: Sampling design is informative and nonresponse mechanism is nonignorable
(in), then

_ Er(piwi) )
fr&) = Er(QDiWiD/i)fp(yl)' (20)

In this case, the response distribution represents the population distribution if
E (¢l W, ) =E,.(o;w;|y;). That is, E,(@;w;|y;) = constant. In this case, we introduce

the following definition.

Definition 2: A response set is representative with respect to the population if the
product of the response weights and sampling weights ¢;w; = d; are the same for all
units in the population and if the response of a unit is independent of the response of
all other units. That is, o;w; = d; = d for all unitsi € U.

Thus, we define a generalized R-indicator as follows:

R(d) =1-28(a), (21)
where
A 1 a ~ 2\ 2
$(d) = J g i di (d;-d) (22)
and
s 1 m A5 N 5
d= m—laizlﬂ di(d;), ¢w; =d;. (23)
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Case 2: Sampling design is noninformative and nonresponse mechanism is
nonignorable (nn), then

_ Er(@y) .
frO) =505 o 00)- (24)

In this case, the response distribution represents the population distribution if
E (¢l ) =E,(@;|y;). Thatis, E,(¢;|y;) = constant. In this constant, we introduce the

following definition.
Definition 3: A response set is representative with respect to the population if the
response weights ¢; are the same for all units in the population and if the response of

a unit is independent of the response of all other units. That is, ¢; = ¢ forall unitsi € U.

Thus, we define a generalized R-indicator as follows:

R\nn((p) =1- 2§nn((p)’ (25)
where

~ 1 A~ A =

Spn(@) = \/2,@—1@2511 ?i(Pi — Pnn)? (26)
and

- 1 ~

Pnn = an—lal ?;1 (piz' (27)

Case 3: Sampling design is informative and nonresponse mechanism is ignorable (ii),
then

iy = 20 g (), (28)

 Er(wily)
In this case, the response distribution represents the population distribution if
E (Wl.)ZEr(wl-|yl-). That is, E,.(w;|y;) = constant. In this case, we introduce the

following definition.

Definition 4: A response set is representative with respect to the population if the
sampling weighs w; are the same for all units in the population and if the response of
a unit is independent of the response of all other units. That is, w; = w for all units
ieVU.

Thus, we define a generalized R-indicator as follows:

Ri(w) =1-25;(w), (29)
where

Su(w) = \/;zﬁlwi(wi — )2 (30)

2"{21 4
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and

~ 1
W= mowh. (31)

Case 4: Sampling design is noninformative and nonresponse mechanism is ignorable
(ii), then
£ = (v (32)

In this case, the response distribution represents the population distribution,
and no need a measure of a representative subset.
Research in this highly interested generalized R-indicator is in progress.

7. Prediction of Finite Population Total

This section is devoted to the basics of the prediction of finite population total,
taking into account informative sampling design and nonignorable nonresponse
mechanism. Assume single-stage population model. Let

T =31y =YiesVi + DiesVi = Dier Vi + Zier ¥i + Lies Vi (33)

be the finite population total that we want to predict using the data from the response
set and possibly values of auxiliary variables. Let T = T(0) define the predictor of T
based on the available information, from the sample and response set O =
{U),i e UL, {m;, Ry, i €s}U{(y;),i €Er}and N,n,and m. The mean square error
(MSE) of T given O with respect to the population pdf is defined by:

MSE,(T) = E, {(T - T)°10} = (T - E,(T10)}" + Var,(T|0). (34)

It obvious that (16) is minimized whenT = E(T|0). Hence, the minimum mean
squared error best linear unbiased predictor (BLUP) of T = YN, y; is given by:

T* = E,(T|0) = Yier ¥i + Xier Ez(¥i|0) + Xics Es(y;10). (35)

For more information about the parametric prediction of finite population total
under informative sampling and nonignorable nonresponse; see Eideh (2020).

In the next section we consider the semiparametric prediction of finite population
total under informative sampling.



102 A. Eideh: On representativeness, informative sampling, nonignorable ...

8. Semiparametric Prediction of Finite Population Total under Informative
Sampling and Nonignorable Nonresponse

Sverchkov and Pfeffermann (2004) studied the semiparametric prediction of finite
population totals under informative sampling. In this section we develop the semi-
parametric prediction of finite population total under informative sampling and
nonignorable nonresponse. According to (35), the prediction of finite population total
requires predication of },;c7V;, and Yes ¥;. That is, to predict Twe need to predict
values for{y;, i € ¥} and {y;,i € 5§}, based on the prediction of nonsampled and
nonresponse models. Fuller (2009, p. 282) pointed that “The analysis of data with
unplanned nonresponse requires the specification of a model for the nonresponse.
Models for nonresponse address two characteristics: the probability of obtaining
a response and the distribution of the characteristic. In one model it is assumed that the
probability of response can be expressed as a function of auxiliary data. The assumption
of a second important model is that the expected value of the unobserved variable is
related to observable auxiliary data. In some situations models constructed under the
two models lead to the same estimator. Similarly, specifications containing models for
both components can be developed.”

8.1. General Theory
Assume that

(a) the sample-complement model (or nonsampled model or imputation model for
non-sampled units) takes the form:

yi = Sg(x;) + &, foralli € 3, (36)

Es(gilx) =0 ,  Es(ef|x;) = Vars(gilx) = 02v(x;) . and  Eg(ge|x;) =
Cov(sj,£k|xi) =0,j k.

(b) and the response-complement model (or nonresponse model or missing data
model or imputation model for nonrespondent units) is:

Vi = Zg(x;) + 15, foralli € 7, (37)

E7(7ilx;) = 0, Ef(Tizlxi) = Vary(t;|x;) = ofu(x;), and Er'(Tkalxi) =
Cov(‘rj,‘rklxi) =0, j # k, where Sg(x;) and Z,(x;) are known functions of x; that
depend on unknown vector parameters 8 and & , respectively. The variances 02 v(x;)
and g2u(x;) are assumed known except for ¢ and o2.

For the prediction process, we need the estimation of Sg(x;) and Z,(x;).
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(i) Estimation of Sg(x;):

Method 1: using (3), we have

2 2
Sp(x;) = arg nggb Es w xic=arg ST;l(lXTLl) E; Ciw X (s
(38)
where ¢; = {op;(w; — 1)/E-(¢;(w; — D]x)}.
Hence, the vector 8 can be estimated by:
2
B = argminYie, cm , (39)

v(x;)

where ¢ = {@;(w; — 1)/E,(¢;(w; — D|x)}.

Method 2: using (3) and (36), and assume that E,.(¢;(w; — 1)|x;) = Er(gol-(wi - 1)),
we have:

2 2
Gesee)| ), [ (ros0)
ES{ v(x;) | xi} = Er {Er(qﬂi(wi—l)) v(x;) ' (40)
Hence,
2
—~ ) . Yi—Sp(xi)
B, =arg min Yier | @i(w; — 1)% , (41)
since E,(¢;(w; — 1)) is constant.
(ii) Estimation of Z,(x;)
Method 1: using (4), we have:
(:VL le(xl)) | }
Zo(x;) = arg m(ln E, {k e (42)

where k; = {(¢; — 1)/E.((p; — DIx;)}.
Hence, the vector & can be estimated by
a, =arg mﬁin Yier (k (y’uz(+(§‘))) (43)
where k; = {(¢; — 1)/E.((¢; — DIx;)}.
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Method 2: using (3) and (37), and assume that Er((q)i - 1)|xl-) ~E.(p; — 1),
we have:

(371 Za(xt)) (pi-1) (yi_Za(xi))z}
Er{ u(x;) Er((PL 1) u(x;) ) (44)

Thus,

~ . ~ (ZVL Za(xl))

a; = argmin Yier ((fl’i )—u(xl) (45)
Hence,
Tin1 = Ep(T|0) = Yier yi + Yier Za, (%) + Yies Sp, (%)) (46)

and

Tinz = Ep(T10) = Sier yi + Dier Za, (%) + Yies Sp, (). (47)

The benefits of using the predictor T;, , over using the predictor T;, ; is that Ty, ,
does not require the identification and estimation of ¢ (x;) = E, ((gol- -1 |xi). On the
other hand, in situations where this expectation can be estimated properly,
the predictor Tj;,;is likely to be more accurate since the weights k; =
{((pi - 1/E((p; — 1)|xi)} will often be less variable than the weights (¢; — 1).
This is because the weights k; = {((pi -1D/E((p; - 1) |xi)} only account for the net
effect of the response process on the target conditional distribution
7 (vilx;, 0,m, y)whereas the weights (¢; — 1)account for the effect of the response
process on the joint distribution f(y;, x;; 6,1, 7).

8.1.1. Particular cases

For illustration we use method 2 only under different famous models in survey
sampling.
Case 1: Common Mean Model:
Sample-complement model: E;(y;) = ps and Vars(y;) = o2
Response-complement model: E;(y;|x;) = p7 and Var:(y;) = o2.

After some algebra, the weights under the 4 different combinations of sampling

design (informative (i), noninformative (n)) and nonresponse mechanism (ignorable
(i), nonignorable (n)) are summarized in Table 1.
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Table 1: w;, - Homogeneous Model , Tj,, = Yic, Wiry;

105

SD-NM ir
ii (n—-m) Wil
1+ B P )
in (@ -1 Piwi — 1)
e-ms s TN s s =D
ni ﬁ
m
nn - M B .
1+(Mn-m) Yier(@ — 1) +W-n) Dier P

Note that Y, Wi = Djey 1 = N.

Case 2: Simple linear regression model:

Sample-complement model: Es(y;|x;) = By + B1x; and Vars(y;) = o2.
Response-complement model: E-(y;|x;) = ay + a;x; and Vary(y;) = o2

After some algebra, the weights under the 4 different combinations of sampling

designs (informative (i), noninformative (n)) and nonresponse mechanism (ignorable (i),

nonignorable (n)) are summarized in Table 2.

Table 2:  w;, - Simple linear regression model, 7y, » = Yier Wiry;

SD- . .
NM Wir o T
i (n—m) o (xi — %)
1+ +(n-—m)(%; — Xy ) ——————
( ¢ )Zier(xi - ’-Qp*)z
_ (w; -1 Yier Xi Lier(wi — Dx;
Wmg w1 . S —1)
N — ) — %) (w; = D) — %wr)
=M =) g = D — 7w )?
in (9 —1)
ey et
(= ) — 5) («)1— D(x — x¢_~) i
Yier(@ — D(x; — %) Yier( @i — Dx; | Yier §ilw; — Dx;
_ Pi(w; —1) Zier(@ — 1) Zier Pi(w; — 1)
S e v = D et
_ _ QWi — L)X — Xy~
V=) (% = 2u-) Yier @i(w; — D (x; — %,,-)?
ni
(n—m) _ . (xl- - ’_qu*)
1+ + (n—m)(%: x(p*)izier(xi N f(p*)z s i Sier X;
(N—n) o (x; — %) m m
RS P ee
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Table 2:  w;, - Simple linear regression model, Tin,z = Yier Wiry; (cont.)
SD- _ -
NM WiT x(p* xW*
5 —1
nn 14+ Mn—m) (@ ) n

Yier(@ — 1)

(@i — D(x; — %)

(n—m) (ir» - 92(/,*)

D

Yier(Pi — 1)(xi - ’Etp")z

ier(@i — Dx;

Dier PiX;

Yier(@ — 1)

Yier Pi

W-ns &

- xw*)

@i(x; — %)
Eier (ﬁi(xi - J-CW")Z

Note that Y;c, Wi X; = iy Xi-

Case 3: Simple ratio model:

Sample-complement model: E<(y;|x;) = fx;and Vars(y;) = o2x;.

Response-complement model: Ex(y;|x;) = a x;; and Var:(y;) = 02, x;.

After some algebra, the weights under the 4 different combinations of sampling designs
(informative (i), noninformative (n)) and nonresponse mechanism (ignorable (i),

nonignorable (n)) are summarized in Table 3.

Table 3: w;, - Simple ratio (or proportional) model, T;, ; = Y, Wiry;

SD- - _
NM Wir Xp* Xyw*
ii (n—m_ %
1+ -—
%y LierXi ZierWwi = Dx;
N —n) w; -1 x5 m Yierlw; — 1)
Zier wi — 1) J_Cw"
in
D; —1 X
o @D
Yier(@i — D Xy (@ —Dx, | W
N —n) Piwi—1) x5 % _ Zier piwi = Dx;
Sier piwi = 1) % terti Sier §i(w; — 1)
ni 14 (n—m) %z n (N—-n) % Dier Xi Dier Xi
m .f(p* m JEW* m m
nn (@ -1 x;
1+(n—Mmg—F———— ~ ~
O G- D%, Zier(@i = Dxi Lier Pixi
N —n) Pi X5 Yier(@i — 1) Yier i
Eier @L’ ’zw*
Note that X;er wirX; = Xieu Xi-
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8.2. Bias correction method- multiple regression

According to (35), with auxiliary variables, the prediction of finite population total
requires computation of Y;es Es(y;1x;) and Y;e7 E-(y;|x;). Here, we use the “bias
correction method” proposed by (Chambers 2003), see Chambers and Clark (2012,
page 114).

Computation of };c; Es (y;]x;):

> EsGulx) = ) (Bl + Bl — Esil)
= Bl + Z{Es;(yilxi) - B (i)

i€S ies
= Vies Eilx) + N = n—=Tics Es(yi — Es(ilx).  (48)
Now, using (3), Es(y; — Es(y; |xl)) can be est1mated by

E'( E(}’z|x1)) m21€r¢l(wl 1)(3’1 (Er(zflxl)y‘))

(49)
Also, using (2), E;(y;|x;) can be estimated by
Evilx) = By (725 v1). (50)
Computation of Y;c7 E- (y;]x;):
Similarly,
> EOilx) = Y (Bl + B Orilxo) = B}
ier ier
= D B Gilx) + ) (B Gilx) - By Gnlxo)
ier ier )
= Yier Er(ilx) + 1 —m—%c; E-(yi — Er (yilx)).
(51)
But, using (4), E;(y; — E, (yl-lxl-)) can be estimated by
Br (vi = B 0il%) = 5o Bier (@i = D (i = B Oilx)). (52)
Hence,
Tom= ) vi+ Y BOilx) + (n - m—Z( — 1) (3 — B (ylx)
3in = leryl 2. yilx) +( )Zla(qol—l) P r (il )

+

7 b _ B b
ZiES Er (myz) + (N n) ZLET(pl(Wl 1 Zzer (pl(wl ) (yl E (Er(fpz|x1) yl))'
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8.3. Generalized regression estimator (GREG) under informative sampling and

nonignorable nonresponse

Assume that
E,(yi) = xiB = xi181 + -+ + Xip Sp>

then the GREG estimator is:

T= P Ep(yi) =X x;ﬁ(pw ’E(pw = Qier Piwixix) ™ Cier QWiX1 Y1)

Justification: under (54) and using (1), we can show that

B=arg mﬁin E,(y; — xiB)* = arg mﬁin Yier oiwi (i — xiB)2.

Therefore,
Etpw = Cier eiwixix) " Qier piwixyy) = (X' (@W)x) "' x' (@W)y,
where = diag (@ wy, ..., 9:W,) X = (x7, ..., x;.)". Then
T = Z?:lgp(yi) = ?]:1 x;ﬁww-
Now, if x; = (x4, ...,xip)’ = (1,%}), then
Bl(pw
Bow
= - - o 1 onN 5 - = =
where X, = (xZU' ---'pr) » Xju = ﬁZi:l Xij» ﬁl(pw = Yow — ﬁ(pwanw’

)_C‘W — M}—] _ Lier Qiwiyi
J oW Ty 0w
Z‘gr¢iwi ier PiWi

gi=N {Zierlfpiwi + (iu - itpw)’(Zier <PiWix§xi)_1xi}-

T=3YN.E,() = (TX.[1,%]) [ l = Yier PiWi9:Yi-

and

Not that if X, — X, = 0, that is, X;; = Xj, OF

14N x___ZierfﬂiWixij
N &= Yieroiwi ’

then

T = (Zierl\(lpiwi) Yier PiWiYi-

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)
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Furthermore, T = Y;c, o;w;g;y; (59) belongs to the class of calibration
estimators since ),;e, @;W;g;X; = Xy, see Deville and Sdrndal (1992). According to
this, we can derive a calibration estimator of the finite population total T = ¥V, y;
when sampling design is informative and nonresponse mechanism is nonignorable as
follows.

It should be noted here that equation (61) can be considered as calibration
constraint when sampling design is informative and nonresponse mechanism is
nonignorable. That is, the calibration estimator of T = ¥_; y;can be obtained by
minimizing

(wel—gwy)’
ZierT (63)

cal subject to the constraint

with respect to w;

Yier w{"'x; = Xy. (64)
Let A = (44, ..., 4,)" be the Lagrange multiplier, so the Lagrange function is:
cal cal (Wical_q’iwi)z cal !
PwEs, o with ) = Tiey L (T Wit = Xy) A (69)
cal

Differentiating (65) with respect to w;*" and 4, and then equating the derivatives
to zero, we get the calibration weights:

Wl-':“l = ow;(1+ x;4). (66)

where 4 is determined by the constraint ¥;e, wf%x; = Xy, which is equal to

2= Cicr oiwixix) " (Tier wix; — Xy). (67)

If (T ;er @;W;x}x;) is invertible, then the calibration estimator of T = ¥V, y; is
F_ Ly — l
Tear = Lier @iwigi" Vi = Lier Wi " Vi (68)
where wf® = @;w;gf* and gf* is given by:
cal

gf% =1+ (Xy — %pw) Cier eiwixix;) ™ x;. (69)

: 0 _ cal _ cal
Variance of Tgq = Yier @iWigi" Vi = Xier Wi ™ Vi

Following Deville and Sarndal (1992), the estimated variance of TCal (equation 68)
is given by:
507 Y — Wi (¥;m))
V(TCal) - Zier Zjer (1 - W) (Wimlei)(wjpale]')’ (70)
where ;; = Pr(i,j € r),m;j = Pr(i,j € s) and e; = y; — x{ﬁ(pw.
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9. Conclusions

In this paper, we study, within a modeling framework, the semi-parametric
prediction of finite population total, by specifying the probability distribution of the
observed measurements under informative sampling and nonignorable nonresponse.
This is the most general situation in surveys and other combinations of sampling
informativeness and response mechanisms can be considered as special cases.
Furthermore, based on the relationship between response distribution and population
distribution, we introduced a new measure of representativeness of a response set and
a new test of nonignorable nonresponse and informative sampling, jointly. In addition
to that, generalized regression (GREG) and calibration estimators under informative
sampling and nonignorable nonresponse are derived.

The paper is purely mathematical and focuses on the role of informativeness of
sampling design and informativeness of nonresponse in adjusting various predictors
for bias reduction. Further experimentation (simulation and real data problem) with
this kind of semiparametric predictors, generalized measures of representativeness,
tests of nonignorable nonresponse, informativeness of sampling design, and calibration
estimators are therefore highly recommended. The author hopes that the new
mathematical results obtained will encourage further theoretical, empirical and
practical research in these directions.
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