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Models for survey nonresponse and bias adjustment techniques 

H. Öztaş Ayhan1 

Abstract 

Survey statisticians have been dealing with the issues of nonresponse in sample surveys for 
many years. Due to the complex nature of the mechanism, so far it has not been easy to find 
a general solution to this problem. In this paper, several aspects of this topic will be 
elaborated on: the survey unit nonresponse bias has been examined alternatively by taking 
response amounts which are fixed initially and also by taking the response amounts as 
random variables. An overview of the components of the bias due to nonresponse will be 
performed. Nonresponse bias components are illustrated for each alternative approach and 
the amount of bias was computed for each case. 
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1.  Introduction 

During many past studies, the evaluation of the nonresponse bias was based on 
presenting the nonresponse error in the form of nonresponse rates. However, 
nonresponse bias may not be related to the response or nonresponse rates of a given 
study. Increasing response rate (decreasing nonresponse rate) may not always 
correspond to decreasing nonresponse bias for a given study (Groves and Couper, 
1998). 

On the other hand, in many studies in the past, the term “bias” was interpreted 
differently from, how we evaluate the “statistical bias”. The arguments have gone even 
to far to suggest that, the bias can be obtained within the available inside information 
on a given sample. However, there are few studies that mentioned statistical bias, which 
is based on the differences between the “expected value of all possible sample estimates” 
from the “corresponding parameter” Bethlehem and Kersten (1985), Groves et al. 
(2002), Keser (2011), Kish (1995), Moser and Kalton (1979), Lindström et al. (1979), 
and Lindström (1983). Since, we can only afford to select one sample for a given study, 
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in this case “the parameter” and “other sample estimates” will also be unknown. 
Furthermore, by using certain rules during the field operation, the amount of 
nonresponse can be determined after the fieldwork. Consequently, the amount of 
nonresponse is only fixed when the field operation is completed. 

Alternatively, the amount of nonresponse is unknown before the fieldwork and 
therefore initially it can be evaluated as a random variable. 

The objective of this research is to formulate basic computation of response and 
nonresponse models. The study also aims to present and discuss alternative response/ 
nonresponse models (fixed response model and random response model). In addition 
to these, it is aimed to present and compare the alternative bias adjustment techniques 
for diffferent models. 

The impact of nonresponse on the estimators have been examined under two 
alternative approaches. These are the “fixed response model” and the “random response 
model” (Lindström et al. 1979). Most of the past research is based on assuming that the 
response and nonresponse amounts are fixed before the survey. Therefore, these studies 
have used the following nonresponse bias evaluation.  

2.  Taking response amounts which are fixed initially 

The fixed response model assumes the population to consist of two mutually 
exclusive and exhaustive strata: the response stratum and the nonresponse stratum. If 
selected in the sample, elements in the response stratum will participate in the survey 
with certainty and elements in the nonresponse stratum will not participate with 
certainty (Bethlehem, 2009). 

The population size of N can artificially be divided into response and nonresponse 
stratum. We can use the following form ( NNR ii  ) of the rate and the size  

( 



J

j
iji NN

1

) to illustrate the mechanism, where i = 1, 2.  

 
Response rate: NNR 11    and  Nonresponse rate: NNR 22                      (1) 

NNN  21 ,  121  RR ,  21)1( RR        (2)  

 
The survey data will only be collected for the response strata. The response strata 

will have the mean 1  which is based on the 1N  observations.  
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Nonresponse stratum mean will be, 
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Household and individual response and nonresponse rates are computed on the 
basis of the methodology which was proposed by Ayhan (2017). 

 
In a similar way, the sample size of n can artificially be divided into response and 

nonresponse stratum. We can use the following form ( nnr ii  ) of the rate and the 

size ( 



J

j
iji nn

1

) to illustrate the mechanism, where i = 1, 2.  

For one-stage sample selection, which can be based on household selection; 

Response rate: nnr 11                            (6) 
Nonresponse rate: nnr 22                           (7) 

nnn  21 ,  121  rr ,  21 )1( rr             (8) 

Household response rate (HRR) is computed as the ratio of ( nn /1 ) from the 
selected sample. Household nonresponse rate (HNRR) can be taken as the complement 
of the household response rate (HRR), for first stage sample selection. 

𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑆𝑢𝑟𝑣𝑒𝑦𝑅𝑅 ൌ
௡భ
௡

              (9) 
HNRR = ( nn /2 ) = 1 – HRR = [1 – ( nn /1 )]        (10) 

For two-stage sample selection, which can be based on household survey (𝑛௜/𝑛) 
and individual person (𝑚௜ 𝑚⁄ ) selections, as a product; 

Household response rate, HRR = nn /1           (11)  
Individual response component, IRC = mm1                 (12)  
Individual response rate, IRR = (HRR)(IRC) = ))(( 11 mmnn     (13)  

Individual nonresponse rate (INRR) is calculated by the multiplication of household 
nonresponse rate and individual nonresponse component. Individual nonresponse 
component is calculated by taking nonrespondent individuals ( 2m ) over enumerated 
individuals (m ).  

Household response rate (HRR) is computed as the ratio of ( nn /1 ) from the 
selected sample. Individual response rate (IRR) is calculated by the multiplication of 
household response rates and individual response component. Individual response 
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component is calculated as respondent individuals ( 1m ) over, enumerated individuals 
(m ). These calculations are given with the following formulas. 

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑆𝑢𝑟𝑣𝑒𝑦 𝑅𝑅 ൌ
௡భ
௡

௠భ

௠
          (14) 

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑆𝑢𝑟𝑣𝑒𝑦 𝑁𝑅𝑅 ൌ
௡మ
௡

௠మ

௠
          (15) 

Individual nonresponse component, INRC = mm2                                             (16) 

Individual nonresponse rate, INRR = (HNRR)(INRC) = ))(( 22 mmnn          (17) 

For two-stage sample selection, individual survey response rate and individual 
survey nonresponse rate cannot be simple complements. 

That is, [ ))(( 11 mmnn ]  ≠  1 – [ ))(( 22 mmnn ].                                            (18)  

When 1n  and 2n   are taken as fixed, where n
N

N
n 1

1    and  n
N

N
n 2

2    then 

    n
N

N
nxEnE 1

111 |      and       n
N

N
nxEnE 2

222 |               (19) 

Moser and Kalton (1979), Ayhan (1981), and Bethlehem and Kersten (1985) stated 
that, the bias of nonresponse occurs when the response stratum mean 1  is used 
instead of the total population mean  . The source of nonresponse bias is based on 
the use of  

 )( 1xELim Nn  instead of  )(xELim Nn ,     (20) 

where  )( 1xELim Nn  but 11)(  xELim Nn .     (21) 
 

The nonresponse bias due to the use of response stratum mean will be, 

)()( 2211111  RRxB              (22) 

          2211 )1(  RR  )( 212   R         (23) 
 

where  𝜇 ൌ ሺ𝑅ଵ𝜇ଵ ൅ 𝑅ଶ𝜇ଶሻ  and  ሺ1 െ 𝑅ଵሻ ൌ 𝑅ଶ      
 

The effect of bias is based on the amount of nonresponse rate and the difference 
between the response and nonresponse strata means. Detailed derivations of the proof 
are available by Moser and Kalton (1979) and Ayhan (1981). 
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3.  Taking response amounts as random variables 

Survey nonresponse components and issues of bias have been examined by 
Bethlehem and Kersten (1985), Bethlehem and Keller (1987) and Bethlehem (2002 & 
2009).  

The random response model assumes every element in the population to have an 
unknown response probability. If an element is selected in the sample, a random 
mechanism is activated that results with a given probability in response and with 
a complement probability in nonresponse (Bethlehem, 2009). 

In order to consider the response amounts as random variables we have proposed 
the following set of formulations; 

Define 212
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Putting the two strata together and draw a random sample of size n. Let 1n  fall into 
stratum 1, and  2n  fall in stratum 2, nnn  21 .  

Then 














 

N

NN

n
N

N
n

N

N
n

n

xnxn
E 2211

2
2

1
1

2211  

 (28) 
  111 | nxE     and     222 | nxE                                                 (29) 

 
When nonresponse occurs at random, it reduces to a single sample situation with 

sample size n in which case 1x  is estimating  . 
There is a real problem with the methodology as follows: Let x  be the sample 

mean.  
Then,   xE  or   XxE    and                                                                    (30) 
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Only if  n  is fixed a priori. If  n  is a random, the results are different: 

      nxEnExE |          (32) 

       nxEnExE |222          (33) 

In this case, 1n  (responses) and  2n (nonresponses) and  

nnn  21            (34) 

n is the sample size, are both subject to (34). Therefore, the results in (31) are not 
applicable. In fact, 1n  (or 2n ) has a binomial distribution with,  

    NNnnE 11            (35) 

Here, NN1  is the proportion of responses in the population.  
 

The difficulty is that, the value of 1N  is not known. If one estimates NN1  by 
nn1 , then     111 nnnnnE    (does not make sense, since the expected value of a 

random variable cannot be the random variable itself), and that is where the difficulty 
is. Knowing 1n  a priori which is untenable. 
 

NNN  21   Here, 2N  are presumed to be nonresponses; 
 

    2211  NNNN  .          (36) 
 

A sample of size n is available with 1n  responses (random 1n ) and 2n
nonresponses;    

21 nnn  .           (37) 

Assuming N is very large and sampling is done without replacement, nn1  is 
a binomial variate with   NNnnE 11   (Tiku, 1964).  
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 If we replace the random variable nn1  by its expected value NN1  which is 
mathematically naive, 
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 This is however a very naive approximation.  
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Remark: You may notice that, equations (39) and (41) are very different from one 
another. While equation (39) is mathematically correct, equation (41) is suspicious. 
The only common ground is when ,0,..,0 22  NeiNN  in which case both 
equations (39) and (41)  are equal to zero. Since 1n  is a random variable, the sampling 
variance of the mean for response stratum is, 
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 Thus 1x  is not an attractive estimator since 01 n  has to be included in which 
case the Binomial has to be truncated. 
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4. Bias Adjustment Procedures  

A recent research on the survey nonresponse bias adjustment has been proposed 
by Ayhan (2017). The results have shown the effect of nonresponse and callbacks on 
the estimation of survey nonresponse bias. The following remedies can also be used to 
adjust the nonresponse error which has occurred in a given survey. Due to the available 
means, we cannot elaborate any further for the all possible survey situations.  

4.1.  Use of auxiliary information from subsampled nonrespondents 

The nonresponse bias of the stratum mean estimator is, 

)()( 221111  RRxB          (48) 

The design mean can be evaluated as,  

2211ˆ  RxR           (49) 

Since 2  is not known, the sample estimator will take the following form, 
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subsample of size 2m , a new estimator of the nonresponse stratum mean will take the 
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Here bf  is the subsampling rate from the nonresponse stratum and can be taken as 

05.0bf . The expected value of the subsample estimator will be, 

2
*
2 )(  xELim Nn . 

On the other hand, the desired estimator of the sample mean is, 
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4.2.  Domain based weighting adjustments for nonresponse 

For the domain–based weighting adjustments for nonresponse, we have proposed 
the following set of formulations. The probability of selection of the overall sample is 
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obtained simply by the sampling fraction of the selected sample FXxf 1  for 
the total sample. On the other hand, after using some method of stratification, the 
sampling fraction of any strata is  iiii FXxf 1 . 

Design weights (Ayhan 1991 and Verma 1991) for non self-weighting sample 
designs can be computed for each domain i with the same probability of selection ip .  

For a combined ratio mean 
H

i
i

H

i
i XYXY , which is estimated by   


H

i
i

H

i
i xyxy̂  .        (52)  

On the other hand, for a separate ratio mean i
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i
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The weight        ii
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where    xxW
H

i
ii 

1
 

 
Here, 0P has been computed to adjust the overall weighted and unweighted sample 

to be the same. In addition, a weighting procedure for nonresponse is also essential for 
self-weighting and nonself-weighting sample design outcomes (Ayhan 2003). 
 

Here ii RRW 0
*    where iii xxR * is the response rate in domain i.            (55) 

 
The overall response rate )( 0R for the design can be computed as,  

   
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I

i
iii

I

i
ii RxWxWR

11
0 /        (56) 

where 0R is used to adjust the sample sizes to be the same,   xxWW
I

i
iii 

1

* .   (57) 

5. Conclusions 

The evaluation of the nonresponse bias as nonresponse error or nonresponse rate 
was misleading. The nonresponse bias may seem to be related to the response rates for 
a given study. Increasing response rate may not always correspond to decreasing 
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nonresponse bias for a given study. This paper has shown alternative approaches to 
nonresponse bias. In addition to this, the causes of the nonresponse bias can also be 
obtained from empirical studies of components and models relating to the covariates 
of survey participation and non-participation.  

The current research examined the response amounts as fixed initially. The 
proposed methodology has shown the effect of bias of nonresponse which is based as 
the product of “amount of nonresponse rate” and the “difference between the response 
and nonresponse strata means” [ 𝐵ሺ𝑥̄ଵሻ )( 212   R ]. 

When the response amounts are taken as random variables, the nonresponse bias 
has provided the same solution [ 𝐵ሺ𝑥̄ଵሻ ൌ 𝑁ଶ/𝑁 ሺ𝜇ଵ െ 𝜇ଶሻ]. 

A recent research on the survey nonresponse bias adjustment has been proposed 
by Ayhan (2017). The current study has examined the nonresponse bias adjustment by 
using additional auxiliary information from the subsampled nonrespondents. An 
alternative approach was also used by domain–based weighting adjustments for 
nonresponse. 
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