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Abstract

In this paper, a new three-parameter lifetime model, called the odd log-logistic generalised
Lindley distribution, is introduced. Some structural properties of the new distribution includ-
ing ordinary and incomplete moments, quantile and generating functions and order statistics
are obtained. The new density function can be expressed as a linear mixture of exponenti-
ated Lindley densities. Different methods are discussed to estimate the model parameters
and a simulation study is carried out to show the performance of the new distribution. The
importance and flexibility of the new model are also illustrated empirically by means of two
real data sets. Finally, Bayesian analysis and Gibbs sampling are performed based on the
two real data sets.

Key words: Lindley distribution, odd log-logistic generalised family, moments, Bayesian
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1. Introduction

Modelling and analysing real lifetime data are widely used in many applied fields such
as finance, reliability, engineering, medicine. In practice, researchers dealt with different
types of survival data and they proposed various lifetime models for modelling such data.
The statistical analysis depends on the procedure used by the researcher and the generated
family of distributions. Recently, new families of distributions have been introduced in
the literature that could considerably help to analyse complex real data. However, it is
necessary to find more efficient statistical models; since there are many real data sets in
practice that need to be investigated with statistical models that are more flexible. Therefore,
the researchers have had many attempts to extend distributions theory by adding new shape
parameters to different families of distribution to introduce new families. In particular,
some extended distributions demonstrate high flexibility in hazard rate function (hrf) such
as increasing, decreasing and bathtub shapes even though the baseline hazard rate function
may not have these shapes.

Most of the new generators of G family can be obtained using T-X class, which is
proposed by Alzaatreh et al. (2013). For example, Kumaraswamy generated, odd log-
logistic-G, Exponentiated-G (Exp-G), gamma generated, proportional odds and generalized
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beta generated. Recently, the extended exponentiated-G (EE-G) family has been defined by
Alizadeh et al. (2018a).

Gleaton and Lynch (2010) showed that the extended generalized log-logistic family has
appropriate performance for lifetime data. Although, there are several lifetime distributions
that we can use, since the proposed family has three parameters, therefore it is better to
select a lifetime distribution with only one parameter, for example, exponential or Lindley.
It should be noted that hrf of the exponential is constant while the hrf of the Lindley distri-
bution has different shapes as increasing, decreasing, unimodal and bathtub. Moreover, the
Lindley distribution is a well-known distribution that is employed widely in different fields
such as lifetime and reliability, medical, finance, engineering and insurance. These reasons
motivate the use of this distribution for modelling real lifetime data. So, we consider the
Lindley distribution as the baseline distribution in this paper.

The Lindley distribution was originally proposed by Lindley(1958) in the Bayesian sta-
tistical context. Some properties of this distribution such as moments, failure rate function,
characteristic function, mean residual life function, mean deviations, Lorenz curve, stochas-
tic ordering, entropies, asymptotic distribution of the extreme order statistics have been
studied by Ghitany et al. (2008). The cdf of the Lindley distribution with scale parameter
λ > 0 is

G(x;λ ) = 1−
(

1+
λx

1+λ

)
e−λx, x > 0, (1)

and its corresponding probability density function (pdf) is given by

g(x;λ ) =
λ 2

1+λ
(1+ x)e−λx. (2)

Many authors have published various extensions of the Lindley distribution recently.
For example, a three-parameter generalization of the Lindley distribution proposed by Zak-
erzadeh and Dolati (2009), Nadarajah et al. (2011) defined a generalized Lindley distribu-
tion, a new generalized Lindley distribution based on the weighted mixture of two gamma
distributions was studied by Abouammoh et al. (2015).

Asgharzadeh et al. (2016) and Asgharzadeh et al. (2018) introduced a weighted Lind-
ley distribution and Weibull Lindley distribution, respectively and Alizadeh et al. (2017a),
Alizadeh et al. (2017b), Alizadeh et al. (2018b) proposed several generalizations of the
Lindley distribution based on the odd log-logistic model. Given the vast amount of papers
published recently, we can only mention a few of the most recent contributions: Gomes-
Silva et al. (2017), Afify et al. (2019) and Alizadeh et al. (2019).

The problem here is to construct a new extension of the Lindley distribution that may be
useful for complex situations. The suggested distribution provides an acceptable flexibility
based on the pdf and hazard rate function and it can be applied in actuarial science, finance,
bioscience, telecommunications and lifetime data analysis. Alzaatreh et al. (2013) defined
a generalization of odd ratio and it called as transformer (T-X) generator, where W [G(x)] =

G(x)α

[1−G(x)]β
= G(x)α

1−{1−[1−G(x)]β} is an increasing and continuous function of G(x). One can say
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that W [G(x)] = G(x)α

[1−G(x)]β
for integer α,β is a relative odd ratio of two systems, the first

system with α parallel subcomponents and the second with β series subcomponents, which
are useful in reliability theory. Motivated by Alzaatreh et al. (2013), we propose a new
lifetime distribution called odd log-logistic generalized Lindley (OLLG-L) distribution by
integrating the log-logistic density function, which yields the cdf

F(x) =

[
1− (1+ λ x

1+λ
)e−λ x

]αβ

[
1− (1+ λ x

1+λ
)e−λ x

]αβ

+
[
1−
[
1− (1+ λ x

1+λ
)e−λ x

]α]β
(3)

where α,β > 0 are the extra shape parameters. Then, the corresponding pdf of the OLLGL
distribution is given by

f (x) =
αβλ 2 (1+ x)e−λ x

[
1− (1+ λ x

1+λ
)e−λ x

]αβ−1 [
1−
[
1− (1+ λ x

1+λ
)e−λ x

]α]β−1

(1+λ )

{[
1− (1+ λ x

1+λ
)e−λ x

]αβ

+
[
1−
[
1− (1+ λ x

1+λ
)e−λ x

]α]β
}2 (4)

A random variable X with pdf (4) is denoted by X ∼ OLLGL(α,β ,λ ). The OLLGL
distribution is more flexible than the Lindley distribution and allows for greater flexibility
of the tails.

Special cases: Let X ∼ EOLL−L(α,β ,λ ).

• If α = 1, then X reduces to the Odd Log-Logistic Lindley (OLL-L).

• If β = 1, then X reduces to the Generalized Lindley (GL).

• For α = β = 1, X is ordinary Lindley.

Plots of the density function for the OLLGL distribution are shown in Figure 1 for sev-
eral values of parameters. As seen from Figure 1, the density function can take various
forms depending on the parameter values. Both unimodal, symmetric, skewed, and mono-
tonically decreasing shapes appear to be possible.

The rest of the paper is organized as follows. In Section 2, main properties of the
OLLGL distribution such as moments, parameters estimation and asymptotic properties
are obtained. A simulation study is reported in Section 3. In Section 4, the performance
and application of the OLLGL distribution are evaluated using a real data set. Bayesian
inference and Gibbs sampling procedure for the considered data sets are investigated in
Section 5. Finally, some conclusions are stated in Section 6.

2. Main Properties

2.1. Survival and Hazard Rate Functions

The survival function is a function that gives the probability that a patient, device, or
other object of interest will survive beyond any given specified time. The survival function
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is also known as the survivor function or reliability function. We obtain the survival function
corresponding to (3) as

S(x;α,β ,λ ) = 1−

[
1− (1+ λ x

1+λ
)e−λ x

]αβ

[
1− (1+ λ x

1+λ
)e−λ x

]αβ

+
[
1−
[
1− (1+ λ x

1+λ
)e−λ x

]α]β
(5)

In reliability studies, the hazard rate function (hrf) is an important characteristic and
fundamental to the design of safe systems in a wide variety of applications. The hrf of the
OLLGL distribution takes the form

h(x;α,β ,λ ) =

αβλ 2 (1+ x)e−λ x
[
1− (1+ λ x

1+λ
)e−λ x

]αβ−1

(1+λ )
[
1−
[
1− (1+ λ x

1+λ
)e−λ x

]α]{[
1− (1+ λ x

1+λ
)e−λ x

]αβ

+
[
1−
[
1− (1+ λ x

1+λ
)e−λ x

]α]β
}

(6)

where α > 0, β > 0 and λ > 0.

Plots for the hrfs of the OLLGL distribution for several parameter values are displayed in Figure
1. As seen in Figure 1, the hrf of the OLLGL distribution has very flexible shapes such as increasing,
decreasing, upside-down, bathtub. It is evident that the OLLGL distribution is more flexible than the
Lindley distribution, i.e. the additional parameters α > 0,β > 0 allow for a high degree of flexibility
of the OLLGL distribution. This attractive flexibility makes the hrf of the OLLGL useful for non-
monotone empirical hazard behaviour, which is more likely to be observed in real life situations.
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Figure 1: Plots of the density and hazard rate functions for the OLLGL distribution for some
selected values.
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2.2. Quantile Function

Quantile function is generally used to find representations in terms of lookup tables for key per-
centiles. Let X be a OLLGL distributed random variable with parameters α,β ,λ ,γ . The quantile
function, Q(p), defined by F [Q(p)] = p is the root of the equation as

p =

[
1−
(

1+ λ

1+λ
Q(p)

)
e−λ Q(p)

]αβ

[
1−
(

1+ λ

1+λ
Q(p)

)
e−λ Q(p)

]αβ

+
[
1−
[
1−
(

1+ λ

1+λ
Q(p)

)
e−λ Q(p)

]α]β
. (7)

For α = β , the closed form for the quantile function can be obtained. Then, we define

[1+λ +λ Q(p)]e−λ Q(p) =−(1+λ )

[
1− p

1
αβ

(p
1
β +(1− p)

1
β )

1
α

]
(8)

for 0 < p < 1. Substituting Z(p) =−1−λ −λ Q(p), one can write (8) as

Z(p)eZ(p) =−(1+λ )e−1−λ

[
1− p

1
αβ

(p
1
β +(1−p)

1
β )

1
α

]
. (9)

Hence, the solution Z(p) is given by

Z(p) =W−1

{
−(1+λ )e−1−λ

[
1− p

1
αβ

(p
1
β +(1−p)

1
β )

1
α

]}
, (10)

where W−1[.] is the negative branch of the Lambert function (Corless (1996)). Inserting (10), we
obtain

Q(p) =−1− 1
λ
− 1

λ
W−1

{
−(1+λ )e−1−λ

[
1− p

1
αβ

(p
1
β +(1−p)

1
β )

1
α

]}
. (11)

Note that the particular case of (11) for α = β = γ = 1 is derived by Jodr´a (2010).

Now, we propose following two different algorithms for generating random data from the OLLGL
distribution for the case α = β .

(a) The first algorithm is based on generating random data from the Lindley distribution mixturing
the exponential and gamma distributions.

Algorithm 1 (Mixture form of the Lindley distribution)

• Generate Ui ∼ Uniform(0,1), i = 1, . . . ,n;

• Generate Vi ∼ Exponential(λ ), i = 1, . . . ,n;

• Generate Wi ∼ Gamma(2,λ ), i = 1, . . . ,n;

• If U
1

αβ

(U
1
β +(1−U)

1
β )

1
α

≤ λ

1+λ
set Xi =Vi, otherwise, set Xi =Wi, i = 1, . . . ,n.
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(b) The second algorithm is based on generating random data from the inverse cdf in (3) of the OLLGL
distribution.

Algorithm 2 (Inverse cdf)

• Generate Ui ∼ Uniform(0,1), i = 1, . . . ,n;

• Set

Xi =−1− 1
λ
− 1

λ
W−1

−(1+λ )e−1−λ

1−
U

1
αβ

i

(U
1
β

i +(1−Ui)
1
β )

1
α

 , i = 1, . . . ,n.

2.3. Mixture representations for the pdf and cdf

The cdf and pdf can be written as mixture representations and such forms of cdf and pdf can be
used to derive some mathematical properties, e.g. moments, moments of residual life and incomplete
moments. To this purpose, first let us remind inverse of a power series using the following Remark.

Remark 1 (Gradshteyn and Ryzhik (2007), page 17)
Inverse of a power series ∑

∞
k=0 bkxk is

1
∑

∞
k=0 bkxk =

∞

∑
k=0

ckxk,

where c0 =
1
b0

and for k ≥ 1, and ck =− 1
b0

∑
k
r=1 ck−rbr.

To obtain the mixture representation of the cdf of OLLGL, note that for any 0 < u < 1,

uαβ =
∞

∑
i=1

(−1)i
(

αβ

i

)
(1−u)i =

∞

∑
i=1

i

∑
k=0

(−1)i+k
(

αβ

i

)(
i
k

)
uk

=
∞

∑
k=0

∞

∑
i=k

(−1)i+k
(

αβ

i

)(
i
k

)
uk =

∞

∑
k=0

akuk,

where ak = ak(αβ ) = ∑
∞
i=k(−1)i+k(αβ

i

)( i
k
)
. By similar argument, we have

[1− (1+
λ

1+λ
x)e−λx]αβ +

[
1− [1− (1+

λ

1+λ
x)e−λx]α

]β

= ∑
∞
k=0 bk[1− (1+ λ

1+λ
x)e−λx]k,

where bk = ak(αβ )+∑
∞
j=0(−1) j

(
β

j

)
ak(α j). Now, using Remark 1, we get

F(x) =
[1− (1+ λ

1+λ
x)e−λx]αβ

∑
∞
k=0 bk[1− (1+ λ

1+λ
x)e−λx]k

=
∞

∑
k=0

ck[1− (1+
λ

1+λ
x)e−λx]k+α =

∞

∑
k=0

ckG(x;λ )k+αβ ,

(12)

where c0 =
1
b0

and for k ≥ 1,

ck =
−1
b0

k

∑
r=1

brck−r.
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The equation (12) can be interpreted as a linear combination of generalized Lindley distribution.
Using this equation, the mixture representation of pdf is given by

f (x) =
∞

∑
k=0

(k+αβ )ck g(x;λ )G(x;λ )k+αβ−1. (13)

2.4. Moments and Moment Generating Function

Some of the most important features and characteristics of a distribution can be studied through
moments (e.g., central tendency, dispersion, skewness and kurtosis). Now, we obtain ordinary mo-
ments and the moment generating function (mgf) of the OLLGL distribution. Nadarajah et al. (2011)
defined the following equation for the ordinary moments as

A(a,b,c,δ ) =
∫

∞

0
xc(1+ x)

[
1−
(

1+
bx

b+1

)
e−bx

]a−1
e−δxdx (14)

which can be used to produce ordinary moments (µ ′
r). Then, we have

A(a,b,c,δ ) =
∞

∑
l=0

l

∑
r=0

r+1

∑
s=0

(
a−1

l

)(
l
r

)(
r+1

s

)
(−1)lbrΓ(s+ c+1)
(1+b)l(bl +δ )c+s+1 . (15)

From equations (12) and (13), we obtain the ordinary moments of the OLLGL distribution as

µ
′
r = E [X r] =

λ 2

1+λ

∞

∑
k=0

(k+αβ )ck A(k+αβ ,λ ,r,λ ). (16)

We now provide a formula for the conditional moments of the OLLGL distribution.
Nadarajah et al. (2011) defined the following equation for the conditional moments

L(a,b,c,δ , t) =
∫

∞

t
xc(1+ x)

[
1−
(

1+
bx

b+1

)
e−bx

]
e−δxdx. (17)

Using the generalized binomial expansion, we have

L(a,b,c,δ , t) =
∞

∑
l=0

l

∑
r=0

r+1

∑
s=0

(
a−1

l

)(
l
r

)(
r+1

s

)
(−1)lbrΓ(s+ c+1,(bl +δ )t)

(1+b)l(bl +δ )c+s+1 (18)

where

Γ(a,x) =
∫

∞

x
ta−1 e−t dt (19)

denotes the incomplete gamma function. From equations (13) and (18), we obtain the conditional
moments of the OLLGL distribution as

µ
′
r(t) = E [X r|X > t] =

λ 2

1+λ

∞

∑
k=0

(k+αβ )ck L(k+αβ ,λ ,r,λ , t). (20)

The incomplete moments of the OLLGL distribution can be calculated directly from (20).

The mgf of a random variable provides the basis of an alternative route to analytical results com-
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pared with working directly with its pdf and cdf. Using (13) and (15), we obtain

MX (t) = E
[
etX
]
=

λ 2

1+λ

∞

∑
k=0

(k+α)ck A(k+αβ ,λ ,0,λ − t).

Remark 2 The central moments (µn) and cumulants (κn) of X are easily obtained from (16) as

µn =
n

∑
k=0

(−1)k
(

n
k

)
µ
′k
1 µ

′
n−k and κn = µ

′
n −

n−1

∑
k=1

(
n−1
k−1

)
κk µ

′
n−k,

respectively, where κ1 = µ ′
1. Thus, κ2 = µ ′

2 −µ ′2
1 , κ3 = µ ′

3 −3µ ′
2µ ′

1 +2µ ′3
1 , etc.

Figure 2 shows skewness and kurtosis measures of the OLLGL distribution. The skewness and
kurtosis are calculated from the ordinary moments given in (16) for λ = 2. Figure 2 shows that
skewness and kurtosis are very sensitive for the shape parameters and it indicates the importance of
the proposed distribution.
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Figure 2: The skewness (left) and kurtosis (right) plots of OLLGL distribution for selected
α,β for λ = 2.

Theorem 1 If the baseline distribution G(x) has a mgf, then F(x) has also a mgf.

The proof of this theorem was done by Gleaton and Lynch (2010). Since any moment of the
Lindley distribution exists, all moments of the OLLGL distribution can be obtained.

2.5. Asymptotic properties

The asymptotic of cdf, pdf and hrf of the OLLGL distribution as x → 0 are, respectively, given by

F(x)∼ (λx)αβ as x → 0,

f (x)∼ αβ λ
αβ xαβ−1 as x → 0,

h(x)∼ αβ λ
αβ xαβ−1 as x → 0.
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The asymptotic of cdf, pdf and hrf of the OLLGL distribution as x → ∞ are, respectively, as
follows

1−F(x)∼ (
αλ

1+λ
)β xβ e−λβx as x → ∞,

f (x)∼ βλ (
αλ

1+λ
)β xβ e−λβx as x → ∞,

h(x)∼ βλ as x → ∞.

These equations show the effect of parameters on the tails of the OLLGL distribution.

2.6. Extreme Value

If X̄ = (X1+ ...+Xn)/n denotes the sample mean, then by the usual central limit theorem,
√

n(X̄ −
E(X))/

√
Var(X) approaches the standard normal distribution as n → ∞. One may be interested in the

asymptotic of the extreme values Mn = max(X1, ...,Xn) and mn = min(X1, ...,Xn). Let τ(x) = 1
λ

, we
obtain following equations for the cdf in (3) as

lim
t→0

F(t x)
F(t)

= lim
t→0

G(t x)α

G(t)α
= lim

t→0

[
1−
(

1+ λ t x
1+λ

)
e−λ t x

]αβ

[
1−
(

1+ λ t
1+λ

)
e−λ t

]αβ
= lim

t→0

[
1− e−λ t x

]αβ

[
1− e−λ t

]αβ

= lim
t→0

(λ t x)αβ

(λ t)αβ
= xαβ (21)

and

lim
t→∞

1−F(t + xτ(t))
1−F(t)

= lim
t→∞

(
1−G(t + xτ(t))α

1−G(t)α
)β = e−β x. (22)

Thus, from Leadbetter et al. (2012), there must be norming constants an > 0, bn, cn > 0 and
dn such that

Pr [an(Mn −bn)≤ x]→ e−e−β x

and
Pr [cn(mn −dn)≤ x]→ 1− e−xαβ

as n → ∞. The form of the norming constants can also be determined. For instance, using Corollary
1.6.3 in Leadbetter et al. (2012), one can see that bn = F−1(1− 1

n ) and an = λ , where F−1(·) denotes
the inverse function of F(·).

2.7. Maximum likelihood estimation

We determine the maximum likelihood estimates (MLEs) of the parameters of the OLLGL distri-
bution from complete samples. Let x1, . . . ,xn be a random sample of size n from the OLLGL(α,β ,λ )

distribution. The log-likelihood function for the vector of parameters θ = (α,β ,λ )T can be written
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as

l(θ) = n log
(

αβ λ 2

1+λ

)
+

n

∑
i=1

log(1+ xi)+(αβ −1)
n

∑
i=1

log(qi)

+ (β −1)
n

∑
i=1

log(1−qα
i )−2

n

∑
i=1

log
[
qαβ

i +(1−qα
i )

β
]

(23)

where qi = 1− (1+ λ

1+λ
xi)e−λxi is a transformed observation.

The log-likelihood can be maximized either directly by using the SAS (Procedure NLMixed) or
the MaxBFGS routine in the matrix programming language Ox (Doomik (2007)) or by solving the
nonlinear likelihood equations obtained by differentiating (23). The components of the score vector
U(θ) are given by

Uλ (θ) =
2n
λ

− n
1+λ

−
n

∑
i=1

xi +(αβ −1)
n

∑
i=1

q(λ )i
qi

+α(1−β )
n

∑
i=1

q(λ )i qα−1
i

1−qα
i

−2αβ

n

∑
i=1

q(λ )i
qαβ−1

i −qα−1
i

[
1−qα

i
]β−1

qαβ

i +(1−qα
i )

β
,

Uα (θ) =
n
α
+β

n

∑
i=1

log(qi)+(1−β )
n

∑
i=1

qα
i log(qi)

1−qα
i

− 2β

n

∑
i=1

qαβ

i log(qi)−qα
i
[
1−qα

i
]β−1 log(qi)

qαβ

i +(1−qα
i )

β

and

Uβ (θ) =
n
β
+α

n

∑
i=1

log(qi)+
n

∑
i=1

log(1−qα
i )−2

n

∑
i=1

α qαβ

i log(qi)+
[
1−qα

i
]β log

[
1−qα

i
]

qαβ

i +(1−qα
i )

β
.

For interval estimation and hypothesis tests on the model parameters, the 2×2 observed informa-
tion matrix J = J(θ) is required.

Under conditions that are fulfilled for parameters in the interior of the parameter space but not on
the boundary, the asymptotic distribution of

√
n(θ̂ −θ) is N3(0, I(θ)−1), where I(θ) is the expected

information matrix. In practice, we can replace I(θ) by the observed information matrix evaluated
at θ̂ (say J(θ̂)). We can construct approximate confidence intervals and confidence regions for the
individual parameters and for the hazard and survival functions based on the multivariate normal
N3(0,J(θ̂)−1) distribution.

Further, the likelihood ratio (LR) statistic can be used for comparing this distribution with some
of its special sub-models. We can compute the maximum values of the unrestricted and restricted log-
likelihoods to construct the LR statistics for testing some sub-models of the OLLGL distribution. For
example, the test of H0 : α = β = 1 versus H1 : H0 isnot true is equivalent to comparing the OLLGL
and Lindley distributions and the LR statistic reduces to

w = 2{ℓ(α̂, β̂ , λ̂ )− ℓ(1,1, λ̃ )},

where α̂ , β̂ and λ̂ are the MLEs under H and λ̃ is the estimate under H0.
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2.8. Least-Square Estimator

Let x(1), x(2), x(3), · · · , x(n) denote the ordered sample of the random sample of size n from the
OLLGL distribution function in (3). The least square estimators (LSEs) of the OLLGL distribution
can be obtained by minimizing the following equation

ℓ(θ) =
n

∑
i=1


[
1− (1+ λ x

1+λ
)e−λ x(i)

]αβ

[
1− (1+ λ x(i)

1+λ
)e−λ x(i)

]αβ

+

[
1−
[
1− (1+ λ x(i)

1+λ
)e−λ x(i)

]α
]β

− i
n+1


2

. (24)

The optim function of R software can be used to minimize the (24). The partial derivatives of
(24) with respect to α , λ and β can be obtained from authors upon request.

3. Simulation

In this section, a simulation study on the model parameters is investigated. We consider MLE
and LSE methods for estimating unknown parameters of the OLLGL distribution and compare the
efficiency of parameters using these methods. The simulation procedure is as follows:

1. Set the sample size n and the vector of parameters θ = (λ ,α,β ),

2. Generate random observations from the OLLGL(λ ,α,β ) distribution with size n,

3. Estimate θ̂ by means of MLE and LSE methods using the generated random observations in
Step 2,

4. Repeat Steps 2 and 3 for N times,

5. Compute the mean relative estimates (MREs) and mean square errors (MSEs) using θ̂ and θ

with the following equations:

MRE =
N
∑

j=1

θ̂ i, j
/

θi
N ,

MSE =
N
∑

j=1

(θ̂i, j−θi)
2

N , i = 1,2,3.

where θ̂i, j for i = 1,2,3 and j = 1, ...,N, is the estimation of ith element of parameter vector in
jth iteration. The simulation results are obtained with software R. The chosen parameters of the
simulation study are θ = (λ = 1.2,α = 2,β = 0.2), N = 1000 and n= (50,55,60, ...,500). We expect
that MREs are closer to one when the MSEs are near zero. Figures 3 represents estimated MSEs and
MREs from MLE and LSE methods. Based on Figures 3, the MSE of all estimates tends to zero for
large n and also as expected, the values of MREs tend to one. It is clear that the estimates of parameters
are asymptotically unbiased. In estimation of β and λ , the MLE method approach to nominal values
of the MSEs and MREs faster than the LSE method. The LSE method exhibits better performance
than the MLE method for the large sample size in estimating α . Therefore, the MLE is a more suitable
method than other for estimating parameters of the OLLGL distribution for small a sample size.
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Figure 3: Estimated MREs and MSEs for the selected parameter values.

4. Applications

In this section, we illustrate the fitting performance of the OLLGL distribution using a real data
set. For the purpose of comparison, we fitted the following models to show the fitting performance of
the OLLGL distribution by means of real data set:

• Lindley Distribution, L(λ ).

• Power Lindley distribution, PL(β ,λ ).

• Generalized Lindley, GL(α,λ ), (Nadarajah et al. (2011)), with distribution function given by

F(x) =
(

1− (1+
λ x

1+λ
)e−λ x

)α

.

• Beta Lindley, BL(α,β ,λ ), Merovci and Sharma (2014), with distribution function given by

F(x) =
∫ L(x,λ )

0
tα−1(1− t)β−1dt.

• Exponentiated power Lindley distribution, Ashour and Eltehiwy (2015), EPL(α,β ,λ ), with
distribution function given by

F(x) =

(
1− (1+

λ xβ

1+λ
)e−λ xβ

)α

.

• Odd log-logistic Lindley distribution OLL− L(α,λ ), (Ozel et al. (2017)), with distribution
function given by

F(x) =
L(x,λ )α

L(x,λ )α +(1−L(x,λ ))α
.

• Kumaraswamy Power Lindley, KPL(α,β ,γ,λ ) (Oluyede et al. (2016)

F(x) = 1− [1−PL(x,β ,λ )α ]γ .



STATISTICS IN TRANSITION new series, September 2023 83

• Extended generalized Lindley, EGL(α,γ,λ ), (Ranjbar et al. (2018)),

F(x) =
L(x,λ )α

L(x,λ )α +1− (1−L(x,λ ))γ
.

• New Odd-log logistic Lindley, NOLLL(α,β ,λ ), Alizadeh et al. (2018b)

F(x) =
L(x,λ )α

L(x,λ )α +(1−L(x,λ ))β
.

Estimates of the parameters of OLLGL distribution, Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), Cramer Von Mises and Anderson-Darling statistics (W ∗ and A∗) are pre-
sented for each data set. We have also considered the Kolmogorov-Smirnov (K-S) statistic and its
corresponding p-value and the minimum value of the minus log-likelihood function (-Log(L)) for the
sake of comparison. Generally speaking, the smaller values of AIC,BIC,W ∗ and A∗, the better fit to
a data set. Furthermore, the likelihood ratio (LR) tests apply for evaluating the OLLGL distribution
with its sub-models. For example, the test of H0 : β = 1 against H1 : β ̸= 1 is equivalent to comparing
the OLLGL with GL and the LR test statistic is given by

LR = 2
[
l(α̂, β̂ , λ̂ )− l(α̂∗,1, λ̂ ∗)

]
,

where α̂∗ and λ̂ ∗ are the ML estimators under H0 of α and λ , respectively. All the computations were
carried out using the software R.

The data set is given from Murthy (2004). The ML estimates of the parameters and the goodness-
of-fit test statistics for the first data set is presented in Table 3 and 4 respectively. As we can see, the
smallest values of AIC,BIC,A∗,W ∗ and −l statistics and the largest p-values belong to the OLLGL
distribution. Therefore, the OLLGL distribution outperforms the other competitive considered distri-
bution in the sense of this criteria.

Table 1: Data set.

0.032 0.035 0.104 0.169 0.196 0.260 0.326 0.445 0.449 0.496
0.543 0.544 0.577 0.648 0.666 0.742 0.757 0.808 0.857 0.858
0.882 1.138 1.163 1.256 1.283 1.484 1.897 1.944 2.201 2.365
2.531 2.994 3.118 3.424 4.097 4.100 4.744 5.346 5.479 5.716
5.825 5.847 6.084 6.127 7.241 7.560 8.901 9.000 10.482 11.133

In addition, the profile log-likelihood functions of the OLLGL distribution are plotted in Figure
4. These plots reveal that the likelihood equations of the OLLGL distribution have solutions that are
maximizers.

The values of LR test statistics and their corresponding p-values are exhibited in Table 5. From
Table 5, we observe that the computed p-values are too small so we reject all the null hypotheses and
conclude that the OLLGL fits the data set better than the considered sub-models according to the LR
criterion.

We also plotted the fitted pdfs and TTT plots of the considered models for the sake of visual
comparison, in figures 5 and 6, respectively. Therefore, the OLLGL distribution can be considered as
an appropriate model for fitting the data set.
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5. Bayesian estimation

The Bayesian inference procedure has been taken into consideration by many statistical researchers,
especially researchers in the field of survival analysis and reliability engineering. In this section, the
complete sample data are analysed through a Bayesian point of view. We assume that the parameters
α , β and λ of the OLLGL distribution have independent prior distributions as

α ∼ Gamma(a,b),λ ∼ Gamma(e, f ),β ∼ Gamma(g,h)

where a, b, e, f , g and h are positive. Hence, the joint prior density function is formulated as follows:

π(α,β ,λ ) =
ba f ehg

Γ(a)Γ(e)Γ(g)
α

a−1
β

h−1
λ

e−1e−(bα+hβ+ f λ ). (25)

In the Bayesian estimation, we do not know the actual value of the parameter, which may be
adversely affected by loss when we choose an estimator. This loss can be measured by a function of
the parameter and corresponding estimator. For the Bayesian discussion, we consider different types
of symmetric and asymmetric loss functions such as squared error loss function (SELF), weighted
squared error loss function (WSELF), modified squared error loss function (MSELF), precautionary
loss function (PLF) and K-loss function (KLF). These loss functions, associated Bayesian estimators
and posterior risks are presented in Table 2. For more details see Calabria and Pulcini (1996). Next,

Table 2: Bayes estimator and posterior risk under different loss functions

Loss function Bayes estimator Posterior risk

SELF = (θ −d)2 E(θ |x) Var(θ |x)

WSELF = (θ−d)2

θ
(E(θ−1|x))−1 E(θ |x)− (E(θ−1|x))−1

MSELF =
(
1− d

θ

)2 E(θ−1 |x)
E(θ−2 |x) 1− E(θ−1 |x)2

E(θ−2 |x)

PLF = (θ−d)2

d

√
E(θ 2|x) 2

(√
E(θ 2|x)−E(θ |x)

)
KLF =

(√
d
θ
−
√

θ

d

) √
E(θ |x)

E(θ−1 |x) 2
(√

E(θ |x)E(θ−1|x)−1
)

we provide the posterior probability distributions for a complete data set. Let us define the function ϕ

as

ϕ(α,β ,λ ) = α
a−1

β
h−1

λ
e−1e−(bα+hβ+ f λ ), α > 0, β > 0, λ > 0.

The joint posterior distribution in terms of a given likelihood function L(data) and joint prior
distribution π(α,β ,λ ) is defined as

π
∗(α,β ,λ |data) ∝ π(α,β ,λ )L(data). (26)

Hence, we get joint posterior density of parameters α , β and λ for complete sample data by
combining the likelihood function and joint prior density (25). Therefore, the joint posterior density
function is given by

π
∗(α,β ,λ |x) = Kϕ(α,β ,λ )L(x,ξ ) (27)
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where

L(x;ξ ) =
n

∏
i=1

αβλ 2 (1+ x)e−λ x
[
1− (1+ λ x

1+λ
)e−λ x

]αβ−1 [
1−
[
1− (1+ λ x

1+λ
)e−λ x

]α]β−1

(1+λ )

{[
1− (1+ λ x

1+λ
)e−λ x

]αβ

+
[
1−
[
1− (1+ λ x

1+λ
)e−λ x

]α]β
}2 .

(28)

and K is given as

K−1 =
∫

∞

0

∫
∞

0

∫
∞

0
ϕ(α,β ,λ )L(x,ξ )dαdβdλ .

Moreover, the marginal posterior pd f of α , γ and β , assuming that Θ = (α,γ , β ), can be given

π(Θi|x) =
∫

∞

0

∫
∞

0
π
∗(Θ|x)Θ jΘk, (29)

where i, j,k = 1,2,3,i ̸= j ̸= k and also Θi is ith member of a vector Θ. It is clear from the equations
(27) and (29) that there are no closed-form expressions for the Bayesian estimators under the five loss
functions described in Table 2. Because of intractable integrals associated with joint posterior and
marginal posterior distributions, we need to use numerical software to solve integral equations nu-
merically via MCMC method. The two most popular MCMC methods are: the Metropolis-Hastings
algorithm (Metropolis et al. (1953), Hastings (1970)) and the Gibbs sampling (Geman and Geman
(1984)). The Gibbs sampling is a special case of the Metropolis-Hastings algorithm which generates
a Markov chain by sampling from the full set of conditional distributions. The Gibbs sampling algo-
rithm can be described generically as follows.

Suppose that the general model f (x|θ) is associated with parameter vector θ = (θ1,θ2, ...,θp)

and observed data x. Thus, the joint posterior distribution is π(θ1,θ2, ...,θp|x). We also assume that

θ0 = (θ
(0)
1 ,θ

(0)
2 , ...,θ

(0)
p ) is the initial values vector to start the Gibbs sampler. The Gibbs sampler

draws the values for each iteration in p steps by drawing a new value for each parameter from its full
conditional given the most recently drawn values of all other parameters. In symbols, the steps for any
iteration, say iteration k, are as follows:

• starting with an initial estimate (θ
(0)
1 ,θ

(0)
2 , ...,θ

(0)
p )

• Draw θ k
1 from π

(
θ1|θ k−1

2 ,θ k−1
3 , ...,θ k−1

p
)

• Draw θ k
2 from π

(
θ2|θ k

1 ,θ
k−1
3 , ...,θ k−1

p
)
; and so on down to

• Draw θ k
p from π

(
θp|θ k

1 ,θ
k
2 , ...,θ

k
p−1
)

As mentioned above, often Bayesian inference requires computing intractable integrals to gener-
ate posterior samples. Using Gibbs sampling, one can obtain samples from the joint posterior distri-
bution. In practice, simulations related to Gibbs sampling are conducted through a special software
WinBUGS. WinBUGS software was developed in 1997 to simulate data of complex posterior distri-
butions, where analytical or numerical integration techniques cannot be applied. Also, we can use
OpenBUGS software, which is an open-source version of WinBUGS. Since there is not any prior in-
formation about hyper parameters in (25), one can implement the idea of Congdon (2001) and these
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parameters can be chosen as a = b = c = d = e = f = 0.0001. Hence, we can use the MCMC pro-
cedure to extract posterior samples of (27) by means of the Gibbs sampling process in OpenBUGS
software.

Bayesian estimators associated with the parameters of the OLLGL distribution are computed based
on the single chain of 10000 cycles of the Gibbs sampler with a conservative burn-in period of the
first 1000 iterations. The corresponding Bayesian point and interval estimation and posterior risk are
provided in Tables 6 and 7 for the data set. Table 7 provides 95% credible and HPD intervals for
each parameter of the OLLGL distribution. The convergence of the Gibbs sampler process is verified
through graphical inspection (Trace, Autocorrelation and Histogram plots) of the posterior sampled
values. It is observed that the Gibbs samples of all the parameter estimates achieved a good stationary
phase for both considered data sets. We provide the posterior summary plots in Figures 7, 8 and 9.
These plots confirm that the convergence of the Gibbs sampling process is occurred.

6. Conclusion

In this paper, a new distribution which is called odd log-logistic generalized-Lindley (OLLGL)
distribution was introduced. The statistical properties of the OLLGL distribution including the hazard
function, quantile function, moments, incomplete moments, generating functions, mean deviations
and maximum likelihood estimation for the model parameters were given. Simulation studies were
conducted to examine the performance of this distribution. We also presented applications of this new
distribution for a real-life data set in order to illustrate the usefulness of the distribution. Finally, the
Bayesian estimation and the Gibbs sampling procedure for the considered data sets were discussed.
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Appendix

Tables and figures of the real data analyses section:

Tables:

Table 3: Parameter ML estimates and theirs standard errors (in parentheses).

Model α β γ λ

Lindley(λ ) – – – 0.5656(0.0585)
GL(α,λ ) 0.6223(0.1142) – – 0.4351(0.0709)
PL(β ,λ ) 0.7593(0.0792) – – 0.7701(0.1088)
BL(α,β ,λ ) 0.6605(0.1407) 0.4098(0.5014) – 0.9475(1.0566)
EPL(α,β ,λ ) 0.6825(0.2692) 1.2376(0.9557) – 0.9372(0.6396)
OLLL(α,λ ) 0.7099(0.0894) – – 0.6317(0.0853)
KPL(α,β ,γ,λ ) 0.7799(0.1003) 1.5335(0.5297) 0.1262(0.0368) 4.3580(1.0558)
EGL(α,γ,λ ) 0.6192(0.1068) 0.4135(0.4174) – 0.3805(0.1489)
NOLLL(α,β ,λ ) 0.2513(0.1063) 1.4241(0.5008) – 1.2655(0.3774)
OLLGL(α,β ,λ ) 0.2575(0.0972) 1.5854(0.5016) – 5.4620(3.3951)

Table 4: Goodness-of-fit test statistics.

Model AIC BIC p− value W ∗ A∗ −l

Lindley(λ ) 215.8801 217.7921 0.0128 0.1358 0.7415 106.9412
GL(α,λ ) 210.5744 214.3985 0.3338 0.1393 0.7576 103.2872
PL(β ,λ ) 209.6294 213.4534 0.5108 0.1085 0.6061 102.8147
BL(α,β ,λ ) 212.1457 217.8818 0.3376 0.1318 0.7167 103.0729
EPL(α,β ,λ ) 211.5485 217.2846 0.5544 0.0992 0.5667 102.7742
OLLL(α,λ ) 209.0254 212.8494 0.4245 0.1212 0.6521 102.5127
KPL(α,β ,γ,λ ) 212.9133 220.5614 0.5858 0.0809 0.4850 215.8257
EGL(α,γ,λ ) 212.4044 218.1405 0.4438 0.1281 0.7047 103.2022
NOLLL(α,β ,λ ) 206.9584 212.6945 0.8271 0.0369 0.2691 100.4792
OLLGL(α,β ,λ ) 206.5137 212.2498 0.8984 0.0362 0.2569 100.2569

Table 5: The LR test results.

Hypotheses LR p-value

OLLGL versus Lindley H0 : α = β = 1 13.3663 0.00125
OLLGL versus OLL-L H0 : β = 1 4.5116 0.03366
OLLGL versus GL H0 : α = 1 6.0607 0.01382
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Table 6: Bayesian estimates θ̂ and their posterior risks r
θ̂

of the parameters under different
loss functions.

Data First data set
Bayesian estimation

Loss function α̂ (rα̂ ) β̂ (r
β̂
) λ̂ (r

λ̂
)

SELF 274.818 (10.648) 0.3393 (0.0021) 6.4192 (0.1030)
WSELF 274.336 (0.4825) 0.3332 (0.0061) 6.4032 (0.0160)
MSELF 273.853 (0.0018) 0.3270 (0.0185) 6.3872 (0.0025)
PLF 275.059 (0.4824) 0.3423 (0.0060) 6.4272 (0.0160)
KLF 274.577 (0.0018) 0.3362 (0.0183) 6.4112 (0.0025)

Table 7: Credible and HPD intervals of the parameters α , β and λ .

Credible interval HPD interval
α (266.8, 282.9) (252.8, 296.9)
β (0.3081, 0.3687) (0.2466, 0.4236)
λ (6.196, 6.638 ) (5.819, 7.066)
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Figure 4: The profile log-likelihood functions of the OLLGL distribution.
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Figure 5: Fitted densities of distributions.

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

i/n

T(
i/n

)

OLLGL
L
PL
GL
EPL

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

i/n

T(
i/n

)

OLLGL
KPL
EGL
BL
OLLL
NOLLL

Figure 6: TTT plots of distributions.

0 2000 4000 6000 8000 10000

24
0

26
0

28
0

30
0

alpha

0 2000 4000 6000 8000 10000

0.
20

0.
30

0.
40

0.
50

beta

0 2000 4000 6000 8000 10000

5.
5

6.
0

6.
5

7.
0

7.
5

lambda

Figure 7: Plots of Bayesian analysis and performance of Gibbs sampling. Trace plots of
each parameter of OLLGL distribution.
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Figure 8: Plots of Bayesian analysis and performance of Gibbs sampling. Autocorrelation
plots of each parameter of OLLGL distribution.
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Figure 9: Plots of Bayesian analysis and performance of Gibbs sampling. Histogram plots
of each parameter of OLLGL distribution.




