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1 INTRODUCTION

Opinion polls are regularly done for nearly 70 years. The first professional reports 
from an opinion poll were compiled by the American Institute of Public Opinion 
founded by George Gallup. There were earlier attempts to recognize views of particular 
groups of people tied by common profession, domicile or religion. However, they were 
usually opinions of whole groups, or sometimes representatives of these groups, but 
it was rare to randomely choose these representatives.

Preparing and realizing a contemporary opinion poll takes few major stages, 
which are carried out using advanced research techniques [9].

According to this procedure an opinion poll is finished with the moment of 
compiling a final report and releasing the results. At this stage the results and techniques 
of research are judged by the recipients of the report and a wide group of people 
interested in the results. This group is usually quite roughly acquainted with the 
methods of designing and realizing the research and of the statistical analysis of 
empirical data. Nevertheless, it is the orderer of the research who has a voice in making 
a decision about the shape and techniques of research. Often, but not always, they go 
by economical reasons and override content-related problems. As a consequence from 
the very beginning of a research project the researchers fight stereotypes that are hard 
to overpass and concern the nature of arising problems. In particular, the problems 
concern the interpretation of random issues. In one of the first polls concerning the 
analysis of voting preferences a sample of 10 million people1 was taken arguing that 
accurate prognosis needs a huge set of data. It is only the spectacular mistakes in the 
results of the poll that allow researchers to argue for changing the research techniques. 
Another argument for new research methods is the expansion of the information 
technology, infrastructure and the rise of social awareness. In the times of a different 
view on the research results very important is the transformation of the informative 
media market. Society expects the media to provide accurate and reliable information 
substantiated by thorough research. Additionally, the research has become releatively 
cheap and this results with a huge group of individual research orderers. Banks, 
economic and social entities have researches done, the results of which are used on 
their own hook for substantiating argumentation concerning current economic or 

1 A 1936 poll concerning presidential election which was won by Franklin D. Roosevelt, whereas the 
sample favored his opponent, Alf Landon
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political decisions. At the end of XXth century we observed an unimaginably dynamic 
growth of computer techniques. This growth is reflected by the change of approach to 
the analysis of statistical data. The main modification of the hitherto existing way of 
analyzing data is introducing the Bayesian approach in a big way. This approach not 
only changed the purely technical side of the form of analysis of the survey data, but 
the main change is the introduction of a new philosophy of giving answers to posed 
questions in the domain of the observation carried on.

The aim of the work is presenting and solving the issue of estimating the result 
in the randomized response technique. The techniques used so far of analysing this 
issue were based on the classical rules of statistical inferring. These methods were 
analytically correct and easy to compute, but as it sometimes happens, the results 
obtained in certain cases were unreasonable2. In the presented work we deeply analyse 
the issue of randomized response using of Bayesian methods. We present various 
choices of prior distributions and we show why some of them do not give the expected 
results. We present results and Bayesian procedures with the use of a modern V@R 
technology [7].

2. RANDOMIZED RESPONSE – RESEARCH EXPERIMENT DESCRIPTION

When constructing a survey research we are faced with a variety of partial problems 
which require detailed techniques. One of classic issues connected with formulating 
survey questions is balancing possible answers in the sense of positive and negative 
answer. This issue lies in the domain of psychological investigation and concerns 
aversion to or acceptance of a selected answer due to a too suggestive question. After 
the September 11th attack on World Trade Center it was justified to ask a question 
like the following one: Do you think that the United States should take a military 
action in retaliation for the terrorist attacks on New York and Washington? This 
question would suggest the answer too much and thus the actual question asked by 
The Gallup Organization was: Do you think that the United States should or should 
not take a military action in retaliation for the terrorist attacks on New York and 
Washington? Balance of the answers can also be achieved by proposing several answers 
with a growing strength of the answer. It is worse when we have to deal with sensitive 
questions.

The issue of truthfulness of the answers to a given questions appeared on the very 
beginning of the construction of the surveys. We usually assume, that the respondents 
answer the survey questions honestly and verdically. On the other hand we are aware, 
that if the question is socially or religiously or professionally sensitive, the truthfulness 
of the answers is up in the air [5]. The respondents try to avoid answering a sensitive 
question and most of them either chooses not to answer at all or chooses the answer 
which is socially accepted – they simply do not tell the truth. In such cases the result 
of the survey is erroneous and does not reflect the public opinion about the question 

2 Estimators obtained by the method of moments or plug-in method not always give an unambiguous 
result and not always fall in the allowable range of parameters (compare eg. [1, Chapter 2.1])
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posed. The Randomized Response technique aims at discharging the respondent from 
publishing his standpoint about given issue. This kind of freeing from remorses was 
used from way back. The biblical penalty of stoning and later the execution by shooting 
by a firing squad had similar features. The firing squad chosen to shoot the convict 
was given rounds of ammunition, some of which were blank. They were distributed 
randomely and in fact no one knew who was the one who shot the convict.

In the classical approach [10] the research technique of randomized response 
is answering one of two connected questions randomely chosen by the respondent. 
Balance plays a significant role in the construction of the questions. Suppose the 
socially sensitive question (denoted Q0) is as follows:

Q0: Did you ever drive in the state of significant alcohol intoxication?
We add second, complementary question of opposite nature balancing the research 

issue (denoting Q1):
Q1: Did you always qive up driving when in the state of significant alcohol 

intoxication?
The questions may have quite simple form.
Q0: Will you vote for candidate x in the next presidential election?
Q1: Will you not vote for candidate x in the next presidential election?
Questions Q0 and Q1 are constructed in such a way that answering “Yes” to one 

of them is equivalent to answering “No” to the other. We propose the respondent to 
toss a die (in private) and answering question Q0 when he/she gets the outcome of 
1, 2, 3, 4 or 5, and answering Q1 when he/she gets 6, but we expect the question to 
be answered honestly. The result is an answer of “Yes” or “No”, but the researcher 
does not know which question was answered. As a result we don’t know the opinion 
of the person questioned. The assessment of the respondent’s standpoint is influenced 
by his/her opinion about the presented issue together with the frequency of choosing 
question Q0. In the simpliest approach the respondent tosses a die and then gives 
the answer. This schema implies a computational process after the diagram in the 
figure (1).

From this, the probabilites of getting a positive and negative answer in a single 
sample are, accordingly:

, ,Yes NoPr Pr1 1 3
2

6
1

6
5

3
2

= + - - = + = -ni n i i i] ^ ] ]g h g g
where 1 –– m is the probability of getting „6” and q is the probability of the support 
for the candidate.

If the answers come from n respondents, we can try to assess the parameter q, 
denoting „real” frequency of a positive answer to the sensitive question posed. Using 
the method of maximum likelihood (method of moments, plug-in principle) we get 
estimator for q of the following form
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Right at the first sight we notice that the estimator (1) has significant shortcomings. 

One of them is inappropriate range. For n = 20 respondents and nT = 3 „Yes” answers 
from (1) we get a negative value of

.80
11

ML=-it

We get similarly inappropriate (greater than 1) assesment of q for nT = 17. In 
such cases we assume values of 0 and 1 to be the estimator of greatest reliabilty, but 
this is not a favourable solution.

The literature of the subject gives examples of attempts to analyse the survey 
results using the randomized response technique. These attempts usually enrich the 
form of posing questions with the cases of not connected questions or systems of 
questions with multiple answers. The estimation optimalisation in those cases uses 
classical estimation techniques with a drift towards minimizing the variance [8]. We 
also find few suggestions of a different approach. One of them concerned using logit 
transformation [5], [2], another was based on the Bayesian approach [6] and was 
orientated towards considering a case where in place of the answer „Yes” there were 
several different answers considered. However, until now there were no studies that 
would transgress the standards found in monographic studies.

3. BAYESIAN APPROACH – MOTIVATION

In the Bayesian approach we assume that the assesed parameter is a random 
variable (that is, a random variable of a known distribution). At first we assume that 
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the distribution of the estimated parameter is known. We call it prior distribution. As 
a result of observation obtained from a survey we get a modification of prior distribution 
called posterior distribution. The posterior distribution is obtained by applying Bayes 
formula to a known conditional distribution of obtained empirical data an the prior 
distribution. The posterior distribution is the final result of the estimation.

Earlier works the Bayesian estimator was understood as the expected value of the 
posterior distribution. This value was derived from the conditions of minimum risk with 
a square loss function. This procedure shows some similarity to classical methods of 
estimation and justifies the name of this value. Nowadays authors consequently avoid the 
name „Bayesian estimator” using more often the „prior expected value” or, less accurately, 
„prior average”. For example, such rule is used in monograph [4]. In another monograph 
[1] the term „Bayesian procedure” is used, and usage of „Bayesian estimator” is retired.

In practice the posterior distribution is presented by density or frequency graphs 
and by giving quantile characteristics, the average and the standard deviation of the 
distribution.

In theory the Bayesian approach can be used in almost every model. In practice 
we use it when we are aiming less at estimating the parameters of the distribution and 
more on modyfing the hitherto existing knowledge about the parameter. In the presented 
issue (the randomized response) we usually have very much initial information. The very 
approach to the question as a sensitive one is introducing an imprecise, but entrenched 
knowledge about the answers. It evinces in a supposition that the answers will be 
dishonest, so the classical empirical frequencies will be underrated (or overrated). The 
common usage of the maximum likelihood estimator according to formula (1) is supported 
by the prior information. We do assume, that in this approach it is unlikely for the 
values of the estimator to exceed the range and we treat it as the proper estimate of the 
frequency of an answer to a sensitive question. However, it turns out that the probability 
of a negative estimate of the frequency parameter q may be quite big. We have equalities:

< <Pr Pr n n F n0 1 1ML T= - = -i n ni i i
t` ^_ ^^j h i h h

where Fq (·) is the cumulative distribution function of a random variable of binomial

distribution with parameters (n, q). As for any q Î (0, 1) and ,2
1
1dn b l
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so for every size of the sample and every ,2
1
1dn b l  we can select q, such that

>Pr 1MLii
t` j  is arbitrarily close to one. From this exceeding value of one by the esti-
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mator given by the formula (1) is quite a common effect when the value of estimated 
parameter q is big.

The Bayesian approach is always connected with some limitations in the choice of 
parameters and interpretation of the results, but these are limitations we can influence 
and modify as needed. When using the maximum likelihood estimators we can at 
most interpret the results.

4. CONSTRUCTION OF A MODEL

Usually a survey of sensitive issues is preceded by partial or preparatory surveys. 
The results obtained from these preliminary information constitute the initial knowledge 
which is grouped to form an prior distribution. The issue of constructing an prior 
distribution is complicated and demands a great experience in analysing empirical 
data.

The researcher has to be very well acquainted to the content-related side of the 
analysed phenomenon. In the randomized response technique setting the conditional 
distribution from which the random sample is taken is quite natural and does not 
cause too much discrepancy between researchers. It is assumed that it is a binomial 
distribution with proper parameters, which usually reflects well the nature of the 
examined phenomenon. It is more difficult to set an prior distribution. We will discuss 
this issue in the next sections.

Let us assume the simpliest Warner model [10]. In this model we denote by m 
a constant value corresponding to the frequency at which we draw question Q0:

We assume that ,2
1
1dn b l  which means that as a result of drawing a question by

the respondent we obtain Q0 more often. Then 1 –– m is the probability of obtaining 
question Q1. By q Î (0, 1) we denote the value of a random variable Q reflecting the 
frequency of a positive answer to a sensitive question Q0. Let X be a random variable 
corresponding to the answer, which was given by the respondent. The random vari-
able takes values „Yes” and „No” and its conditional distribution (on the condition Q) 
has the following form:
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We will use values one and zero interchangeably instead of „Yes” and „No” 
accordingly, and for simplicity of notation we denote

 .1 1= + - -} i ni n in
] ^ ]g h g  (3)

Let Y1, Y2, …, Yn be a random n size simple sample from a distribution given by 
formula (2). By nT we denote the number of „Yes” answers in this sample, and by nN 
the number of „No” answers. With the above assumptions the combined conditional 
distribution of the random vector Y = (Y1, Y2, …, Yn) has the following form:
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where ym (q) is given by formula (3) and

 < < < < , , ,, , , .y y y y Yes No2
1

1 0 1 n
n

1 2 d= fn i _ i " ,  (5)

The obtained conditional distribution is a binomial distribution with parameters 
(n, ym (q)).

4.1 THE CHOICE OF PRIOR DISTRIBUTION – NONINFORMATIVE PRIORS

In the prior distribution we intend to gather the hitherto existing information about 
the assessed parameter represented by the random variable Q. If there are no clues 
concerning this parameter, we can assume that the prior distribution of variable Q is 
one of classical noninformative distributions. For a binomial distribution noninformative 
distributions are well known [11]. For a randomized response procedure where the 
parameter of success is given by formula (3), that is as a linear function of an unknown 
conditioning parameter Q, there are no such data. Below we bring up noninformative 
priors for the analysed model deriving from classical assumptions concerning the 
construction of these distributions and we will present the consequences of these 
choices. As the first noninformative distribution we assume the uniform distribution on 
the interval (0, 1), which means the density of variable Q has the following form:

, , .f 1 0 1d=i iH
] ^g h

Then we get the posterior distribution

, ,f y 1 0 1Y
n n
T N d= -i } i } i in nH ^ ] ]_ ^^ h g gi hh

where notation is given in formula (4), and the range of parameters is described by 
inequalities (5).

For , n6
5

100= =n  the conditional expected value of parameter Q is given
by the formula

,E Y y C d3
2

6
1

6
5

3
2n n

0

1 T N

= = + -i i i iH n_ b bi l l#

where C C
6
5=n  is a normalisation constant, and nT and nN are the number of successes

and failures in the sample, accordingly. The graph of this conditional expected value as 
a function of the number of „Yes” answers (that is as a function of nT) if presented in
figure 2. As it shows for the frequency of successes up toto 

2
1  the expected value of

posterior distribution is smaller than the empirical result, that is smaller than ,n
nT  and

for the frequency of successes above 
2
1  the expected value of osterior distribution is
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above the empirical result. It is worthwile to consider this dependance for a changing 
parameter m. For m = 1 we get a classical result, ie. the expected value of posterior 
distribution is a linear function of the number of successes (See Section (5.3)) and for

<n
n

2
1T  is above the empirical result ,n

nT  and for >n
n

2
1T  is below the empirical result

(conversely to the figure 2). Together with the decrease of the value of parameter m we 
observe the empirical results and the expected value of posterior distribution diverging 
to the form as in figure 2, which means the expected value of posterior distribution

for empirical result <n
n

2
1T  falls below this result and for empirical data such that

>n
n

2
1T  it is greater than the empirical value.
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Figure 2. Expected value of the posterior distribution as a function of the number of successes. 
Dotted line denotes fraction nT/100; solid line denotes the expected value

Another classical noninformative distribution in the described randomized response 
procedure which we consider is the Jaffreys distribution basing on the Fisher amount of 
information. In this case the density of the parameter Q has the form (see Section 5.1)
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and therefore the density of posterior distribution fulfills the proportion

.f y 1Y
n nT N

2
1

2
1

\ -i } i } i
i

n nH
- -^ ] ]_^ h g gih



Bayesian Techniques in Randomized Response 75

This distribution has the same feature as the uniform distribution. For the frequency

of successes up to 
2
1  the conditional expected value is below the empirical frequency

,n
nT  and for the frequency of successes above 

2
1 , it is above. The graph of conditional

expected value as a function of the number of successes is similar to the graph in 
figure 2.

The third classical noninformative distribution, prior MDIP distribution, also has 
similar features. We obtain this distribution by maximizing entropy (see section 5.2). 
In this case the density of prior distribution is given by formula

, ,f C 1 0 1
1

d= -i } i } i i
-

n n
} i

n

} i

H
n n] ] ]_ ^] ]_g g gi hg gi

where C C
6
5=n  is the normalization constant, and ym (q) is given by the formula (4)

with limitations to the range of parameters (5).

4.2 CHOOSING BETA DISTRIBUTION AS THE PRIOR DISTRIBUTION

Another group of prior distributions are the distributions that bear some information 
obtained from hitherto research. In case of a sample taken from a binomial distribution 
we take as a standard prior distribution Beta distribution with parameters a, b with 
different way of selecting the a and b parameters. The main reason after choosing Beta 
distribution is the fact, that Beta distribution is conjugate for binomial distribution 
[3, §9.4 Tw.2]. In the case of randomized response model Beta distribution is not 
conjugate (except the case of m = 1). However the group of Beta distributions is 
fairly rich and we can expect that taking an prior distribution from this group may 
be successful used. Let’s assume that the „knowledge” about the nature of frequency 
expressed by random parameter Q resolves to the fact that we can set the expected 
value and variance

, ,E m Var0 0
2= = vH H] g

where m0 and 0
2v  are known values. We then assume that the random variable Q 

has a Beta distribution with parameters a and b connected to values m0 and 0
2v . We 

can compute the parameters of Beta distribution starting from a system of equations 
(eg. [4, Sec. A.2])
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This system has the following resolution
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We notice that if some random variable x has Beta distribution, and parameters 
are such that a ¹ 1 or b ¹ 1 and m = Ex, s2 = Var (x), then from inequality Ex > Ex2 
we get the inequality

> .
E Em

m m1
1

1
02

2

2- - =
-
-

v

p p

v] g
Then the parameters a and b in the formula (7) are well described (are non-

negative). In the same time we have to notice that the expected value m0 and variance

0
2v  in the Beta distribution fulfill the conditions 0 < m0 < 1 and .4

1
0
2#v

Additionally, a condition resulting from the relationship between variance and 
expected value has to be fulfilled, which implies the inequality

 < , , .m m m1 0 10
2

0 0 0d-v _ ^i h  (8)

Solving this inequality we have that for a given ,0 4
1

0
2dv b l  value m0 fulfills the 

inequality
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2- - + -v v  (9)

Let us denote for simplicity
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1

4
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The Beta distribution taken as the prior distribution has density
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+
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b
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C C

C - -a b
H
] ] ^^ ] ^g g hh g h  (11)

where a and b are described by the formulas (7) with the condition (8).
The subtle analysis of the choice of a and b parameters in a classical case has 

been presented in monograph [4, Chapter 5]. The analysis taken out by Gelman and 
coauthors concerns parameters a and b of Beta distribution, when the conditional 
distribution of a simple random sample is a binomial distribution. The authors assume 
as well the conditions resulting from setting prior expected value and variance in the 
Beta distribution. With the randomized response techniqe, however, we have quite 
a different model and completely dissimilar expectations about the results of the 
Bayesian estimation.

The conditional distribution of the random simple sample is given by the formula (4). 
From this, from the Bayes formula the posterior distribution fulfills the condition

 f y 1 1Y
n n 1 1T N\ - -i } i } i i i- -

i

n n
a b

H ^ ] ]_ ]^ h g gi gh  (12)
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where ym (q) is given by formula (3), q Î (0, 1) and nT is equal to the number of „Yes” 
answers and nN is equal to the number of „No” answers for the result of the random 
sample (y1, y2, …, yn). The randomized response research technique assumes in its 
essence underrating (or overrating) the frequency of classical answers. The respondent 
of a survey answers „No” (or „Yes”) more frequently than it is owed to his attitude. Let 
us assume that the question is phrased in such a way, that respondents in a classical 
survey underrate the frequency of positive answers, thus hiding their preferences.

As a consequence, if a classically driven preliminary or partial survey suggests, 
that the expected value of the answer „Yes” is about m0 = 15%, then the survey using 
randomized response technique should give more „Yes” answers than 15%.

0 p =m0 ˆ
nT
n 1

Posterior distribution

Figure 3. Location of the expected value of the prior distribution (m0), the empirical value pt 
and the posterior distribution

This number of „Yes” answers should imply higher estimate of the frequency 
parameter q. The location of these values is schematically presented in figure 3. The 
schema given in figure 3 does not have to be fulfilled in every survey, but it reflects 
a natural situation basing on prior premises. This location is usually fulfilled when

the success parameter has a value below 
2
1 .
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Figure 4. Expected value of posterior distribution as a function of the number of successes.

Dotted line denotes fracton ,
n

100
T  solid line denotes the expected value, and the crossed line denotes 

the limit of 15%
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The approaches we presented, where the priors is noninformative or is a Beta 
distribution with parameters a and b derived from assumptions about expected value 
and variance of Beta distribution given prior, do not thoroughly reflect the nature 
of the answer to a sensitive question. They do not take into consideration the main 
characteristics of these answers, that is the underration of the frequency of positive 
answers to the sensitive question in the classical technique. We solve this problem by 
using some sort of symetrization by changing the meaning of parameters a and b in 
the prior assumed Beta distribution.

4.3 COMPUTATIONAL TECHNIQUES AND EXAMPLES

We start illustrating the application of Beta distribution as prior distribution from 
assuming an prior Beta distribution of expected value m0 = 0.15 and variance 0

2v  = 0.01. 
Then from the formula (7) we get that a = 1.7625 and b = 9.9875. The graph of 
conditional expected value E (Q|Y = y) as a function of nT that is the number of 
“Yes” answers (for n = 100 tries) is presented in figure (4).

The solid line, denoting the expected value in posterior distribution, is located below 
the dotted line, which proves that the conditional expected value for every number 
of successes nT > 2 underrates the empirical value which comes from the number of 
obtained successes. The underration is quite substantial. As it can be seen in figure 
4 only at nT = 27 to 100 successes in the sample the expected value of posterior 
distribution is 15%. A similar phonomenon of underration of the frequency of successes 
by the expected value of posterior distribution is observed at different values of m0 and 
0
2v . This phenomenon should not occur in the analysed issue, we should rather expect 

the location of expected value of posterior distribution such as shown in figure 3.
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Figure 5. The expected value of posterior distribution as a function of the number of successes.

Dotted line denotes the fraction ,
n

100
T  solid line below the dotted one denotes the expected value

of posterior distribution without modification, and the solid line above the dotted one – with modification.
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This underration is caused by a characteristic of Beta distribution signaled in 
section (5.3), namely the fact that the expected value of posterior distribution is, as 
a result of assumed prior Beta distribution and binomial likelihood, a linear combination 
of the initial expected value and the empirical value. This fact is even deepened in case 
of introducing that parameter of constant frequency m. The solution to this problem is 
reversing analogical relationship above the empirical value, in some sense, a symmetrical 
reflection. We achieve this solution by assuming as the prior distribution the Beta 
distribution, but with exchanging parameters a and b (compare section (5.3)).

After such symmetrization we get the expected result. The effect of this 
symmetrization taking place is presented in figure (5). The choice of parameters a 
and b of the prior distribution is conditioned by the intial information. We may assume, 
that from earlier analysis basing on classical techniques we have some approximation 
of the expected value m0 and variance 0

2v  of the prior distribution. Then from the 
formula (7) we find parameters a and b, and then we assume the prior distribution 
to be b (b, a). With this choice of parameters the posterior distribution is given by 
the formula

 ,f x 1 1X
n n 1 1T N\ - -i } i } i i i- -

i

n n
b a

H ^ ] ]_ ]` h g gi gj  (13)

where ym (q) is given by formula (3), q Î (0, 1) and nT is equal to the number of „Yes” 
answers, and nN to the number of „No” answers for a random sample x = (x1, x2, …, xn). 
As m0 and 0

2v  unambiguously determine the Beta distribution
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Figure 6. Density of posterior distribution before symmetrization (dotted line) and after symmetrization 
(solid line) for . , . , , .m n n0 15 0 01 100 18T0 0

2= = = =v
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as the prior distribution, let a = k n m0 and b = k n –– a. Then the new parameter 
k fulfills the equation

 .k n
m m1 1

1
0
2

0 0
=

-
-

v

_f i p  (14)

Value k is well chosen (non-negative) if conditions described by inequalities (9) 
are fulfilled. For example for n = 100, m0 = 0.15, 0

2v  = 0.01 value of k is 0.1175. 
Several more values of parameter k are given in table 1.

Ta b l e  1

Some values of the proportion parameter k in Beta distribution

m0 0.05 0.10 0.15 0.20

0
2v  = 0.01 0.0375 0.0800 0.1175 0.0150

0
2v  = 0.04 0.0019 0.0125 0.0219 0.0300

Eventually we assume as the prior distribution the Beta distribution with parameters 
a = k n (1 –– m0) and b = k n m0, where k is given by formula (14).

Let us consider some examples. Let m0 = 0.15 and 0
2v  = 0.01 and as a result of 

simple random sample we obtained nT = 18 successes. Then the posterior distribution 
has density presented in figure 6. The expected value of the posterior distribution is 
E (Q|X) = 0.2219, and values of quantiles are given in table 2. This table contains 
also the quantiles for the greater number of successes nT = 20. Let us note that in 
this case the estimators of maximum likelihood given by formula (1) for n = 100, 
nT = 18 and nT = 20 are QML = 0.02 and QML = 0.05 accordingly and are of no sense 
whatsoever in this issue. In the second example we assume m0 = 0.10, 0

2v  = 0.005, 
n = 200, nT = 30.

Ta b l e  2

Quantiles of posterior distribution ((n = 100, m0 = 0.15, 0
2v  = 0.01)

nT Q0.05 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q0.95

nT = 18 0.1417 0.1579 0.1867 0.2212 0.2580 0.2930 0.3146

nT = 20 0.1558 0.1729 0.2030 0.2389 0.2770 0.3129 0.3351

The graph of the posterior density is presented in figure 7. The expected value
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Figure 7. Density of posterior distribution before symmetrization (dotted line) and after symmetrization 
(solid line) for m0 = 0.10, 0

2v  = 0.005, n = 200, nt = 30

of posterior distribution is E (Q|X) = 0.1715, and the values of quantiles are given in 
table 3. The estimator of greates reliability given by formula (1) for n = 200, nT = 30 is 
negative and we have to assume QML = 0, which does not conform to the conditions 
of the issue. Lastly, let us note that the Bayesian

Ta b l e  3

Quantiles of posterior distribution (n = 200, m0 = 0.10, 0
2v  = 0.005, nT = 30)

Q0.05 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q0.95

0.1175 0.1283 0.1474 0.1700 0.1940 0.2169 0.2310

estimatian is as always very sensitive to the size of the sample. For a greater size we 
have to increase the precision of prior distribution relatively decreasing the value of 
variance 0

2v  in the Beta distribution.

5. APPENDIX

5.1 NONINFORMATIVE JEFFREYS’ PRIOR

Lemma 1 Let X be a random variable of a distribution belonging to a family of 
distributions fulfilling the condition
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Then the Fisher’s amount of information of the parameter q is given by the 

formula
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Then from the definition of the Fisher’s amount of information for a family of 
distributions indexed by parameter q we have
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The noninformative Jeffreys prior distribution is given by the relationship
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is a noninformative prior Jeffreys’ distribution.
For m = 1 we get the noninformative Jeffreys’ distribution of a binomial distribution 

with parameter q [11].
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5.2 NONINFORMATIVE MDPI PRIOR

Let X be a random variable taking a finite number of values m with positive 
probabilities p1, p2, …, pm. Then by the entropy of the distribution p1, p2, …, pm we 
mean the value

.lnH p pi
i

m

i
1

=
=

/

It is easy to show that the entropy is in this case a value limited by ln m and the 
maximum value is reached for a uniform distribution on the set 1, 2, …, m. We define 
the prior MDIP (Maximum Data Information Prior) distribution by the releationship

.expf C H=i inH
] ]g g" ,

If a random variable X has a distribution given by the formula

, , ,Pr X x x1 0 1x x1
d= = -} i } i

-
n n

] ] ]_ ^g g gi h
then the entropy of the distribution of the random variable X fulfills the condition

.ln lnH 1 1=- + - -} ii } i } i } in n n n
] ] ] ]_ ]_`g g g gi gij

From this

, ,f C 1 0 1
1

d= -i } i } i i
-

n n
} i

n

} i

H
n n] ] ]_ ^] ]_g g gi hg gi

is the prior MDIP distribution. Because entropy is limited, this distribution is a proper 
noninformative distribution. The constant Cm can be computed for a given value of m. 
In table 4 we computed come values of the normalization constant

Ta b l e  4

Normalization constant in the MDIP distribution

m m = 1
  (binomial(binomialbinomial 
distribution) 6

5
-n

5
4

-n
4
3

-n 3
2

-n

Cm 1.6184 1.8454 1.8759 1.9184 1.9626

5.3 BETA PRIOR

Lemma 2 Let the conditional distribution of a random simple sample X = (X1, …, Xn) 
on the condition of parameter Q be given by the formula

Pr X x 1
x n x
i

i

n

i
i

n

1 1= = -= i i iH
-

= =^ ]f fh gp p/ /
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where q Î (0, 1), x Î {0, 1}n (binomial distribution). Let the prior distribution of para-
meter Q be Beta distribution with parameters (a, b). Then the expected value of posterior 
distribution is given by the formula

,E X x tm t p1= = + -H t` ]j g

where m = EQ, , .p x t
nn

1
i

i

n

1

= =
+ +
+
a b
a b

=

t /

Proof. As parameter Q has a distribution of b (a, b), then the prior density is 
given by formula

, , .f 1 0 11 1

$
d=

+
-i

a b

a b
i i i

C C

C - -a b
H
] ] ^^ ] ^g g hh g h

From this, the density of posterior distribution fulfills the proportionality 
condition

, , , , ,f x x1 0 1 0 1X
x x n1 1
T N\ d d-i i i i+ - + -

i
a b

H ^ ] ^` h g hj " ,

where , .x x x n xT i
i

n

N T
1

= = -
=

/  Then the posterior distribution is b (a + nT, b + nN).

From this its expected value may be denoted as follows

,E X x
n

n

n n
n

n
nT T= =

+ +
+

=
+ + +

+
+

+ +a b

a

a b
a

a b
a b

a b
H` c cj m m

which is the equality from the problem’s thesis. Let us note, that if we set ,m
+

=
a b
a

then

, .E Elim limX x m X x p 0
n

= = = - =H H
" "+ 3 3a b

t` ``j j j
From this, when choosing parameters a and b of the prior distribution, we decide 

about the location of the expected value in such a way, that the greater a + b the 
smaller is the influence of the direct data in the posterior distribution. Howsoever, 
with the increase of the size of the sample, the influence of the prior expected value 
on the posterior expected value is smaller.

Lemma 3 If a random variable x has a distribution b (a, b), then the random variable 
1 –– x has distribution b (b, a):

Proof. Let us denote h = 1 –– x. Then

, , .f f 1 0 1d= -i i ih p
] ] ^g g h
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From this

, , ,f 1 0 11 1

$
d=

+
-i

a b

a b
i i i

C C

C - -
h

a b] ] ^^ ] ] ^g g hh g g h
which gives the lemma’s thesis.
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TECHNIKI BAYESOWSKIE W PROCEDURACH LOSOWANIA ODPOWIEDZI

S t r e s z c z e n i e

Zagadnienie prawdziwości odpowiedzi na drażliwe społecznie lub osobiście pytania ankieterów pojawiło 
się wraz z początkiem badań ankietowych. Często respondenci próbują uniknąć odpowiedzi lub odpowia-
dają niezgodnie z prawdą. Powstało wiele technik badawczych i analitycznych korygujących wyniki badań 
ankietowych pozwalających na ocenę rzeczywistej opinii respondentów. W pracy przedstawiono bayesowską 
analizę techniki Randomize Response. Zaprezentowano argumentację wyboru różnych rozkładów a priori 
zarówno nieinformujących, jak i rozkładów kompensujących informacje wstępne opisane rozkładami para-
metrycznymi.

Słowa kluczowe: Techniki bayesowskie, randomizowane odpowiedzi, model Warnera
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BAYESIAN TECHNIQUES IN RANDOMIZED RESPONSE

S u m m a r y

The issue of truthfulness of the answers given to socially or personally sensitive questions appeared 
at the very beginning of the construction of the surveys. The respondents often try to avoid answering 
a sensitive question or they do not tell the truth. Various research and analysis techniques have been 
developed to adjust the surveys results in order to assess the real opinion of the respondents. The work 
introduces a bayesian analysis of the Randomized Response technique. It presents arguments for choosing 
various a priori distributions, both non-informative and compensating for the preliminary information 
described by parametrized distributions.

Key words: Bayesian techniques, randomized response, Warner model


