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VOLATILITY MODELS. THE EVIDENCE FROM THE WIG20 INDEX 

AND THE EUR/PLN FOREIGN EXCHANGE MARKET

1. INTRODUCTION

Volatility is an unobservable feature of each financial market. While we can 
directly observe the prices of instruments and their movement, we cannot observe 
their volatility. Volatility is a measure associated with risk and uncertainty connected 
with unexpected changes of an instrument price. This makes financial time series 
unpredictable. Since we cannot observe volatility, we only approximate it with the 
help of statistical models. The simplest and most naive measure of volatility of a given 
instrument is the standard deviation (or variance) of its price. However, the measure 
is static while the volatility of an instrument changes on day-to-day basis. That is why 
dynamic measures of volatility have gained more and more popularity.

Dynamic modelling of volatility can be divided into three groups [9]:
– taking advantage of volatility models such as the (Generalised) Autoregressive 

Conditional Heteroskedasticity models ((G)ARCH) and the Stochastic Volatility models 
(SV),

– implied volatility models, deriving volatility from the market option prices,
– realized volatility (RV), based upon the high-frequency data.
The aim of the article is to compare the estimates of volatility obtained from the 

parametric volatility models, namely the GARCH and the SV, with realized volatility 
RV as a non-parametric measure. We consider RV measures obtained from data of 
different frequencies and calculated within two approaches: with and without night 
returns. We take into account the Polish stock exchange market and the foreign exchange 
one: our sample consist of the WIG20 index and the EUR/PLN exchange rate and 
covers a hectic crisis period.

The remainder of the paper is organized as follows. Section 2 describes GARCH 
and SV models. The different types of calculating realized volatility are presented 
in Section 3. Section 4 presents the data and empirical results of estimation of the 
GARCH and the SV models. The comparison of realized volatility measures and in-
sample estimated conditional volatility are shown in Section 5. Section 6 presents 
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accuracy of forecasts obtained from the models in comparison to realized volatility. 
Section 7 concludes.

2. PARAMETRIC ESTIMATES OF VOLATILITY: GARCH AND SV MODELS

Although the financial time series are unpredictable, they display both temporal 
dependency in their second order moments and heavy-picked and tailed distributions. 
This phenomenon has been known since the work of Mandelbrot [17], but only 
after the introduction of the autoregressive conditionally heteroskedastic models the 
econometricians started modelling the dynamics of volatility.

The first model from the group of autoregressive models was the Autoregressive 
Conditional Heteroskedasticity (ARCH) model, proposed by Engle [11]. Let us 
define:

 rt = 100 · ln (St/St–1), (1)

where rt denotes the logarithmic return, and St the price of the instrument at time t.
Next, let:

 yt = rt – E (rt|Ft–1), (2)

where E (rt|Ft–1) denotes the expected conditional value of the instrument price (usually 
modelled with ARMA models). The assumption of the ARCH(q) model is that the time 
series {yt} is not correlated, but the variables are dependent and this dependence can 
be described with the help of a function whose arguments are the squared values of 
the lagged variables yt:
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Where: {et} ~ iid (0,1) – independent random variables of the same distribution, 
a0 > 0, ai ³ 0, for i > 0 and t

2v  denotes the unobserved volatility (i.e. conditional 
variance).

A generalisation of the ARCH model was proposed by Bollerslev [4]. Again, it is 
assumed that the average of the logarithmic returns can be described with the help 
of the ARMA model. The GARCH(p, q) model takes the following form:
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where: {et} ~ iid (0,1), ai ³ 0, bj ³ 0, i = 1, …, p, j = 1, …, q.
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The advantage of the GARCH model over the ARCH is that the latter is often 
overparametrized, whereas in the practice the most common is plain vanilla 
GARCH(1,1).

Since the first GARCH(p, q) model was introduced, there have emerged lots of its 
modifications, which take into account many additional features of time series (such 
as leverage effect, long memory, different error distributions, see in: [5], [23]).

In many financial series the conditional variance estimated through GARCH(p, q) 
reveal strong persistence, characterized by:
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In this case we estimate IGARCH model, which can be written as:
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Under the IGARCH(1,1) the unconditional variance of yt is not defined.

2.1. GARCH MODELS WITH NORMAL AND STUDENT DISTRIBUTIONS

For the standard normal distribution, and if we express the conditional mean 
equation as in Equation (2) and yt = stet, the log-likelihood function is given by:
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with T denoting the number of observation.

Due to the existence of fat tails in financial time-series, the use of a Student 
distribution in combination with GARCH models is suggested. In case of a Student 
distribution, the log-likelihood function is given by:
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where u denotes the degrees of freedom (2 < u < ¥) is estimated together with other 
parameters in the model and G(·) is the gamma function.
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2.2. GARCH MODELS WITH LEVERAGE EFFECT

This effect was first described by Black [3] and it takes into account the fact that 
high negative returns are accompanied by higher volatility than the positive returns 
of the same magnitude. A volatility model commonly used in the case of leverage 
effect is the threshold GARCH, presented in Glosten, Jagannathan and Runkle [12]. 
The conditional variance equation takes the following form:
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where Nt–i is a dummy variable indicating the sign of innovations:
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The parameter g is interpreted as a leverage effect and it counts for any asymmetry 
on the volatility response to negative and positive shocks. If g is positive, the past negative 
shocks have a larger impact on conditional variance than the positive shocks.

2.3. UNIVARIATE STOCHASTIC VOLATILITY MODELS

In the ARCH-type models volatility is made dependent on the variability of the 
past observations. It means, that volatility at the moment t is determined by the 
variables, the values of which are known up to time t – 1. An alternative approach 
was proposed by Clark [7] and Taylor [25]. In Stochastic Volatility models volatility 
is driven by additional, unobserved components (see e.g. [18]).

2.3.1. THE BASIC STOCHASTIC VOLATILITY MODEL

Let ht
2  denote the latent volatility on the day t, while f Î (–1;1) be a correlation 

coefficient. The basic SV model can be written in the following form:
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The parameter f is usually interpreted as so called volatility persistence parameter, 
while t2 is interpreted as volatility of log-volatility (see e.g. [15], [27]).
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2.3.2. STOCHASTIC VOLATILITY MODEL WITH THE STUDENT DISTRIBUTION

The basic model can be changed into more sophisticated ones. One can incorporate 
into it the knowledge about the data characteristics, e.g. non-normality of distribution. 
In the SV model with the Student distribution it is assumed that the price of the 
instrument follows the Student distribution with u degrees of freedom:
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2.3.3. STOCHASTIC VOLATILITY MODEL WITH LEVERAGE EFFECT

The model can be made even more sophisticated if one wishes to include the 
leverage effect into it.

The model takes the following form:
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Then, (ht) and returns (yt) have the following distributions:
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If r < 0, this means that the leverage effect exists and volatility tends to increase 

more when large negative returns are present in the market. The parameter f denotes 
so called persistence of the volatility, which is said to be high if it the absolute value 
of this parameter is close to 1.

The model presented above is the one proposed in [13] and is an alternative to 
the model presented in [14]. The comparison of the models can be found in [26]. For 
more examples of univariate Stochastic Volatility Models and their implementations 
in WinBugs we refer the Reader to [27].

3. REALIZED VOLATILITY

Realized volatility is a non-parametric measure proposed by Andersen and Bollerslev 
[2] as a proxy for non-observable integrated volatility. Let us introduce the basic concept 
of integrated volatility (the whole section is based mainly on [16]).
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We consider the following diffusion process for the logarithmic price ln St:

( ) ( ) ( ) ( ), ,lnd S t t dt t dW t t 0\ $v= +

where, as previously:
S (t) – asset price at time t,
d ln S (t) – continuously compounded return,
W (t) – standard Brownian motion process,
m (t) – drift,
s (t) – volatility.

For very small time intervals, D, we obtain:

, ( ) ( )r t S t S t t t W t\T T T T T T/ . v- - - + -^ ^ ^ ^h h h h ,

where DW (t) is normally distributed with zero mean and standard deviation equal 
to D.

When daily one-period return is considered:
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Additionally, conditionally on the sample path of the drift and the spot volatility,
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#  is so-called integrated volatility (integrated variance).

However, integrated volatility is not observed in practice. Realized volatility 
provides a consistent non-parametric estimate of a financial instrument prices variability 
over a given time interval and therefore is often treated as a proxy for integrated 
volatility.

The realized volatility is denoted RVt (D) and defined as:
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where:
D – is a number of equally spaced intervals within a day,
rt,i – is a logarithmic return on day t at time interval i; with i = 1, …, N and  
t = 1, …, T.
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In the present work realized volatility is calculated in two ways both with and 
without night return (RV1 and RV2 respectively).

As a non-parametric and easy to obtain estimate, realized volatility is very commonly 
used in assessing the quality of conditional variance forecasts from the GARCH and 
the SV models within Mincer-Zarnowitz regression [19], which is in the form of ex-
post volatility regression:

at t t
2

0 1
2v a a v= + +{ t ,

where:
t
2v{  is ex-post volatility (e.g. realized volatility) at time t,

t
2vt  is estimated (in-sample) or forecasted (out-of sample) volatility at time t,

at – independent and identically distributed; ai ~ N (0,1).
a0 and a1 are parameters to be estimated.

If the model for conditional variance is well specified, and if ,E t t
2 2v v={_ i  we

should have: a0 = 0, a1 = 1 [2]. According to specific features of financial data series 
the value of R2 is usually low (even less than 5%).

Our approach is to use realized volatility for two purposes. First, we check if 
realized volatility is close to in-sample parametric estimates of volatility from GARCH 
and SV models. Having in-sample estimates we are able to compare two different 
measures of realized volatility, one of which includes night return and the other does
not. In this case t

2v{  is the realized volatility and t
2vt  is the estimated conditional

variance from the GARCH or the SV models.
Second, we use GARCH and SV models forecasts to examine which realized 

volatility, including night return or not, from lower or higher frequencies, is closer 
to forecasts obtained from these models. In this case t

2vt  stands for the forecast of
conditional variance from the GARCH or the SV models.

4. DATA DESCRIPTION AND EMPIRICAL RESULTS

4.1. DATA

Our data set consists of daily and intradaily prices of the WIG20 index and the 
EUR/PLN exchange rate over the period 2006-01-02 to 2009-11-06. We transform them 
into percentage logarithmic returns. The data are taken from www.stooq.pl. We estimate 
conditional variance from both the GARCH model (starting at 2006-01-10) and the 
SV model (starting at 2008-01-03) and introduce them into the Mincer-Zarnowitz in-
sample regression together with the realized volatility from 2008-01-02 to 2009-07-31. 
Finally, Mincer-Zarnowitz regression is performed on the forecasts of the conditional 
variance from the GARCH and the SV models – there are 70 forecast from 2009-08-01 
to 2009-11-06.
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All calculations were done using OxMetrics 6.0 [10] and WinBugs 1.4. In case 
of WinBugs we took advantage of the models written by Yu [26, 27] and available at 
his webpage.

4.2. ESTIMATION OF GARCH MODELS

The GARCH model was chosen by taking into account information criteria. Four 
models were compared: the most popular GARCH(1,1) with the normal and the Student 
distributions and the GJR-GARCH model [12] with normal and Student distributions. 
Here we present values of the Schwarz Information Criterion. Other considered criteria 
(Akaike and Hannan-Quinn) give the same indication.

Ta b l e  1

Comparison of GARCH models estimated for the WIG20 index

Model GARCH(1,1) GARCH(1,1) GJR-GARCH(1,1) GJR-GARCH(1,1)

distribution normal Student-t normal Student-t

SIC 4,075 4,071 4,067 4,065

The GJR model with the Student distribution occurred to be the best. In Table 
2 the parameters estimated for GARCH(1,1) and GJR-GARCH(1,1) (both with the 
Student distribution) are presented.

Ta b l e  2

Estimates for GARCH(1,1) and GJR-GARCH(1,1) for returns of the WIG20 index

a0 a1 b1 g u LL

GARCH(1,1)
0,050 0,054 0,933 11,037 –1789,23

(0,025) (0,014) (0,016)

GJR-GARCH(1,1)
0,051 0,005 0,945 0,071 12,316 –1796,60

(0,026) (0,011) (0,019) (0,023)

For the GARCH(1,1) we obtain statistically significant estimates of the parameters. 
In the GJR-GARCH(1,1) model we obtain statistically significant parameter of the 
leverage effect and statistically insignificant parameter of the past squared shocks. 
Introducing leverage effect into conditional variance equation also resulted in increasing 
the degrees of freedom in the Student distribution.
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Ta b l e  3

Comparison of GARCH models estimated for the EUR/PLN exchange rate

Model GARCH(1,1) GARCH(1,1) IGARCH(1,1) IGARCH(1,1)

distribution normal Student-t normal Student-t

SIC 1,639 1,622 1,632 1,615

In the case of the EUR/PLN exchange rate the IGARCH model with the Student 
distribution occurred to be the best. The estimates are presented in Table 4 together 
with the standard GARCH(1,1) model.

Ta b l e  4

Estimates of GARCH(1,1) and IGARCH(1,1) for the EUR/PLN exchange rate

a0 a1 b1 u LL

GARCH(1,1)
0,02 0,08 0,92 7,75 –709,67

(0,01) (0,02) (0,02)

IGARCH(1,1)
0,02 0,08 0,92 7,51 –709,73

(0,01) (0,02)

4.3 ESTIMATION OF STOCHASTIC VOLATILITY MODELS

As an alternative to GARCH we estimated the Stochastic Volatility model. We 
compared three models: the basic Stochastic Volatility model, the model with leverage 
effect and the model with the Student distribution.

Since in case of SV models, distribution of the time series at moment t is unknown 
conditional upon the observations up to the moment t – 1, estimation of the models’ 
parameters with the help of the standard methods based upon the maximum-likelihood 
is not possible. Broto and Ruiz [6] provide a survey of methods of the SV models 
estimations, while Kim et al. analyze the efficiency of their estimation [15]. From the 
various methods mentioned in the papers we chose Bayesian method based upon the 
MCMC (Markov Chain Monte Carlo) algorithm [27]. An example of the application of 
the Bayesian methodology to the estimation of stochastic volatility processes in analysis 
of the financial time series can be found e.g. in: [8], [21] and [22].

For each of the series we estimated three mentioned models and compared them 
with the help of DIC (Deviance Information Criterion). The criterion was first introduced 
by Spiegelhalter [24] as a measure of model comparison and adequacy. It is given by 
the following expression:

( ) , , ,,DIC m D m D D m pm2 2 2m m m mi i i= - = +^ _ _h i i
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where:

, ,logD m f y m2m mi i=-_ _i i
and ,D mmi^ h  is the posterior mean of the deviance measure , .D mmi_ i  The value
pm can be interpreted as the number of “effective” parameters of the model m:

, , .p D m D mm m mi i= -^ _h i  Eventually, mi  is the posterior mean of parameters involved
in the model m [20]. The criterion is considered as a generalization of the Akaike 
Information Criterion (AIC) [1]. The minimum value of the criterion indicates the 
model which offers the best short-term predictions. Since we are interested especially 
in the prediction power of the models, we report here the values of DIC and use the 
criterion to select the best model. For the Reader’s information we report also the 
values of the Bayes Information Criterion (BIC) which is based upon the Schwarz 
criterion [9]. The BIC for the model m is defined as:

( ) , ( ),logBIC m D m d nm mi= +t_ i
where m are the maximum likelihood estimates of parameters qm of model m and dm is 
the dimension of qm. As previously, D ( m, m) is the deviance measure of model m.

The tables below present the results of models comparison:

Ta b l e  5

Comparison of SV models estimated for the WIG20 index

Model basic SV t-SV leverage SV

BIC 1768.108 1777.850 1465.22

DIC 1756.880 1760.980 1678.030

Ta b l e  6

Comparison of SV models estimated for the EUR/PLN exchange rate

Model basic SV t-SV leverage SV

BIC 916.610 959.512 755.830

DIC 913.312 982.680 860.019

What is interesting, in both cases the basic SV model performed better than the 
model with the Student distribution. DIC criterion reached its minimum for the models 
with the leverage effect. Thus, we further present the results only from this model.

Since the estimation was performed using the WinBUGS software for Bayesian 
modeling, we treat each parameter of the model as a random variable and present 
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the obtained mean, median, standard deviation and 95% confidence interval for each 
of them. The MC error reported in each table denotes the so called Monte Carlo error 
which measures the variability of each estimate due to the simulation (see e.g.: [20]). 
We also present the obtained posterior densities of each parameter. In the case of 
stochastic volatility we present the 95% confidence interval of the estimated values.

Figure 1. 95% confidence intervals obtained for volatility of WIG20 (leverage SV model)

Ta b l e  7

Descriptive statistics and 95% confidence interval for parameters of the WIG20 index volatility

Parameter Mean
Standard
deviation

MC error 2.5% Median 97.5%

t 0.132 0.025 0.002 0.089 0.129 0.196

r –0.582 0.154 0.012 –0.814 –0.606 –0.193

f 0.982 0.010 0.001 0.956 0.983 0.996

a 0.024 0.016 0.001 0.003 0.021 0.065

μ 1.252 0.301 0.020 0.612 1.272 1.806

To estimate the parameters of the model we took advantage of the programs 
written by Yu [26, 27]. In case of the three SV models the parameters: t, f and μ 
have the following prior distributions: t – the inverse Gamma, μ – the Normal, while 
f* = (f + 1)/2 – the Beta distribution. The additional parameter r, present in the 
leverage SV model is uniformly distributed: r ~ U (–1, 1).
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Based upon the results displayed in Table 7 we can state that the leverage effect 
is present in the volatility of the WIG20 index. The parameter r is negative and both 
ends of the 95% confidence interval are negative. At the same time we can observe 
that the value of the parameter f is close to 1, which is a sign of a high persistence of 
volatility. Figures 2 to 6 present the obtained posterior densities of each parameter.

 
 Figure 2. Density of parameter r Figure 3. Density of parameter f

 
 Figure 4. Density of parameter m Figure 5. Density of parameter a

Figure 6. Density of parameter t

Figure 7 presents the 95% confidence interval obtained for the volatility of the 
EUR/PLN. Similarly to the case of the WIG20, there is a pick at the end of 2008 
and at the beginning of 2009. However, in the case of the WIG20, where the second 
pick is smaller, in the case of the EUR/PLN both of them reach approximately the 
same value.
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Figure 7. 95% confidence intervals obtained for volatility of the EUR/PLN exchange rat 
(leverage SV model)

In the case of the EUR/PLN exchange rate we do not observe the leverage effect, 
since the posterior mean of % takes positive value of 0.425. Also, if we take a look 
at its estimated density (Figure 8), we can observe that it is very unlikely that it will 
take a negative value. However, the value taken by the parameter f indicates again 
the high persistence of volatility. Figures 8 to 12 present the densities obtained for 
each parameter, while their descriptive statistics are presented in Table 8.

Ta b l e  8

Descriptive statistics and 95% confidence interval for parameters 
of the EUR/PLN foreign exchange volatility

Parameter Mean
Standard 
deviation

MC error 2.5% Median 97.5%

t 0.162 0.041 0.004 0.099 0.156 0.257

r 0.425 0.187 0.015 0.016 0.434 0.749

f 0.988 0.008 0.001 0.968 0.990 0.999

a –0.014 0.008 0.000 –0.033 –0.013 –0.002

μ –1.381 0.487 0.035 –2.331 –1.376 –0.467
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 Figure 8. Density of parameter r Figure 9. Density of parameter f

 
 Figure 10. Density of parameter m Figure 11. Density of parameter a

Figure 12. Density of parameter t

5. REALIZED VOLATILITY MEASURES AND CONDITIONAL VARIANCES 
FROM GARCH AND SV MODELS

5.1. REALIZED VOLATILITY IN DIFFERENT FREQUENCIES

In Figure 13 two kinds of realized volatility (with and without night return) and 
from different frequencies are presented, together with the estimated conditional 
variance from the GJR-GARCH and the SV models.
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Figure 13. Realized volatility based on 5-, 10- and 30-minute returns with (RV1) and without (RV2) 
night return and square of daily returns (RV_1day) compared to estimates of conditional variance 

from the GJR-GARCH(1,1) and the SV models.

In Figure 13 realized volatility with night return (RV1) takes significantly higher 
values than realized volatility without night return (RV2). In other words, the realized 
volatility without night returns is much more smoothed. Such spectacular differences 
are not recognizable, however, if we compare realized volatility with night returns 
but from different frequencies – based on 5- and 10-minute returns (e.g. RV1_5m and 
RV1_10m). Eventually, if one would like to compare conditional variance from the 
GJR-GARCH and the SV models, the estimates of volatility are quite close to each 
other and the direction of changes (increase or decrease) in volatility is similar to 
that obtained within realized volatility.

5.2. COMPARISON OF REALIZED AND CONDITIONAL VARIANCE IN-SAMPLE 
(MINCER-ZARNOWITZ REGRESSION)

We compare the realized volatility measures among themselves. Because we do 
not know which approach, parametric or nonparametric, gives us the best estimates of 
unobserved volatility, we use the Mincer-Zarnowitz regression to our estimates. If the 
estimated parameters in this regression are as expected, it means a0 close to 0, a1 close 
to 1 and R2 is not lower than 30%, this will indicate that the differences between the 
compared estimates are not huge and if so, both of them are good estimates of variance.
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Ta b l e  9

Mincer-Zarnowitz in-sample regression for the WIG20 volatility

RV ut t t0 1
2a a v= + +t

RV1 RV2 RV

a0 a1 R2 a0 a1 R2 a0 a1 R2

5 minutes 5 minutes 1 day

GJR-GARCH(1,1)
–0,817 1,267 0,342 0,010 0,655 0,360 0,857 0,899 0,094

(0,573) (0,089) (0,285) (0,044) (0,907) (0,140)

SV
–2,246 1,503 0,425 –0,602 0,771 0,440 –1,351 1,282 0,170

(0,567) (0,088) (0,282) (0,044) (0,920) (0,143)

10 minutes 10 minutes 30 minutes

GJR-GARCH(1,1)
–0,969 1,301 0,323 –0,174 0,693 0,356 –0,953 0,527 0,350

(0,613) (0,095) (0,304) (0,047) (1,188) (0,0816)

SV
–0,425 1,177 0,591 –0,218 0,838 0,723 –2,418 1,433 0,449

(0,179) (0,033) (0,095) (0,017) (0,514) (0,078)

RV1 stands for realized volatility calculated with night returns and RV2 is calculated without night returns. 
5, 10, and 30 minutes denote the frequencies of returns. RV 1 day stands for square of daily returns.

Parameters of the Mincer-Zarnowitz regression presented in Table 9 imply that the 
realized volatility is a better measure of unobserved volatility than the commonly used 
squares of returns (R2 values are the lowest). When we compare realized volatility from 
different frequencies, in both cases: RV1 and RV2, estimates of conditional variance 
form the GJR-GARCH models are closer to realized volatility based on 5-minute returns, 
while estimates of conditional variance from the SV models are significantly closer to 
realized volatility based on 10-minute returns (and not 30-minute returns). When we 
compare two types of realized volatility, with (RV1) and without night return (RV2), 
the realized volatility without night return seems to perform better, especially for RV 
measure based on 10-minute returns.

In Table 10 the results of the Mincer-Zarnowitz in-sample regression for the EUR/
PLN exchange rate are presented.
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Ta b l e  1 0

Mincer-Zarnowitz regression in-sample for the EUR/PLN exchange rate volatility

RV1 RV2 RV

a0 a1 R2 a0 a1 R2 a0 a1 R2

10 minutes 10 minutes 1 day

IGARCH
0,120 1,083 0,453 0,061 0,948 0,508 0,163 0,858 0,148

(0,084) (0,060) (0,065) (0,046) (0,145) (0,103)

SV
–0,102 1,347 0,618 –0,105 1,151 0,661 –0,161 1,222 0,2657

(0,071) (0,053) (0,056) (0,042) (0,1369) (0,102)

20 minutes 20 minutes 30 minutes

IGARCH
0,104 1,099 0,451 0,085 1,056 0,454 0,105 1,125 0,448

(0,086) (0,061) (0,082) (0,059) (0,088) (0,062)

SV
–0,113 1,357 0,606 –0,119 1,303 0,606 –0,125 1,399 0,612

(0,074) (0,055) (0,071) (0,053) (0,075) (0,056)

The realized volatility of any frequency in intraday data is a better estimate of 
volatility than squares of daily returns (R2 value is the lowest for the latter one). Similar 
to the WIG20 case, estimates of conditional variance from stochastic volatility models 
are closer to realized volatility than that from IGARCH model. When comparing realized 
volatility with and without night return, the latter is slightly closer to conditional 
variance estimates from parametric models. Moreover, in the case of the model 
for foreign exchange EUR/PLN the parameters estimated in the Mincer-Zarnowitz 
regression are as expected: a0 is not statistically significantly different from zero and 
a1 is very close to one.

6. THE ACCURACY OF GARCH AND SV FORECASTS 
– COMPARISON TO REALIZED VOLATILITY MEASURES

As a next step we computed 70 one-step ahead forecasts of the conditional variance 
within the GJR-GARCH (WIG20), the IGARCH (EUR/PLN) and the SV models (WIG20 
and EUR/PLN). Next we compare them to different measures of realized volatility. 
In this section we answer the question: which frequency or approach of calculating 
realized volatility gives the non-parametric estimates of variance which are the closest 
to the variance forecast from the GARCH and the SV models. We take into account 
the following forecast error measures:
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Forecast error measures from Mincer-Zarnowitz out-of-sample regression for 
WIG20 volatility are presented in Table 11.

Ta b l e  1 1

Forecasts error measures for differently calculated realized volatility of the WIG20 index

MAE RMSE MAPE AMAPE

GJR-GARCH
(1,1)

SV
GJR-GARCH

(1,1)
SV

GJR-GARCH
(1,1)

SV
GJR-GARCH

(1,1)
SV

RV1_5m 1.542 1.321 2.562 2.358 0.450 0.376 0.180 0.152

RV2_5m 1.355 1.152 1.602 1.326 0.376 0.336 0.239 0.215

RV1_10m 1.575 1.352 2.308 2.089 0.459 0.386 0.194 0.166

RV2_10m 1.531 1.347 1.793 1.521 0.429 0.393 0.277 0.257

RV1_30m 1.813 1.602 2.543 2.312 0.526 0.460 0.256 0.231

RV_1day 3.879 3.795 5.509 5.442 1.118 1.095 0.535 0.530

MAE stands for Mean Absolute Error, RMSE – Root Mean Squared Error, MAPE – Mean Absolute Percentage 
Error, AMAPE – Adjusted Mean Absolute Percentage Error.

We compare conditional variance forecasts to realized volatility calculated in 
different frequency (5, 10 and 30 minutes) and in a different way (with or without 
night returns). Generally, we conclude that the realized volatility from the highest 
examined frequency performs better than from the lower. It is in agreement with the 
results of Doman [10], where realized volatility from the highest frequency performs 
the best when forecast error measures are taken into account. However, in our study 
when comparing 5-minute realized volatility calculated with and without night return 
we do not have clear answer which of these two measures of realized volatility is 
better.
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Figure 14. Conditional variance forecasts from GARCH and SV models with realized volatility 
of the WIG20 index

In Figure 14 we show conditional variance forecasts from the GJR-GARCH and 
SV models with realized volatility from different frequencies. The realized volatility 
with night return is generally higher than variance forecast, while realized volatility 
without night return is generally lower. When we look at the squared returns (realized 
volatility based on 1-day return), this measure is definitely the least adequate.

Ta b l e  1 2

Forecasts error measures for differently calculated realized volatility of the EUR/PLN exchange rate

MAE RMSE MAPE AMAPE

IGARCH(1,1) SV IGARCH(1,1) SV IGARCH(1,1) SV IGARCH(1,1) SV

RV1_5m 0.253 0.281 0.325 0.381 0.435 0.810 0.206 0.254

RV2_5m 0.227 0.212 0.289 0.298 0.377 0.611 0.204 0.213

RV1_10m 0.284 0.299 0.379 0.437 0.491 0.864 0.229 0.259

RV2_10m 0.280 0.275 0.371 0.413 0.477 0.793 0.233 0.245

RV1_30m 0.739 0.922 1.136 1.292 1.305 2.630 0.335 0.488

RV_1day 0.464 0.416 0.625 0.634 0.800 1.191 0.479 0.491
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We calculate forecast error measures having 70 one-step ahead forecasts from 
IGARCH model for the EUR/PLN exchange rate. The error measures presented in 
Table 12 show that the lowest values of the errors are – again – obtained for the 
highest frequency, which is 10-minutes in this case. The conditional variance from 
the IGARCH and SV models together with differently calculated realized volatility are 
presented in Figure 15.

Figure 15. Conditional variance forecasts and realized volatility of the EUR/PLN exchange rate

7. CONCLUSIONS

The aim of the paper was to compare three types of volatility estimates: GARCH, 
SV and RV for the given instruments on the Polish financial markets: the stock exchange 
and the foreign currency ones. Based upon our samples: the WIG20 index and the 
EUR/PLN foreign exchange rate, both covering the crisis period, we computed the 
mentioned measures of volatility and compared them using the simplest and most 
commonly applied technique: the Minzer-Zarnowitz regression. Contrary to most 
commonly applied procedure, we used not only the estimates of RV to compare SV 
and GARCH models, but we also compared the RV measures among themselves. Since 
volatility is not observable, we cannot decide estimates of which models are the best 
measures of volatility of a financial instrument. Thus, we assume that two measures 
of volatility are equally good if the R2 coefficient of the regression is quite high, the 
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parameter a0 is close to 0 and a1 to 1. This assumption allowed us to compare the 
RV measures obtained from the data of different frequencies.

In the case of the WIG20 index and the EUR/PLN exchange rate it emerged 
that the square of daily returns is the worst estimate of volatility from all applied 
RV models. In both cases RV computed based upon 10-minute returns without the 
night return performed the best (according to R2 measure). Moreover, in the case of 
the WIG20 index the conditional variance from GJR-GARCH model was closer to the 
RV computed based upon 5-minute returns, while the Leverage-SV model – to the 
one computed based upon the 10-minute returns. However, in case of the EUR/PLN 
exchange rate both the SV and the IGARCH models were close to the RV computed 
based upon 10-minute returns.

Eventually, we compared the RV estimates with conditional variance from the 
GARCH and the SV models estimated for the WIG20 index and the EUR/PLN foreign 
exchange. In general, it seems that RV computed from data of higher frequency 
performed better than others. The same conclusion can be drawn in the case of the 
EUR/PLN exchange rate, although here the preferred model was the one without the 
night return (in the case of the WIG20 index the results were ambiguous).

Poznań University of Economics
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ZMIENNOŚĆ ZREALIZOWANA WOBEC MODELI GARCH 
I MODELI ZMIENNOŚCI STOCHASTYCZNEJ NA POLSKIM RYNKU KAPITAŁOWYM

S t r e s z c z e n i e

Celem artykułu jest porównanie oszacowań zmienności uzyskanych z modeli parametrycznych: GARCH 
i SV z oszacowaniem uzyskanym na podstawie zmienności zrealizowanej szacowanej w oparciu o dane 
różnej częstotliwości. W badaniu wzięto pod uwagę zwroty z wybranych instrumentów polskiego rynku 
finansowego: indeks WIG 20 oraz kurs walutowy EUR/PLN. Ujęta w badaniu próba objęła okres kryzysu 
finansowego, co stanowi istotne uzupełnienie wyników prezentowanych do tej pory w literaturze.

Słowa kluczowe: zmienność zrealizowana, SV, GARCH, prognozowanie zmienności



Realized Volatility versus GARCH and Stochastic Volatility Models... 127

REALIZED VOLATILITY VERSUS GARCH AND STOCHASTIC VOLATILITY MODELS. 
THE EVIDENCE FROM THE WIG20 INDEX AND THE EUR/PLN FOREIGN EXCHANGE MARKET

S u m m a r y

The aim of the article is to compare the estimates of the volatility obtained from the parametric 
models: the GARCH and the SV with the estimates based upon the Realized Volatility approach, whereas 
the estimates from the RV are obtained from the data of different frequencies. The data sample consists of 
the WIG20 index and the EUR/PLN exchange rate and covers the hectic crisis period. Hence, the presented 
results can be viewed as an extension of the results of the studies presented up to date.

Key words: realizded volatility, SV, GARCH, volatility forecasting


