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1.  INTRODUCTION

In this paper we discuss Bayesian approach in case of autoregressive model with 
time-varying mean function. The focus is on providing an effective numerical method 
for posterior inference in a rather specific, highly non-linear case. Our discussion of 
general prior assumptions and model specification issues is therefore somewhat limited.

We make use of the idea of almost periodic time series (used in non-parametric 
statistics) and consider its parametric counterpart in which e.g. unconditional mean 
is represented by so-called Flexible Fourier Form of Gallant (1981). Models based 
on Fourier form with unknown set of frequency parameters are highly nonlinear and 
therefore difficult to estimate in case when the number of frequencies (characterizing 
the fluctuations) is greater than one, which is exactly the case of empirically interest-
ing specifications. 

Models of this kind are often referred to as deterministic cycle models (see for 
example Harvey, 2004). However, within a Bayesian approach and with non-trivial 
number of estimated frequencies the resulting pattern of fluctuations is quite compli-
cated and the models can be considered competitive to stochastic cycle specifications, 
especially for relatively short series of data. The problems of Bayesian inference stem 
from the fact that the resulting posterior distribution can be multimodal and therefore 
difficult to explore by standard MCMC methods. One might also notice that the mul-
timodal posterior (resulting from multimodal likelihood function) results in substan-
tial differences between results obtained by Maximum Likelihood (ML in short) and 
Bayesian methods, as the multimodal posterior cannot be accurately approximated by 
multivariate Gaussian distribution. 

Our suggestion on how to explore the posterior distribution with MCMC methods 
is actually two-fold. Firstly, following by the results presented in Bretthorst (1988) we 
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make use of a non-parametrically motivated estimator to construct a proposal density 
for the frequency parameters. Secondly, we demonstrate how the standard conjugate 
results (with respect to other model parameters) can be used to reduce dimensionality of 
the problem. The latter step is quite interesting as it takes precisely the opposite direc-
tion compared to the usual augmentation strategy that expands the parameter space.

The remaining part of the paper has the following structure: we begin by introduc-
ing the idea of almost periodicity and recall basic results on non-parametric models 
with non-periodicity in mean. We also indicate some relationships between parametric 
Bayesian and non-parametric estimates in a very simple case. Subsequently we develop 
a parametric counterpart to a model representing almost-periodicity in mean which 
makes use of a Flexible Fourier Form. Eventually we consider two parametric models 
representing the process of interest. The first model, labelled “approximate” allows 
for taking full advantage of the standard conjugate results in Bayesian partially linear 
(or conditionally linear) models. In the model it is possible to obtain the kernel of 
marginal posterior density for frequency parameters using analytical integration only, 
with generates a closed-form solution (up to a normalizing constant).

However, the approximation model is not satisfactory being quite restrictive as to 
the way the prior information can be introduced. It does not allow for clear elaboration 
of prior knowledge as to the unconditional men of the process without interference 
with information on its autocovariance structure. Moreover, the stationarity restriction 
of the autoregressive part is somewhat more difficult to handle in the setup.

We therefore consider another Bayesian model based on modified parametriza-
tion, labeled “final”, which is free of such inconveniences. The two Bayesian models 
(the “approximate” and the “final”) are built upon sampling models (likelihoods) that 
are observationally equivalent, however only the latter has desirable overall proper-
ties. Our ultimate goal is to develop a practical MCMC algorithm for estimation of 
the “final” model.

We claim that the standard MCMC approaches applied to the final model are very 
likely to fail to explore the full posterior (and the failure is not easy to detect based 
just on the MCMC output). We make use of the approximate model to demonstrate 
the problematic structure of the posterior distribution (in particular its multimodality). 
The demonstration is not contaminated by possible numerical inaccuracies since it is 
based on analytical results.

After discussing the reasons that are likely to make the standard algorithms 
impractical we introduce two ideas that alleviate the problem. The first one amounts 
to indicating that certain non-parametric results can be used to create an efficient 
proposal for one group of parameters that display multimodality. The second one is 
based on the fact that for some other vector of parameters a standard full conditional 
distribution is available. The fact is often used to build a Gibbs sampler exploring 
the posterior, but in the case considered here such a strategy would lead to numeri-
cal inefficiency. Instead, we use the analytical results to integrate out a sub-vector of 
parameters from the posterior.
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Our amended numerical method therefore targets a marginalized posterior kernel 
for a sub-vector of all the remaining model parameters. The marginalized posterior 
kernel is likely to be less irregular compared to the full kernel. The remaining param-
eters (that have been integrated out) can be sampled outside the MCMC by direct 
sampling, which has no negative effect on numerical efficiency. We show that using 
the amended algorithm for the final model we obtain the results that are in line with 
the analytical results from the approximate model (and the models differ only by the 
priors). The above problems are illustrated using both simulated and real data. 

2. NON-PARAMETRIC APPROACH

The models with periodic mean or autocovariance function are broadly used in 
econometrics (see for example: Parzen, Pagano, 1979; Osborn, Smith, 1989; Franses, 
1996; Franses, Dijk, 2005; Bollerslev, Ghysels, 1996; Burridge, Taylor, 2001; Mazur, 
Pipień, 2012; Lenart, Pipień, 2013a; 2013b). Formally we say that a second order 
real valued time series {Yt: t ∈ Z} is periodically correlated (in short PC) if the 
mean function μ(t) = E(Yt) and the autocovariance function B(t, τ) = cov(Yt, Yt + τ) 
exists (for any T ∈ Z) and are periodic functions at variable t with period T. In this 
parer we consider broader class, the class of almost periodically correlated time series 
(in short APC). In this class of time series the mean function and the autocovariance 
function are assumed to be almost periodic in time (see Corduneanu, 1989). This class 
of time series was applied in business fluctuations analysis in Lenart, Pipień (2013a) 
with subsampling application. Mazur, Pipień (2012) used this class of time series in 
modeling volatility of daily financial returns. In ACP case the mean function and the 
autocovariance function has Fourier representation (see for example Hurd, 1989; Hurd, 
1991; Dehay, Hurd, 1994): 

 , (1) 

 , (2) 

where the Fourier coefficients m(φ) and a(λ, τ) are given by the limits: 

 , , (3) 

and the sets Ψ = {φ ∈ [0, 2π): |m (φ)| ≠ 0} and Λ τ = {λ ∈ [0, 2π): |a(λ, τ)| ≠ 0} are 
countable.

In non-parametric approach the natural estimator based on sample {X1, X2,…, Xn} 
of Fourier coefficients m(φ) has the following form 

 ,  (4)
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where φ ∈ [0, 2π). As was shown in Lenart (2013) this estimator after appropriate nor-
malizing is asymptotically normal distributed with zero mean and variance-covariance 
matrix that depends on spectral density function. Unfortunately in non-parametric 
approach the spectral density estimation is still an open problem in the case of unknown 
set of frequency Ψ. Therefore it is not passible to use plug in technique in statistical 
inference. Therefore authors use subsampling method to estimate asymptotic distribu-
tion, where knowledge about exact parameters is not necessary. An applications of 
the non-parametric methodology to business cycle analysis was presented by Lenart 
(2013) and Lenart, Pipień (2013a). Details concerning subsampling methodology in 
general problems are discussed e.g. by Politis et al. (1999). 

In our future consideration we weaken the assumption concerning the set Ψ. For 
the set Ψ we assume that is finite. Therefore the equivalent representation for μ(t) 
takes the form: 

 ,  (5)

where F is an unknown nonnegative integer, δ0 ∈ R, a = (a1,a2,…,aF) ∈ RF, 
b = (b1,b2,…,bF) ∈ RF and φ = (φ1,φ2,…,φF) ∈ (0, π]F. Parameters a and b are below 
referred to as amplitudes, whereas elements of φ are labeled frequencies.

3. PARAMETRIC BAYESIAN APPROACH

In what follows we confine our attention to parametric models with time-vary-
ing unconditional mean given by (5), which (for known F ) corresponds to a special 
case of Flexible Fourier Form discussed by Gallant (1981). One might notice that 
without further assumptions the parameters in (5) are not identified (due to so-cal-
led label switching). This is one source of multimodality of the joint posterior ker-
nel and can be relatively easily eliminated by introducing a restriction of the form 
0 < φ1 < φ2 < … < φF ≤ π. However, here we do not impose it, though it can be 
easily be done in post-processing of MCMC output if desired. Our point is that there 
exists another source of multimodality driven by properties (5) and typical features 
of macroeconomic data, and it can be seen even in the case of F = 1, where no iden-
tification issues arise (as discussed below).

Moreover, here we do not discuss how one choses the value of F. However, within 
the Bayesian paradigm the models representing whole sequence with 0 < F < Fmax 
can be compared and the inference on regular fluctuations in mean or prediction can 
be based on the pooled results taking into account various values of F. 

Here we assume that the deviations from the mean take the autoregressive form 
with J lags: 

 , (6) 
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where the function μ(t) is given by (5) and L(B) = 1 – η1B – η2B2 – … – ηJ BJ with 
backshift operator B: Bkyt = yt – k, {εt} being a Gaussian (therefore strict) white noise 
process with precision τ > 0. Notice that the observable series yt is non-stationary in 
mean, though its covariance structure (under standard assumptions for coefficients of 
polynomial L(B)) corresponds to that of a covariance stationary process.

The sampling model (6) is observationally equivalent to:

 , (7) 

though of course in (7) μ*(t) = L(B)μ(t) is no longer an unconditional mean of yt. We 
refer to (6) as to a final model, whereas (7) is labeled approximate.

Bretthorst (1988) has shown that in a simple case with F = 1 and J = 0 the pos-
terior distribution of φ1 (under uniform priors for amplitudes and Jeffreys prior for τ) 
can be approximated by:

 . (8) 

It is easy to see that distribution with kernel (8) is generally a multimodal distribution. 
The number of modes is the same as the number of local maxima of the periodogram. 
The kernel (8) is a differentiable function on variable φ1 and the derivative can be 
express as a product of derivative of the function |m̂n(φ1)| and some function with 
positive values on considered interval. 

4.  POSTERIOR DISTRIBUTION OF FREQUENCY PARAMETERS 
IN THE APPROXIMATE MODEL

In this section we obtain explicit formulation of marginal distribution for vector 
of frequency parameters in the approximate model (7) using the results based on the 
use of conjugate priors in conditionally linear models (see. e.g. Osiewalski, 1991). 
Note that the approximate model can be equivalently written as: 

 y = Xβ + ε, (9)

where y = (y1 y2 … yT)',

 ,

 ,

 ,  for  t = 1, 2,…, T.
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The N(0, τ–1) denotes Gaussian distribution with zero mean and variance τ–1. In the 
above X depends on φ’s being model parameters, but we suppress that to keep notation 
simple and to highlight relationships with standard conjugate results obtained in linear 
regression. Denote θ = (β, τ, φ). Then the likelihood function has the following form: 

 . (10) 

Following the standard conjugate approach we assume the following prior structure:

 ,

with  and , where  denotes the Gamma 

distribution with expectation  and variance  and c, B, n0, s0 are hyperparam-
eters. This implies:

 ,

 .

For the frequency parameter we assume uniform prior distribution:

  and φi ~ U(0, π), 

where U(0, π) denotes uniform distribution on interval (0, π). The above implies that:

 ,

where D = X'X + B and d = D–1(X'y + Bc). Integrating over β and over τ we get4 

 

.

 (11)
 

4 Note that we assume here that the parameters η1 η2 … ηJ are unrestricted so we do not consider 
stationarity restrictions due to complexity of the issue.
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Assuming c = 0 for simplicity we obtain the analytical solution: 

 . (12) 

Note that distribution with kerne l (12) is bounded on the set (φ1, φ2,…, φF) = [0, π)F, 
hence all posterior moments exist and it is symmetric, which follows directly from 
model equati on (7). Unfortunately, the ker nel (12) does not characterize any known 
distribution in the literature. In addition, contrary to the result (8) of Bretthorst (1988), 
the direct theoretical relation to periodogram in the case is not obvious (see distribution 
(12)). Hence, to illustrate the linkages between (14) and a periodogram we consider 
a short simulation study.

5. A SIMULATION STUDY

We restrict the attention only to the case J = 0 to examine the relation of (12) 
to usual periodogram function without additional relation to autoregressive part. We 
consider three cases with F = 0, 1, 2, 3. At each case we generate n = 120 realiza-
tions from considered model and we determine the distribu tion (12). In practice we 
try to choose the best F, therefore in simulation study at each case we compare the 
periodogram with the univariate distribution (12) (under model assumption F = 1) 
and bivariate distribution (12) (under model assumption F = 2). To make the results 
visible we use additionally the logarithmic scale. For the hyperparamiters we take 
B–1 = 100 I, n0 = 2.1 and s0 = 1.05.

When sample is generated in the case F = 0 (see figure 1), the distrib ution (12) 
turns out to be multimodal under assumption of F = 1 and F = 2. Two peaks for pos-
terior distri bution (11) with F = 1 (see figure 1(c)) and four peaks with F = 2 (see fig-
ure 1(e)) correspond clearly to two dominant peaks on periodogram (see figure 1(b)).

Figure 2(a) shows a sample from model with one frequency (φ1 = 0.15) with rela-
tively large amplitude as compared to the variance of the white noise (see figure 2(b)). 
In this case the mass of probability in the posterior distr ibution (12) is strongly con-
centrated around the point where φ = 0.15 (under model assumption F = 1 and around 
sets: 0.15 × (0, π) and (0, π) × 0.15 (under model assumption F = 2). 

If we consider sample obtained from the model with two different frequencies 
(φ1 = 0.15, φ2 = 0.5) with different amplitudes (see figure 3(a–b)), the posterior dis-
t ribution (12) with F = 1 (see figure 3(c)) has only one dominating peak around the 
frequency with larger amplitude (in this case: φ1). The probability mass concentrated 
around the second frequency (φ2) is much lower (see figure 3(d)). The posterior dis-
 tribution (12) under assumption of F = 2 (see figure 3(e)) has two symmetric peaks 
that clearly correspond to points (φ1, φ2) = (0.15, 0.5) and (φ1, φ2) = (0.5, 0.15). 
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(a) Realizations from model (6) (b) The value of normalized periodogram: 
|m̂n(φ)| for ψ ∈ (0, π)

(c) Posterior distribution (12) for φ ∈ (0, π) 
under model assumption F = 1

(d) Posterior distribution (12) in logarithmic scale 
for φ ∈ (0, π) under model assumption F = 1

(e) Posterior distribution (12) for (φ1, φ2) ∈ (0, π)2, under assumption F = 2

(f) Marginal posterior distribution (12) for φ ∈ (0, π) 
under assumption F = 2

(g) Marginal posterior distribution (12) in logarithmic 
scale for φ ∈ (0, π) under assumption F = 2

Figure 1. Posterior distributions in case of sample with length n = 120 
generated from considered model (6) with F = 0 and τ = 1

Source: own calculations.

The last case, where sample is generated from model with three frequencies: 
φ1 = 0.15, φ2 = 0.5 and φ3 = 2.2 is presented on figure 4. The amplitude for the first 
frequency is the biggest, while for second and third frequencies are equal (see fig-
ure 4(b)). Univariate distribution (under model assumption F = 1) has only one peak 
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that clearly corresponds to frequency with the highest amplitude (φ1). Two peaks that 
correspond to second and third frequency are visible only in the logarithmic scale (on 
marginal distribution). The bivariate distribution for frequency (under model assump-
tion F = 2) has four peaks that clearly corresponds to the points (0.15, 0.5), (0.5, 0.15), 
(0.15, 2.2) and (2.2, 0.15).

(a) Realizations from model (6) (b) The value of normalized periodogram: |m̂n(φ)| 
for ψ ∈ (0, π) 

(c) Posterior distribution (12) for φ ∈ (0, π) 
under model assumption F = 1

(d) Posterior distribution (12) in logarithmic scale 
for φ ∈ (0, π) under model assumption F = 1

(e) Posterior distribution (12) for (φ1, φ2) ∈ (0, π)2, under assumption F = 2

(f) Marginal posterior distribution (12) for φ ∈ (0, π) 
under assumption F = 2

(g) Marginal posterior distribution (12) in logarithmic 
scale for φ ∈ (0, π) under assumption F = 2

Figure 2. Posterior distributions in case of sample with length n = 120 generated from considered 
model (6)  with F = 1, φ1 = 0.15, a1 = 2, b1 = 0, τ = 1

Source: own calculations.
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(a) Realizations from model (6) (b) The value of normalized periodogram: |m̂n(φ)| 
for ψ ∈ (0, π)

(c) Posterior distribution (12) for φ ∈ (0, π) under 
model assumption F = 1

(d) Posterior distribution (12) in logarithmic scale 
for φ ∈ (0, π) under model assumption F = 1

(e) Posterior distribution (12) for (φ1, φ2) ∈ (0, π)2, under assumption F = 2

(f) Marginal posterior distribution (12) for φ ∈ (0, π) 
under assumption F = 2

(g) Marginal posterior distribution (12) in logarithmic 
scale for φ ∈ (0, π) under assumption F = 2

Figure 3. Posterior distributions in case of sample with length n = 120 generated from considered 
model  (6) with F = 2, φ1 = 0.15, φ2 = 0.5, a1 = 2, b1 = 0, a2 = –1.5, b2 = 0, τ = 1

Source: own calculations.

The above simulation study strongly exposes the relationship between shape of 
the periodogram and related posterior distributions for frequency parameters. Most 
importantly we demonstrate that in cases corresponding to the number of observation 
that characterizes typical macroeconomic applications, the resulting posterior might 
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have highly irregular shape. Sources of the multimodality go well beyond the non-
identification issue arising from the label switching. Moreover, the lack of global 
identification generates no theoretical problems within the Bayesian approach and 
can be easily resolved without any change of the MCMC algorithm discussed here.

(a) Realizations from model (6) (b) The value of normalized periodogram: |m̂n(φ)| 
for ψ ∈ (0, π)

(c) Posterior distribution (12) for φ ∈ (0, π) 
under model assumption F = 1

(d) Posterior distribution (12) in logarithmic scale 
for φ ∈ (0, π) under model assumption F = 1

(e) Posterior distribution (12) for (φ1, φ2) ∈ (0, π)2, under assumption F = 2

(f) Marginal posterior distribution (12) for φ ∈ (0, π) 
under assumption F = 2

(g) Marginal posterior distribution (12) in logarithmic 
scale for φ ∈ (0, π) under assumption F = 2

Figure 4. Posterior distributions in case of sample with length n = 120 generated from considered model  (6) 
with F = 2, φ1 = 0.15, φ2 = 0.5, φ3 = 2.2, a1 = 2, b1 = 0, a2 = –1.5, b2 = 0, a3 = 0, b3 = 1.5, τ = 1

Source: own calculations.
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6.  MCMC SAMPLER FOR POSTERIOR INFERENCE

In the following discussion we assume basic knowledge of MCMC algorithm 
used in Bayesian inference – for an accessible review see e.g. Osiewalski (2001). An 
obvious approach to Bayesian estimation of the final model would be to sample from 
the full posterior p(θ|y) using a Gibbs sampler. Such a sampler would be based on 
factorization of p(θ|y) into full conditionals for sub-vectors of θ, of which at least some 
have a standard form (as conjugate-type priors are used). In particular a sampler con-
sisting of four steps, for linear parameters of the mean (δ0, a1, a2, …, aF, b1, b2, …, bF), 
τ, η = (η1 η2 … ηJ) and φ respectively, is an obvious solution. However, we point out 
that two difficulties would arise. Firstly, one would need a good proposal for the fre-
quency parameters sampled within a Mertopolis-Hastings (M-H in short) step, as the 
full conditional posterior is definitely not a standard one in this case. Secondly, even 
after addressing that, such a sampler could fail to achieve convergence to true poste-
rior within a finite and practical timespan. This is because in practical cases the joint 
posterior would be multimodal and a move from one mode to another would require 
a change in parameters belonging to two separate Gibbs blocks (namely frequencies 
and amplitudes). Under fairly weak conditions such a change has a very low chance 
and this arises just from the conditioning inherent in such a sampler, which therefore 
would fail to visit all the relevant modes.5

In order to solve the issue we first introduce the idea of posterior marginalization. 
Consider the following general factorization of a posterior distribution:

 p(θ|y) = p(θ(1)│y,θ(2))p(θ(2)│y) ∝ k(θ(1)│y,θ(2))k(θ(2)│y) = k(θ|y),

where θ' = [θ(1)' θ(2)'] We assume that p(θ(1)│y,θ(2)) represents full conditional pos-
terior for θ(1) that has a known form. Its kernel is k(θ(1)│y,θ(2)) and the normalizing 
constant is known (and depends on θ(2)). Consequently, θ(1) can be integrated out from 
the posterior using analytical techniques, resulting in a closed form of marginal pos-
terior kernel for θ(2) only. The resulting marginal kernel usually retains all the terms 
from k(θ|y) not included in k(θ(1)│y,θ(2)) and inverse of the normalizing constant of 
p(θ(1)│y,θ(2)) being a function of θ(2). 

By the virtue of marginalization, p(θ(2)│y) is likely to have more regular shape 
compared to p(θ|y). Essentially, we aim to improve properties of the MCMC algorithm 
by adjusting its target distribution, replacing p(θ|y) with p(θ(2)│y) being potentially 
more regular. Of course finally we draw from p(θ|y), but this can be achieved by 

5 One might imagine the example of sampling from a bivariate target (with one variable in each 
Gibbs step) when the target distribution is a mixture of two bivariate normal densities with modes 
that are separated in both dimensions and variances that are small relative to the difference in modes. 
Conditionally on MCMC chain visiting one mode, a move to the other one would require occurrence of 
a very particular tail event in the first step. 
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additional direct sampling since p(θ(1)│y,θ(2)) has known, standard form. In the final 
model (6), θ(1) corresponds to parameters that appear in the unconditional mean (5) 
linearly, i.e. δ0, a1, a2, …, aF, b1, b2, …, bF. The resulting marginal posterior kernel is 
p(θ(2)│y) where θ(2) includes η = (η1 η2 … ηJ), τ and φ and it does not include ampli-
tude parameters, as these are integrated out.

In order to sample from p(θ(2)│y) one might construct another Gibbs sampler with 
M-H steps for η = (η1 η2 … ηJ), τ and φ (with stationary restrictions imposed on η). 
Here again a crucial problem to be solved would be the one of sampling frequency 
parameters φ. We suggest using a M-H step with a proposal density being a product 
of identical (normalized) magnitude of periodogram functions (4) restricted to interval 
of interest for the frequencies. The one-dimensional problem with finite support can be 
handled numerically in an effective way (using one-dimensional numerical representa-
tion of the univariate density generated with an arbitrary precision). The distribution 
would allow for a simple design of a M-H step with an independent proposal.

7.  REAL DATA EXAMPLE

In this section we consider two data sets from the Polish economy concerning 
growth rates of monthly production in industry (percentage change compared to cor-
responding period of the previous year, y-o-y in short): Mining and quarrying; manu-
facturing; electricity, gas, steam and air conditioning supply and MIG – Non-durable 
consumer goods6. The samples start at January 2002 and end at December 2013. These 
two economic processes belong to main cyclical indicators of economy. In comparison 
analysis we take J = 0 and the same prior distributions as in section 4, since under the 
assumptions our “approximate” and “final” formulations coincide exactly, therefore 
the MCMC output7 (see detailed algorithm in the previous section) can be compared 
to an exact, analytical benchmark (12).

The two real data examples show that in the bivariate case the shape of the distribu-
tion for the frequency parameters obtained by proposed MCMC sampler is comparable 
with theoretical distribution (12) (see results on figures 5–6). This demonstrates the 
efficiency of the sampler proposed here in a real data example. For extreme cases 
with really high number of unknown frequencies (that are unlikely to be encountered 
within macroeconomic applications) the approach could be refined by taking a proposal 
for frequency parameters based on the marginal posterior (12) obtained analytically 
from the approximate model (this would also require a numerical approximation of 
a marginalized univariate version of (12) instead of periodogram). 

6 Source: Eurostat.
7 50 000 burn-in cycles and 1 000 000 final cycles. 
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The data The value of |m̂n(φ1) m̂n(φ2)| – proposal kernel 
of distribution in Metropolis-Hastings step

Analytical marginal posterior for frequency parameters 
(12) under assumption F = 2

Histogram (marginal posterior) for frequency 
parameters based on MCMC sample 

from the algorithm proposed in the paper

Figure 5. The comparison of posterior distribution (12) with obtained MCMC sample
Source: own calculations.

The data The value of |m̂n(φ1) m̂n(φ2)| – proposal kernel 
of distribution in Metropolis-Hastings step

Analytical marginal posterior for frequencies (12) 
under assumption F = 2

Two dimensional histogram (marginal posterior) 
for frequency based on MCMC sample 

from the algorithm proposed in the paper

Figure 6. The comparison of posterior distribution (12) with obtained MCMC sample
Source: own calculations.
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8.  CONCLUSIONS

In the paper we highlight some problems that arise in Bayesian estimation of 
parametric time-series model with fluctuations (corresponding to e.g. business cycle) 
are modelled using Flexible Fourier Form of Gallant (1981). The problems appear 
in empirically appealing cases with more than one unknown frequency parameter. 
We demonstrate that the resulting posterior is likely to be highly multimodal. This 
cast doubts on applicability of ML estimation, but can also result in problems within 
the Bayesian approach, as standard MCMC methods might fail to explore the whole 
posterior, especially when the modes are separated. 

We demonstrate that the multimodality is actually an issue using the exact solu-
tion (i.e. an analytical marginal posterior) in an approximate model. The approximate 
model differs from our target (final) specification by the prior assumptions only. The 
posterior multimodality seems to be most severe within the joint space of amplitude 
and frequency parameters.

We address that problem using two essential steps. Firstly, we integrate the pos-
terior with respect to amplitude parameters, which can be carried out analytically. 
Secondly, we propose a non-parametrically motivated proposal for the frequency 
parameters. This allows for construction of an improved MCMC sampler that effec-
tively explores the space of all the model parameters, with the amplitudes sampled 
by the direct approach outside the MCMC chain. 

Using the improved algorithm we are able to estimate our target specification which 
allows prior information to be introduced in a reasonable way: parameters character-
izing unconditional mean are separated from those describing autocovariances. In 
particular one can express prior knowledge on possible amplitudes of regular fluctua-
tions in mean (by setting prior precision of amplitude parameters) or cycle length (by 
specifying φL and φU). The approach can be therefore used to “filter” cyclical fluc-
tuations characterized by cycle lengths within a given range. The “extracted” pattern 
of regular fluctuations would be described by posterior distribution of unconditional 
mean (as a function of model parameters given by (5)). 

Moreover, the causality restriction can be imposed on autoregressive parameters 
(so that e.g. explosive paths are ruled out a priori). In our experience the approach is 
feasible even with quite high lag order of the autoregressive process.
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WNIOSKOWANIE BAYESOWSKIE DLA ZMIENNEJ W CZASIE PRAWIE OKRESOWEJ 
FUNKCJI WARTOŚCI OCZEKIWANEJ W MODELU AUTOREGRESJI 

S t r e s z c z e n i e

Artykuł ma na celu przedstawienie problematyki bayesowskiej estymacji klasy jednowymiaro-
wych modeli dla danych charakteryzujących się występowaniem skomplikowanych wahań cyklicznych 
w średniej. Koncentrujemy się na zagadnieniach powstających w estymacji parametrycznych modeli 
dla szeregów czasowych wykorzystujących tzw. giętką formę Fouriera (Flexible Fourier Form, zob. 
Gallant, 1981), której parametry opisują amplitudę i częstotliwość wahań. Wskazujemy, iż w takich 
modelach łączny rozkład a posteriori charakteryzuje się silną wielomodalnością, przez co standardowe 
metody numeryczne typu MCMC mogą okazać się raczej zawodnym narzędziem wnioskowania. Ma 
to miejsce, gdy próbnik MCMC nie odwiedza (w praktyce) wszystkich modalnych badanego rozkładu. 
Wykorzystując dokładne rozwiązanie analityczne w bardzo zbliżonym modelu wykazujemy, iż wzmian-
kowana wielomodalność faktycznie ma miejsce. Proponujemy dwa rozwiązania szczegółowe. Po pierwsze 
wycałkowujemy analitycznie z rozkładu a posteriori parametry odpowiadające za amplitudę wahań. Po 
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drugie przedstawiamy specjalnie dobrany rozkład proponujący dla parametrów częstotliwości wyspe-
cyfikowany z wykorzystaniem wyników otrzymanych na gruncie podejścia nieparametrycznego. Tak 
otrzymany próbnik MCMC w ramach praktycznie użytecznej liczby losowań jest w stanie skutecznie 
przemieszczać się w (zredukowanej) przestrzeni parametrów. Wycałkowane parametry są dolosowywane 
poza algorytmem MCMC poprzez losowanie bezpośrednie ze standardowego rozkładu warunkowego. 
Ilustrujemy omawianą problematykę wykorzystując dane symulacyjne a także dwa przykłady danych 
rzeczywistych.

Słowa kluczowe: wnioskowanie bayesowskie, funkcja prawie okresowa wartości oczekiwanej, 
model autoregresji, próbnik MCMC

ON BAYESIAN INFERENCE FOR ALMOST PERIODIC 
 IN MEAN AUTOREGRESSIVE MODELS

A b s t r a c t

The goal of the paper is to discuss Bayesian estimation of a class of univariate time-series models 
being able to represent complicated patterns of “cyclical” fluctuations in mean function. We highlight 
problems that arise in Bayesian estimation of parametric time-series model using the Flexible Fourier 
Form of Gallant (1981). We demonstrate that the resulting posterior is likely to be highly multimodal, 
therefore standard Markov Chain Monte Carlo (MCMC in short) methods might fail to explore the 
whole posterior, especially when the modes are separated. We show that the multimodality is actually 
an issue using the exact solution (i.e. an analytical marginal posterior) in an approximate model. We 
address that problem using two essential steps. Firstly, we integrate the posterior with respect to amplitude 
parameters, which can be carried out analytically. Secondly, we propose a non-parametrically motivated 
proposal for the frequency parameters. This allows for construction of an improved MCMC sampler 
that effectively explores the space of all the model parameters, with the amplitudes sampled by the 
direct approach outside the MCMC chain. We illustrate the problem using simulations and demonstrate 
our solution using two real-data examples.

Keywords: Bayesian inference, almost periodic mean function, autoregressive model, MCMC 
sampler 






