Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2021 | 103 | 1 | 58-66

Article title

Bioaktywne metabolity gryki (Fagopyrum Mill.)

Content

Title variants

EN
Bioactive matebolites of buckwheat (Fagopyrum Mill.)

Languages of publication

Abstracts

EN
Buckwheat is a plant that does not require special soil conditions and grows perfectly in harsh environmental conditions, showing high resistance to pests and diseases. Buckwheat (Fagopyrum esculentum) and buckwheat (Fagopyrum tataricum) are rich sources of many nutrients and bioactive compounds, such as rutin, quercetin, emodin, phagopyrin, among others. Thanks to significant amounts of these compounds, buckwheat has been classified as one of the compounds which positively affect health. Growing conditions play an important role in shaping the characteristics of buckwheat seeds.
PL
Gryka jest rośliną nie wymagającą specjalnych warunków glebowych i doskonale rośnie w trudnych warunkach środowiskowych, wykazując wysoką odporność na szkodniki i choroby. Gryka zwyczajna (Fagopyrum esculentum Moench) i gryka tatarka (Fagopyrum tataricum (L.) Gaertn.) są bogatym źródłem wielu składników odżywczych oraz związków bioaktywnych, m.in. takich jak rutyna, kwercetyna, emodyna, fagopiryna. Dzięki znaczącym ilościom tych związków gryka została zaliczona do związków, które mogą wpływać na zdrowie. Warunki uprawy odgrywają ważną rolę w kształtowaniu cech nasion gryki.

Year

Volume

103

Issue

1

Pages

58-66

Physical description

Dates

published
2021

Contributors

  • Uniwersytet Przyrodniczy w Poznaniu
  • Uniwersytet Przyrodniczy w Poznaniu
  • Uniwersytet Przyrodniczy w Poznaniu

References

  • British Herbal Pharmacopoeia. (2019). eTh British Pharmacopoeia Commission Secretariat of the Medicines and Healthcare Products Regulatory Agency (MHRA), Publisher: TSO (eTh Stationery Ofice), ISBN 9780113230709.
  • Duarte, A. C., Santos, J., Costa, A. R., Ferreira, C. L., Tomas, J., Quintela, T., Ishikawa, H., Schwerk, C., Schroten, H., Ferrer, I., et al. (2020). Bitter taste receptors profiling in the human blood-cerebrospinal uflid-barrier. Biochem. Pharmacol., 177, 113954.
  • Fujita, K., Yoshihashi, T. (2019). Heat-treatment of Tartary buckwheat (Fagopyrum tataricum Gaertn.) provides dehulled and gelatinized product with denatured rutinosidase. Food Sci. Technol. Res., 25, 613-618.
  • Germ, M., Arvay, J., Vollmannova, A., Toth, T., Golob, A., Luthar, Z., Kreft, I. (2019). ehT temperature threshold for the transformation of rutin to quercetin in Tartary buckwheat dough. Food Chem., 283, 28-31.
  • Hara, T., Shima, T., Nagai, H., Ohsawa, R. (2020). Genetic analysis of photoperiod sensitivity associated with di_erence in ecotype in common buckwheat. Breed. Sci., 70, 101-111.
  • Huda, M. N., Lu, S., Jahan, T., Ding, M., Jha, R., Zhang, K., Zhang, W., Georgiev, M. I., Park, S. U., Zhou, M. (2020). Treasure from garden: Bioactive compounds of buckwheat. Food Chem. 335, 127653.
  • Ikeda, K., Ishida, Y., Ikeda, S., Asami, Y., Lin, R. (2017). Tartary, but not common, buckwheat inhibits glucosidase activity: Its nutritional implications. Fagopyrum, 34, 13-18.
  • Inglett, G. E., Chen, D., Berhow, M., Lee, S. (2011). Antioxidant activity of commercial buckwheat flours and their free and bound phenolic compositions. Food Chem., 125, 923-929.
  • Kalinova, J., Vrchotova, N., Triska, J. (2007). Exudation of allelopathic substances in buckwheat (Fagopyrum esculentum Moench). J. Agric. Food Chem., 55, 6453-6459.
  • Kawabata, K., Mukai, R., Ishisaka, A. (2015). Quercetin and related polyphenols: New insights and implications for their bioactivity and bioavailability. Food Funct., 6, 1399-1417.
  • Kim, J., Hwang, K. T. (2020). Fagopyrins in di_erent parts of common buckwheat (Fagopyrum esculentum) and Tartary buckwheat (F. tataricum) during growth. J. Food Compos. Anal., 86.
  • Kim, S. J., Zaidul, I. S.M., Suzuki, T., Mukasa, Y., Hashimoto, N., Takigawa, S., Takahiro, N., Chie, M.-E., Hiroaki, Y. (2008). Comparison of phenolic compositions between common and tartary buckwheat (Fagopyrum) sprouts. Food Chem., 110, 814-820.
  • Kreft, I., Zhou, M. L., Golob, A., Germ, M., Likar, M., Dziedzic, K., Luthar, Z. (2020). Breeding Buckwheat for Nutritional Quality. Breed. Sci., 70, 67-73.
  • Kreft, M. (2016). Buckwheat phenolic metabolites in health and disease. Nutr. Res. Rev., 29, 30-39.
  • Li, A. R. (2003). “Fagopyrum” Flora of China; Science Press and the Missouri Botanical Garden Press: Beijing, China.
  • Nina, F., Janko, R., Jože, K. I., Wang, Z., Zhang, Z., Ivan, K. (2003). Tartary buckwheat (Fagopyrum tataricum gaertn.) as a source of dietary rutin and quercitrin. J. Agric. Food Chem., 51, 6452-6455.
  • Ren, Q., Liu, W., Zhao, M., Sai, C.M., Wang, J.A. (2018). Changes in _-glucosidase inhibition, antioxidant, and phytochemical profiles during the growth of Tartary buckwheat (Fagopyrum tataricum Gaertn). Int. J. Food Prop., 21, 2689-2699.
  • Ren, W., Qiao, Z., Wang, H., Zhu, L., Zhang, L., Lu, Y., Cui, Y., Zhang, Z., Wang, Z. (2001). Tartary buckwheat flavonoid actvates caspase 3 and induces HL-60 cell apoptosis. Methods Find. Exp. Clin. Pharmacol., 23,427-432.
  • Robson, B. (2020). Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the Sars-Cov-2 (2019-Ncov, Covid-19) coronavirus. Comput. Biol. Med., 119.
  • Rolta, R., Yadav, R., Salaria, D., Sourirajan, A., Dev, K. (2020). In silico screening of hundred phytocompounds oeftn medicinal plants as potential inhibitors of nucleocapsid phosphoprotein of Covid-19: An approach to prevent virus assembly. J. Biomol. Struct. Dyn.
  • Singh, M., Malhotra, N., Sharma, K. (2020). Buckwheat (Fagopyrum sp.) genetic resources: What can they contribute towards nutritional security of changing world? Genet. Resour. Crop Evol., 67, 1639-1658.
  • Shin, N. R., Moon, J. S., Shin, S. Y., Li, L., Lee, Y. B., Kim, T. J., Han, N.S. (2016). Isolation and characterization of human intestinal enterococcus avium EFEL009 converting rutin to quercetin. Lett. Appl. Microbiol., 62, 68-74.
  • Škrabanja, V., Kreft, I., Germ, M. (2018). Screening of common buckwheat genetic resources for recessive genes. In Buckwheat Germplasm in the World; Zhou, M., Kreft, I., Suvorova, G., Tang, Y.,Woo, S.H., Eds.; Academic Press, An Imprint of Elsevier: London, UK; pp. 127-143.
  • Stojilkovski, K., Koˇcevar Glavaˇc, N., Kreft, S., Kreft, I. (2013). Fagopyrin and flavonoid contents in common, Tartary, and cymosum buckwheat. J. Food Compos. Anal., 32, 126-130.
  • Sun, B. H., Wu, Y. Q., Gao, H. Y., Huang, J., Wu, L. J. (2008). Chemical constituents of Fagopyrum tataricum (L.) gaertn. J. Shenyang Pharm. Univ., 25, 541-543.
  • Sun, Y. L., Zhou, W. M., Huang, Y. G. (2020). Encapsulation of Tartary buckwheat lfavonoids and application to yoghurt. J. Microencapsul., 37, 445-456.
  • Suzuki, T., Honda, Y., Mukasa, Y. (2005). Efects of UV-B radiation, cold and desiccation stress on rutin concentration and rutin glucosidase activity in Tartary buckwheat (Fagopyrum tataricum) leaves. Plant Sci.,168, 1303-1307.
  • Suzuki, T., Morishita, T., Takigawa, S., Noda, T., Ishiguro, K. (2015). Characterization of rutin-rich bread made with 'Manten-Kirari', a trace-rutinosidase variety of Tartary buckwheat (Fagopyrum tataricum Gaertn.). Food Sci. Technol. Res., 21, 733-738.
  • Sytar, O., Svediene, J., Loziene, K., Paskevicius, A., Kosyan, A., Taran, N. (2016). Antifungal properties of hypericin, hypericin tetrasulphonic acid and fagopyrin on pathogenic fungi and Spoilage yeasts. Pharm. Biol.,54, 3121-3125.
  • Vogrinĉiĉ, M., Kreft, I., Filipiĉ, M., Žegura, B. (2013). Antigenotoxic Efect of Tartary (Fagopyrum tataricum) and common (Fagopyrum esculentum) buckwheat flour. J. Med. Food, 16, 944-952.
  • Vombergar, B. (2020). Rutin and quercetin in common buckwheat and Tartary buckwheat flour. Folia Biol. Geol., 61, 257-280.
  • Wieslander, G., Fabjan, N., Vogrinˇciˇc, M., Kreft, I., Vombergar, B., Norbäck, D. (2012). Efects of common and Tartary buckwheat consumption on mucosal symptoms, headache and tiredness: A double-blind crossover intervention study. J. Food Agric. Environ., 10, 107-110.
  • Yabe, S., Iwata, H. (2020). Genomics-assisted breeding in minor and pseudo-cereals. Breed. Sci., 70, 19-31.
  • Zambounis, A., Sytar, O., Valasiadis, D., Hilioti, Z. (2020). Efect of photosensitisers on growth and morphology of Phytophthora citrophthora coupled with leaf bioassays in pear seedlings. Plant Prot. Sci., 56, 74-82.
  • Zhang, L. J., Ma, M. C., Liu, L. L. (2020). Identification of genetic locus underlying easy dehulling in rice-Tartary for easy postharvest processing of Tartary buckwheat. Genes, 11, 459.
  • Zhang, C. N., Zhang, R., Li, Y. M., Liang, N., Zhao, Y. M., Zhu, H. Y., He, Z. Y., Liu, J. H., Hao, W.J., Jiao, R. (2017). Cholesterol-lowering activity of Tartary buckwheat protein. J. Agric. Food Chem. 65, 1900-1906.
  • Zwolak Z., (2020). Koszty produkcji i opłacalność uprawy gryki zwyczajnej, Kalendarz Rolników.pl

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
2047813

YADDA identifier

bwmeta1.element.ojs-issn-1232-3578-year-2021-volume-103-issue-1-article-f73fd7d0-0912-3bdd-bdfb-b1ddc411149d
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.