Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2024 | 46 | 508-583

Article title

Leveraging artificial intelligence to meet the sustainable development goals

Content

Title variants

Languages of publication

Abstracts

EN
Aim/purpose – This study aims to identify the role of Artificial Intelligence (AI) in achieving the Sustainable Development Goals (SDGs), with specific reference to their targets, and to present good practices in this regard. Design/methodology/approach – This study adopts qualitative research based on an integrative literature review encompassing five stages: problem identification, literature search, data evaluation, data analysis, and presentation of findings. Findings – This study presents a framework for leveraging AI to achieve SDGs. It details the role of AI in achieving each SDG, identifies the best practices for using AI to achieve these goals, and recommends the main steps for systematically deploying AI to achieve SDGs. Research implications/limitations – The presented findings reflect the authors’ perspective on the role of AI in achieving SDGs based on an integrative literature review, which may have overlooked some literature on AI’s impact on individual SDGs or lacked published evidence on such interlinkages. Originality/value/contribution – This study contributes to the existing body of knowledge by providing a comprehensive framework for leveraging AI to achieve the SDGs. It systematically identifies and details the role of AI in advancing each SDG, highlights best practices for deploying AI effectively, and recommends steps for integrating AI into SDG initiatives. The study’s value lies in its ability to guide policymakers, researchers, and practitioners in harnessing AI’s potential to address critical global challenges while highlighting the need for careful consideration of potential limitations and gaps in the existing literature.

Year

Volume

46

Pages

508-583

Physical description

Dates

published
2024

Contributors

  • University of Economics in Katowice, Poland
  • National Economics University in Hanoi, Viet Nam
author
  • Bialystok University of Technology, Poland
  • Universidad EAFIT, Colombia
  • ISM University of Management and Economics, Lithuania
  • Kozminski University, Poland
  • Kozminski University, Poland
  • Warsaw University of Life Sciences, Poland
  • Vilnius University, Lithuania
  • Krakow University of Economics, Poland

References

  • Abid, S. K., Sulaiman, N., Chan, S. W., Nazir, U., Abid, M., Han, H., Ariza-Montes, A., & Vega-Muñoz, A. (2021). Toward an integrated disaster management approach: How artificial intelligence can boost disaster management. Sustainability, 13(22), 12560. https://doi.org/10.3390/su132212560
  • Aboualola, M., Abualsaud, K., Khattab, T., Zorba, N., & Hassanein, H. S. (2023). Edge technologies for disaster management: A survey of social media and artificial intelligence integration. IEEE Access, 11, 73782-73802. https://doi.org/10.1109/ACCESS.2023.3293035
  • Akkem, Y., Biswas, S. K., & Varanasi, A. (2023). Smart farming using artificial intelligence: A review. Engineering Applications of Artificial Intelligence, 120, 105899. https://doi.org/10.1016/j.engappai.2023.105899
  • Alam, A. (2023). Harnessing the power of AI to create intelligent tutoring systems for enhanced classroom experience and improved learning outcomes. In G. Rajakumar, K. L. Du, & Á. Rocha (Eds.), Intelligent communication technologies and virtual mobile networks (ICICV 2023) (Lecture Notes on Data Engineering and Communications Technologies, Vol. 171, pp. 571-591). Springer. https://doi.org/10.1007/978-981-99-1767-9_42
  • Albaroudi, E., Mansouri, T., & Alameer, A. (2024). A comprehensive review of AI techniques for addressing algorithmic bias in job hiring. AI, 5(1), 383-404. https://doi.org/10.3390/ai5010019
  • Alexander, Z., Chau, D. H., & Saldaña, C. (2024). An interrogative survey of explainable AI in manufacturing. IEEE Transactions on Industrial Informatics, 20(5), 7069-7081. https://doi.org/10.1109/TII.2024.3361489
  • Alexander-White, C. (2024). New approach methods in chemicals safety decision-making - are we on the brink of transformative policy-making and regulatory change? Computational Toxicology, 30, 100310. https://doi.org/10.1016/j.comtox.2024.100310
  • Alhussain, G., Kelly, A., O'Flaherty, E. I., Quinn, D. P., & Flaherty, G. T. (2022). Emerging role of artificial intelligence in global health care. Health Policy and Technology, 11(3), 100661. https://doi.org/10.1016%2Fj.hlpt.2022.100661
  • Allen, L. K., & Kendeou, P. (2024). ED-AI Lit: An interdisciplinary framework for AI literacy in education. Policy Insights from the Behavioral and Brain Sciences, 11(1), 3-10. https://doi.org/10.1177/23727322231220339
  • Almoubayyed, H., Bastoni, R., Berman, S. R., Galasso, S., Jensen, M., Lester, L., Murphy, A., Swartz, M., Weldon, K., Fancsali, S. E., Gropen, J., & Ritter, S. (2023). Rewriting math word problems to improve learning outcomes for emerging readers: A randomized field trial in Carnegie Learning's MATHia. In N. Wang, G. Rebolledo-Mendez, V. Dimitrova, N. Matsuda, & O. C. Santos (Eds.), Artificial intelligence in education. Posters and late breaking results, workshops and tutorials, industry and innovation tracks, practitioners, doctoral consortium and blue sky. AIED 2023 (Communications in Computer and Information Science, Vol. 1831, pp. 200-205). Springer. https://doi.org/10.1007/978-3-031-36336-8_30
  • Almuzaini, H. A., & Azmi, A. M. (2023). TaSbeeb: A judicial decision support system based on deep learning framework. Journal of King Saud University Computer and Information Sciences, 35(8), 101695. https://doi.org/10.1016/j.jksuci.2023.101695
  • Alnaqbi, A., & Al Hazza, M. (2023). Utilizing Industry 4.0 to overcome the main challenges facing UAE to achieve the (SDG6. B) goal of the United Nation sustainable development. International Journal of Energy Economics and Policy, 13(5), 98-107. https://doi.org/10.32479/ijeep.14574
  • Alotaibi, B. A., Baig, M. B., Najim, M. M., Shah, A. A., & Alamri, Y. A. (2023). Water scarcity management to ensure food scarcity through sustainable water resources management in Saudi Arabia. Sustainability, 15(13), 10648. https://doi.org/10.33 90/su151310648
  • Ametepey, S. O., Aigbavboa, C., Thwala, W. D., & Addy, H. (2024). The impact of AI in Sustainable Development Goal implementation: A Delphi study. Sustainability, 16(9), 3858. https://doi.org/10.3390/su16093858
  • Andrzejewski, M., & Dunal, P. (2021). Artificial intelligence in the curricula of postgraduate studies in financial management: Survey results. International Entrepreneurship Review, 7(4), 89-93. https://doi.org/10.15678/IER.2021.0704.07
  • Arun, M., Barik, D., & Chandran, S. S. R. (2024). Exploration of material recovery framework from waste - a revolutionary move towards clean environment. Chemical Engineering Journal Advances, 18, 100589. https://doi.org/10.1016/j.ceja.2024.100589
  • Athey, S. (2019). The impact of machine learning on economics. In A. Agrawal, J. Gans, & A. Goldfarb (Eds.), The economics of AI: An agenda (pp. 507-547). NBER. https://www.nber.org/system/files/chapters/c14009/c14009.pdf
  • Atkins, C., Girgente, G., Shirzaei, M., & Kim, J. (2024). Generative AI tools can enhance climate literacy but must be checked for biases and inaccuracies. Communications: Earth and Environment, 5, 226. https://doi.org/10.1038/s43247-024-01392-w
  • Aung, Y. Y. M., Wong, D. C. S., & Ting, D. S. W. (2021). The promise of artificial intelligence: A review of the opportunities and challenges of artificial intelligence in healthcare. British Medical Bulletin, 139(1), 4-15. https://doi.org/10.1093/bmb/ldab016
  • Bag, S., Pretorius, J. H. C., Gupta, S., & Dwivedi, Y. K. (2021). Role of institutional pressures and resources in the adoption of big data analytics powered artificial intelligence, sustainable manufacturing practices and circular economy capabilities. Technological Forecasting and Social Change, 163, 120420. https://doi.org/10.1016/j.techfore.2020.120420
  • Balcerzak, A. P., MacGregor, R. K., MacGregor Pelikánová, R., Rogalska, E., & Szostek, D. (2023). The EU regulation of sustainable investment: The end of sustainability trade-offs? Entrepreneurial Business and Economics Review, 11(1), 199-212. https://doi.org/10.15678/EBER.2023.110111
  • Bankhwal, M., Bisht, A., Chui, M., Roberts, R., & van Heteren, A. (2024). AI for social good: Improving lives and protecting the planet. McKinsey Digital. https://www.mckinsey.com/~/media/mckinsey/business%20functions/quantumblack/our%20insights/ai%20for%20social%20good/2024/ai-for-social-good-improving-lives-and-protecting-the-planet-v2.pdf
  • Bao, Z., Huang, D., & Lin, C. (2022, August 27). Can artificial intelligence improve gender equality? Evidence from a natural experiment. Evidence from a natural experiment. HKU Jockey Club Enterprise Sustainability Global Research Institute (Archive). https://doi.org/10.2139/ssrn.4202239
  • Barley, S. R. (2020). Work and technological change. Oxford University Press.
  • Berg, T., Burg, V., Gombović, A., & Puri, M. (2020). On the rise of FintTechs: Credit scoring using digital footprints. Review of Financial Studies, 33(7), 2845-2897. https://doi.org/10.1093/rfs/hhz099
  • Berrone, P., Rousseau, H. E., Ricart, J. E., Brito, E., & Giuliodori, A. (2023). How can research contribute to the implementation of sustainable development goals? An interpretive review of SDG literature in management. International Journal of Management Reviews, 25(2), 318-339. https://doi.org/10.1111/ijmr.12331
  • Boursianis, A. D., Papadopoulou, M. S., Diamantoulakis, P., Liopa-Tsakalidi, A., Barouchas, P., Salahas, G., Karagiannidis, G., Wan, S., & Goudos, S. K. (2022). Internet of Things (IoT) and agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: A comprehensive review. Internet of Things, 18, 100187. https://doi.org/ 10.1016/j.iot.2020.100187
  • Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W. W. Norton & Company. https://edisciplinas.usp.br/pluginfile.php/4312922/mod_resource/content/2/Erik%20-%20 The%20Second%20Machine%20Age.pdf
  • Buchelt, A., Adrowitzer, A., Kieseberg, P., Gollob, C., Nothdurft, A., Eresheim, S., Tschiatschek, S., Stampfer, K., & Holzinger, A. (2024). Exploring artificial intelligence for applications of drones in forest ecology and management. Forest Ecology and Management, 551, 121530. https://doi.org/10.1016/j.foreco.2023.121530
  • Camacho, J. de J., Aguirre, B., Ponce, P., Anthony, B., & Molina, A. (2024). Leveraging artificial intelligence to bolster the energy sector in smart cities: A literature review. Energies, 17(2), 353. https://doi.org/10.3390/en17020353
  • Cameron, S., & Hamidzadeh, B. (2024). Preserving paradata for accountability of semiautonomous AI agents in dynamic environments: An archival perspective. Telematics and Informatics Reports, 14, 100135. https://doi.org/10.1016/j.teler.2024.100135
  • Canavati, S. (2018). Corporate social performance in family firms: A meta-analysis. Journal of Family Business Management, 8(3), 235-273. https://doi.org/10.1108/JFBM-05-2018-0015
  • Cao, P., & Liu, S. (2023). The impact of artificial intelligence technology stimuli on sustainable consumption behavior: Evidence from Ant Forest users in China. Behavioral Sciences, 13(7), 604. https://doi.org/10.3390/bs13070604
  • Ceccaroni, L., Bibby, J., Roger, E., Flemons, P., Michael, K., Fagan, L., & Oliver, J. L. (2019). Opportunities and risks for citizen science in the age of artificial intelligence. Citizen Science: Theory and Practice, 4(1). https://doi.org/10.5334/cstp.241
  • Chandra, S., & Verma, S. (2021). Big data and sustainable consumption: A review and research agenda. Vision, 27(1), 11-23. https://doi.org/10.1177/09722629211022520
  • Chemnad, K., & Othman, A. (2024). Digital accessibility in the era of artificial intelligence - bibliometric analysis and systematic review. Frontiers in Artificial Intelligence, 7, 1349668. https://doi.org/10.3389/frai.2024.1349668
  • Chatterjee, P. (2024). Role of AI in technological innovation: Special reference to crime management. In Reference Module in Social Sciences. Elsevier. https://doi.org/10.1016/B978-0-443-13701-3.00332-7
  • Chen, G., Huang, B., Chen, X., Ge, L., Radenkovic, M., & Ma, Y. (2022). Deep blue AI: A new bridge from data to knowledge for the ocean science. Deep Sea Research Part I: Oceanographic Research Papers, 190, 103886. https://doi.org/10.1016/j.dsr.2022.103886
  • Chen, T., Guo, W., Gao, X., & Liang, Z. (2021). AI-based self-service technology in public service delivery: User experience and influencing factors. Government Information Quarterly, 38(4) 101520. https://doi.org/10.1016/j.giq.2020.101520
  • Chua, Y. C., Nies, H. W., Kamsani, I. I., Hashim, H., Yusoff, Y., Chan, W. H., Remli, M. A., Nies, Y. H., & Mohamad, M. S. (2024). AI-driven Q-learning for personalized acne genetics: Innovative approaches and potential genetic markers. Egyptian Informatics Journal, 26, 100484. https://doi.org/10.1016/j.eij.2024.100484
  • Chui, M., Manyika, J., & Miremadi, M. (2016). Where machines could replace humans - and where they can't (yet). McKinsey Quarterly. https://www.mckinsey.com/capa bilities/mckinsey-digital/our-insights/where-machines-could-replace-humans-and-where-they-cant-yet
  • Ciecierski-Holmes, T., Singh, R., Axt, M., Brenner, S., & Barteit, S. (2022). Artificial intelligence for strengthening healthcare systems in low-and middle-income countries: A systematic scoping review. npj Digital Medicine, 5(1), 162. https://doi.org/10.1038/s41746-022-00700-y
  • Cipparone, H. (2023). Uncovering blue technology: An inventory and analysis of technologies addressing illegal, unreported, and unregulated fishing (Master's project, Nicholas School of the Environment, Duke University). https://hdl.handle.net/10161/27210
  • Cirianni, F. M. M., Comi, A., & Quattrone, A. (2023). Mobility control centre and artificial intelligence for sustainable urban districts. Information, 14(10), 581. https://doi.org/10.3390/info14100581
  • Cole, R., Duncan, S., Jose, F., Kaur, A., & Kinder, J. (2022). "SeaWARRDD": Coastal warning and rapid response data density: Rethinking coastal ocean observing, intelligence, resilience, and prediction. Marine Technology Society Journal, 56(6), 75-86. https://doi.org/10.4031/MTSJ.56.6.4
  • Conte, F., D'Antoni, F., Natrella, G., & Merone, M. (2022). A new hybrid AI optimal management method for renewable energy communities. Energy and AI, 10, 100197. https://doi.org/10.1016/j.egyai.2022.100197
  • Custodio, H. M., Hadjikakou, M., & Bryan, B. A. (2023). A review of socioeconomic indicators of sustainability and wellbeing building on the social foundations framework. Ecological Economics, 203, 107608. https://doi.org/10.1016/j.ecolecon.2022.107608
  • Dalenogare, L. S., Benitez, G. B., Ayala, N. F., & Frank, A. G. (2018). The expected contribution of industry 4.0 technologies for industrial performance. International Journal of Production Economics, 204, 383-394. https://doi.org/10.1016/j.ijpe.2018.08.019
  • Danish, M. S. S., & Senjyu, T. (2023). Shaping the future of sustainable energy through AI-enabled circular economy policies. Circular Economy, 2(2). 100040. https://doi.org/10.1016/j.cec.2023.100040
  • Dhahri, S., Omri, A., & Mirza, N. (2024). Information technology and financial development for achieving sustainable development goals. Research in International Business and Finance, 67(Part A), 102156. https://doi.org/10.1016/j.ribaf.2023.10 2156
  • Dhashanamoorthi, B. (2021). Artificial Intelligence in combating cyber threats in banking and financial services. International Journal of Science and Research Archive, 4(1), 210-216. https://doi.org/10.30574/ijsra.2021.4.1.0209
  • Doe, J. K., & Hinson, R. E. (2023). AI-driven sustainability brand activism for family businesses: A future-proofing perspective article. Journal of Family Business Management, 14(5), 942-946. https://doi.org/10.1108/JFBM-10-2023-0217
  • Dogan, G., Vaidya, D., Bromhal, M., & Banday, N. (2024). Artificial intelligence in marine biology. In A. Hamadani, H. Hamadani, N. A. Ganai, & J. Bashir, A Biologist's Guide to Artificial Intelligence (pp. 241-254). Academic Press. https://doi.org/10.1016/B978-0-443-24001-0.00014-2
  • Doorn, N. (2021). Artificial intelligence in the water domain: Opportunities for responsible use. Science of the Total Environment, 755(Part 1), 142561. https://doi.org/10.1016/j.scitotenv.2020.142561
  • Du, J., Ye, X., Jankowski, P., Sanchez, T. W., & Mai, G. (2023). Artificial intelligence enabled participatory planning: A review. International Journal of Urban Sciences, 28(2), 183-210. https://doi.org/10.1080/12265934.2023.2262427
  • Duong, C. D. (2024). What makes for digital entrepreneurs? The role of AI-related drivers for nascent digital start-up activities. European Journal of Innovation Management (ahead-of-print). https://doi.org/10.1108/EJIM-02-2024-0154
  • Duong, C. D., Dufek, Z., Ejdys, J., Ginevičius, R., Korzynski, P., Mazurek, G., Paliszkiewicz, J., Wach, K., & Ziemba, E. (2023). Generative AI in the manufacturing process: Theoretical considerations. Engineering Management in Production and Services, 15(4), 76-89. https://doi.org/10.2478/emj-2023-0029
  • Dzhunushalieva, G., & Teuber, R. (2024). Roles of innovation in achieving the Sustainable Development Goals: A bibliometric analysis. Journal of Innovation & Knowledge, 9(2), 100472. https://doi.org/10.1016/j.jik.2024.100472
  • Ebrahimi, S. H., Ossewaarde, M., & Need, A. (2021). Smart fishery: A systematic review and research agenda for sustainable fisheries in the age of AI. Sustainability, 13(11), 6037. https://doi.org/10.3390/su13116037
  • Elsayed, A., Ghaith, M., Yosri, A., Li, Z., & El-Dakhakhni, W. (2024). Genetic programming expressions for effluent quality prediction: Towards AI-driven monitoring and management of wastewater treatment plants. Journal of Environmental Management, 356, 120510. https://doi.org/10.1016/j.jenvman.2024.120510
  • Er-rousse, O., & Qafas, A. (2024). Artificial intelligence for the optimisation of marine aquaculture. E3s Web of Conferences, 477, 00102. https://doi.org/10.1051/e3sconf/202447700102
  • Fang, B., Yu, J., Chen, Z., Ahmed, I., Osman, A. I., Farghali, M., Ihara, I., Hamza, E. H., Rooney, D. W., & Yap, P.-S. (2023). Artificial intelligence for waste management in smart cities: A review. Environmental Chemistry Letters, 21, 1959-1989. https://doi.org/10.1007/s10311-023-01604-3
  • Fazri, M. F., Kusuma, L. B., Rahmawan, R. B., Fauji, H. N., & Camille, C. (2023). Implementing Artificial Intelligence to reduce marine ecosystem pollution. Iaic Transactions on Sustainable Digital Innovation (Itsdi), 4(2), 101-108. https://doi.org/10.34306/itsdi.v4i2.579
  • Finlayson, S. G., Bowers, J. D., Ito, J., Zittrain, J. L., Beam, A. L., & Kohane, I. S. (2019). Adversarial attacks on medical machine learning. Science, 363(6433), 1287-1289. https://doi.org/10.1126/science.aaw4399
  • Fish, A. (2024). Oceaning: Governing marine life with drones. Duke University Press. https://doi.org/10.1215/9781478059011
  • Floridi, L., & Cowls, J. (2019). A unified framework of five principles for AI in society. Harvard Data Science Review, 1(1). https://doi.org/10.1162/99608f92.8cd550d1
  • Fu, R., Kundu, A., Mitsakakis, N., Elton-Marshall, T., Wang, W., Hill, S., Bondy, S. J., Hamilton, H., Selby, P., Schwartz, R., & Chaiton, M. O. (2023). Machine learning applications in tobacco research: A scoping review. Tobacco Control, 32(1), 99-109. https://doi.org/10.1136/tobaccocontrol-2020-056438
  • Fuentes-Peñailillo, F., Gutter, K., Vega, R., & Carrasco Silva, G. (2024). Transformative technologies in digital agriculture: Leveraging Internet of Things, remote sensing, and artificial intelligence for smart crop management. Journal of Sensor and Actuator Networks, 13(4), 39. https://doi.org/10.3390/jsan13040039
  • Fujita, R., Cusack, C., Karasik, R., Takade-Heumacher, H., & Baker, C. (2018). Technologies for improving fisheries monitoring. Environmental Defense Fund. https://www.edf.org/sites/default/files/oceans/Technologies_for_Improving_Fisheries_Monitoring.pdf
  • Fuso, N. F., Tomei, J., To, L. S., Bisaga, I., Parikh, P., Black, M., & Mulugetta, Y. (2018). Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nature Energy, 3(1), 10-15. https://doi.org/10.1038/s41560-017-0036-5
  • Fütterer, T., Fischer, C., Alekseeva, A., Chen, X., Tate, T., Warschauer, M., & Gerjets, P. (2023). ChatGPT in education: Global reactions to AI innovations. Scientific Reports, 13, 15310. https://doi.org/10.1038/s41598-023-42227-6
  • Ghahramani, M., Galle, N. J., Carlo Ratti, C., & Pilla, F. (2021). Tales of a city: Sentiment analysis of urban green space in Dublin. Cities, 119, 103395. https://doi.org/10.1016/j.cities.2021.103395
  • Ghamrawi, N., Shal, T., & Ghamrawi, N. A. R. (2024). Exploring the impact of AI on teacher leadership: Regressing or expanding? Education and Information Technologies, 29, 8415-8433. https://doi.org/10.1007/s10639-023-12174-w
  • Giannakidou, S., Radoglou-Grammatikis, P., Lagkas, T., Argyriou, V., Goudos, S., Markakis, E. K., & Sarigiannidis, P. (2024). Leveraging the power of internet of things and artificial intelligence in forest fire prevention, detection, and restoration: A comprehensive survey. Internet of Things, 26, 101171. https://doi.org/10.1016/j.iot.2024.101171
  • Gladju, J., Kamalam, B. S., & Kanagaraj, A. (2022). Applications of data mining and machine learning framework in aquaculture and fisheries: A review. Smart Agricultural Technology, 2, 100061. https://doi.org/10.1016/j.atech.2022.100061
  • Glaviano, F., Esposito, R., Di Cosmo, A., Esposito, F., Gerevini, L., Ria, A., Molinara, M., Brushi, P., Constantini, M., & Zupo, V. (2022). Management and sustainable exploitation of marine environments through smart monitoring and automation. Journal of Marine Science and Engineering, 10(2), 297. https://doi.org/10.3390/jmse10020297
  • Goh, H.-H., & Vinuesa, R. (2021). Regulating artificial-intelligence applications to achieve the sustainable development goals. Discover Sustainability, 2, 52. https://doi.org/10.1007/s43621-021-00064-5
  • Gómez-González, E., & Gómez, E. (2023). Artificial intelligence for healthcare and well-being during exceptional times. A recent landscape from a European perspective. Publications Office of the European Union. https://doi.org/10.2760/404140
  • Goralski, M. A., & Tan, T. K. (2023). Artificial intelligence: Poverty alleviation, healthcare, education, and reduced inequalities in a post-COVID world. In F. Mazzi, & L. Floridi (Eds.), The ethics of artificial intelligence for the Sustainable Development Goals (Philosophical Studies Series, Vol. 152, pp. 97-113). Springer. https://doi.org/10.1007/978-3-031-21147-8_6
  • Graham, S., Depp, C., Lee, E. E., Nebeker, C., Tu, X., Kim, H.-C., & Jeste, D. V. (2019). Artificial intelligence for mental health and mental illnesses: An overview. Current Psychiatry Reports, 21(11), 116. https://doi.org/10.1007/s11920-019-1094-0
  • Guedj, M., Swindle, J., Hamon, A., Hubert, S., Desvaux, E., Laplume, J., Xuereb, L., Lefebvre, C., Haudry, Y., Gabarroca, C., Aussy, A., Laigle, L., Dupin-Roger, I., & Moingeon, P. (2022). Industrializing AI-powered drug discovery: Lessons learned from the Patrimony computing platform. Expert Opinion on Drug Discovery, 17(8), 815-824. https://doi.org/10.1080/17460441.2022.2095368
  • Gupta, S., & Degbelo, A. (2023). An empirical analysis of AI contributions to sustainable cities (SDG 11). In F. Mazzi, & L. Floridi (Eds.), The ethics of artificial intelligence for the sustainable development goals (Philosophical Studies Series, Vol. 152; pp. 461-482). Springer. https://doi.org/10.1007/978-3-031-21147-8_25
  • Hager, G. D., Drobnis, A., Fang, F., Ghani, R., Greenwald, A., Lyons, T., Parkes, G. C., Schultz, J., Saria, S., Smith, S. F., & Tambe, M. (2019). Artificial intelligence for social good (Arxiv preprint). Cornell University. https://doi.org/10.48550/arXiv.1901.05406
  • Hanushek, E. A., & Woessmann, L. (2020). Education, knowledge capital, and economic growth. In S. Bradley, & C. Green (Eds.), The economics of education: A comprehensive overview (pp. 171-182; 2nd ed.). Academic Press. https://doi.org/10.1016/B978-0-12-815391-8.00014-8
  • Hao, H., Wang, Y., & Chen, J. (2024). Empowering scenario planning with artificial intelligence: A perspective on building smart and resilient cities. engineering. Engineering (in press). https://doi.org/10.1016/j.eng.2024.06.012
  • Hashmi, N., & Bal, A. S. (2024). Generative AI in higher education and beyond. Business Horizons, 67(5), 607-614. https://doi.org/10.1016/j.bushor.2024.05.005
  • He, W., & Chen, M. (2024). Advancing urban life: A systematic review of emerging technologies and artificial intelligence in urban design and planning. Buildings, 14(3), 835. https://doi.org/10.3390/buildings14030835
  • Hertog, E., Fukuda, S., Matsukura, R., Nagase, N., & Lehdonvirta, V. (2023). The future of unpaid work: Estimating the effects of automation on time spent on housework and care work in Japan and the UK. Technological Forecasting and Social Change, 191, 122443. https://doi.org/10.1016/j.techfore.2023.122443
  • Hjaltalin, I. T., & Sigurdarson, H. T. (2024). The strategic use of AI in the public sector: A public values analysis of national AI strategies. Government Information Quarterly, 41(1), 101914. https://doi.org/10.1016/j.giq.2024.101914
  • Ho, B. D., Duong, D. C., Ngo, V. N. T., Nguyen, H. M., & Bui, V. T. (2024). How blockchain-enabled drivers stimulate consumers' organic food purchase intention: An integrated framework of information systems success model within stimulus-organism-response theory in the context of Vietnam. International Journal of Human-Computer Interaction, 1-19. https://doi.org/10.1080/10447318.2024.2406961
  • Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education: Promises and implications for teaching and learning. Center for Curriculum Redesign. https://curriculumredesign.org/wp-content/uploads/AIED-Book-Excerpt-CCR.pdf
  • Holzinger, A., Weippl, E., Tjoa, A. M., & Kieseberg, P. (2021). Digital transformation for Sustainable Development Goals (SDGs) - a security, safety and privacy perspective on AI. In A. Holzinger, P. Kieseberg, A. M. Tjoa, & E. Weippl (Eds.), Machine learning and knowledge extraction (CD-MAKE 2021. Lecture Notes in Computer Science, Vol. 12844, pp. 1-20). Springer. https://publik.tuwien.ac.at/files/publik_303410.pdf
  • Hossin, M. A., Du, J., Mu, L., & Asante, I. O. (2023). Big data-driven public policy decisions: Transformation toward smart governance. Sage Open, 13(4). https://doi.org/10.1177/21582440231215123
  • Hsu, A., & Chaudhary, D. (2023). AI4PCR: Artificial intelligence for practicing conflict resolution. Computers in Human Behavior: Artificial Humans, 1(1), 100002. https://doi.org/10.1016/j.chbah.2023.100002
  • Imada, A. (2014, June). A literature review: Forest management with neural network and artificial intelligence. In V. Golovko, & A. Imada (Eds.), Neural networks and artificial intelligence (ICNNAI 2014. Communications in Computer and Information Science, Vol. 440, pp. 9-21). Springer. https://doi.org/10.1007/978-3-319-08201-1_3
  • Isabelle, D. A., & Westerlund, M. (2022). A review and categorisation of artificial intelligence-based opportunities in wildlife, ocean and land conservation. Sustainability, 14(4), 1979. https://doi.org/10.3390/su14041979
  • ITU & UNDP. (2023). SDG Digital Acceleration Agenda. International Telecommunication Union and United Nations Development Programme. https://www.undp.org/sites/g/files/zskgke326/files/2023-09/SDG%20Digital%20Acceleration%20Agenda _2.pdf
  • Jackson, I., Ivanov, D. A., Dolgui, A., & Namdar, J. (2024). Generative artificial intelligence in supply chain and operations management: A capability-based framework for analysis and implementation. International Journal of Production Research, 62(17), 6120-6145. https://doi.org/10.1080/00207543.2024.2309309
  • Jagatheesaperumal, S. K., Bibri, S. E., Huang, J., Rajapandian, J., & Parthiban, B. (2024). Artificial intelligence of things for smart cities: Advanced solutions for enhancing transportation safety. Computational Urban Science, 4, 10. https://doi.org/10.1007/s43762-024-00120-6
  • Jägermeyr, J., Pastor, A., Biemans, H., & Gerten, D. (2017). Reconciling irrigated food production with environmental flows for implementation of sustainable development goals. Nature Communications, 8(1). https://doi.org/10.1038/ncomms15900
  • Jain, H., Dhupper, R., Shrivastava, A., Kumar, D., & Kumari, M. (2023). AI-enabled strategies for climate change adaptation: Protecting communities, infrastructure, and businesses from the impacts of climate change. Computational Urban Science, 3, 25. https://doi.org/10.1007/s43762-023-00100-2
  • Jallow, H., Renukappa, S., Suresh, S., & Rahimian, F. (2022). Artificial intelligence and the UK construction industry - an empirical study. Engineering Management Journal, 35(4), 420-433. https://doi.org/10.1080/10429247.2022.2147381
  • Jankovic, S. D., & Curovic, D. M. (2023). Strategic integration of artificial intelligence for sustainable businesses: Implications for data management and human user engagement in the digital era. Sustainability, 15, 15208. https://doi.org/10.3390/ su152115208
  • Jaung, W. (2024). The need for human-centered design for AI robots in urban parks and forests. Urban Forestry & Urban Greening, 91, 128186. https://doi.org/10.1016/j.ufug.2023.128186
  • Javaid, M., Haleem, A., Singh, R. P., Rab, S., Suman, R., & Khan, S. (2022). Exploring relationships between Lean 4.0 and manufacturing industry. Industrial Robot, 49(3), 402-414. https://doi.org/10.1108/IR-08-2021-0184
  • Jean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B., & Ermon, S. (2016). Combining satellite imagery and machine learning to predict poverty. Science, 353(6301), 790-794. https://doi.org/10.1126/science.aaf7894
  • Jensen, J. (2019). Agricultural drones: How drones are revolutionizing agriculture and how to break into this booming market. UAV Coach. Accessed July 22, 2024 from https://uavcoach.com/agricultural-drones/
  • Jhajharia, K., Mathur, P., Jain, S., & Nijhawan, S. (2023). Crop yield prediction using machine learning and deep learning techniques. Procedia Computer Science, 218, 406-417. https://doi.org/10.1016/j.procs.2023.01.023
  • Jian, M. J. K. O. (2023). Personalized learning through AI. Advances in Engineering Innovation, 5(25), 16-19. https://doi.org/10.54254/2977-3903/5/2023039
  • Jiang, H., Yao, L., Lu, N., Qin, J., Liu, T., Liu, Y., & Zhou, C. (2022). Geospatial assessment of rooftop solar photovoltaic potential using multi-source remote sensing data. Energy and AI, 10, 100185. https://doi.org/10.1016/j.egyai.2022.100185
  • Jiang, Y., Zhang, L., Li, Y., Lin, J., Li, J., Zhou, G., Liu, S., Cao, J., & Xiao, Z. (2021).Evaluation of county-level poverty alleviation progress by deep learning and satellite observations. Big Earth Data, 5(4), 576-592. https://doi.org/10.1080/20964471.2021.1967259
  • Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1, 389-399. https://doi.org/10.1038/s42256-019-0088-2
  • Jungwirth, D., & Haluza, D. (2023a). Artificial intelligence and public health: An exploratory study. International Journal of Environmental Research and Public Health, 20, 4541. https://doi.org/10.3390/ijerph20054541
  • Jungwirth, D., & Haluza, D. (2023b). Artificial intelligence and the sustainable development goals: An exploratory study in the context of the society domain. Journal of Software Engineering and Applications, 16, 91-112. https://doi.org/10.4236/jsea.2023.164006
  • Kaur, I., Kaur Sandhu, A., & Kumar, Y. (2022). Artificial intelligence techniques for predictive modelling of vector-borne diseases and its pathogens: A systematic review. Archives of Computational Methods in Engineering, 29(6), 3741-3771. https://doi.org/10.1007/s11831-022-09724-9
  • Kesavan, R., Palanichamy, N., & Thirumurugan, T. (2023). IoT and deep learning enabled smart solutions for assisting menstrual health management for rural women in India: A review. JOIV: International Journal on Informatics Visualization, 7(4), 2198-2205. https://doi.org/10.62527/joiv.7.4.2399
  • Kokshagina, O., Le Masson, P., & Luo, J. (2024). Beyond the data fads: Impact of big data on contemporary innovation and technology management. Techovation, 134, 103026. https://doi.org/10.1016/j.technovation.2024.103026
  • Kommey, B., Tamakloe, E., Kponyo, J. J., Tchao, E. T., Agbemenu, A. S., & Nunoo-Mensah, H. (2024). An artificial intelligence-based non-intrusive load monitoring of energy consumption in an electrical energy system using a modified K-Nearest Neighbour algorithm. IET Smart Cities, 6(3), 132-155. https://doi.org/10.1049/smc2.12075
  • Konya, A., & Nematzadeh, P. (2024). Recent applications of AI to environmental disciplines: A review. Science of The Total Environment, 906, 167705. https://doi.org/10.1016/j.scitotenv.2023.167705
  • Korzynski, P., Mazurek, G., Altman, A., Ejdsys, J., Kazlauskaite, R., Paliszewska, J., Wach, K., Ziemba, E. (2023). Generative artificial intelligence as a new context for management theories: Analysis of ChatGPT. Central European Management Journal, 31(1), 3-13. https://doi.org/10.1108/CEMJ-02-2023-0091
  • Kubik, A. (2023). The use of artificial intelligence in the assessment of user routes in shared mobility systems in smart cities. Smart Cities, 6(4), 1858-1878. https://doi.org/10.3390/smartcities6040086
  • Kusiak, A. (2023). Smart manufacturing. In S. Y. Nof (Ed.), Springer handbook of automation (pp. 973-985). Springer. https://doi.org/10.1007/978-3-030-96729-1_45
  • Lavanchy, M., Reichert, P., Narayanan, J., & Savani, K. (2023). Applicants' fairness perceptions of algorithm-driven hiring procedures. Journal of Business Ethics, 188(1), 125-150. https://doi.org/10.1007/s10551-022-05320-w
  • Leal Filho, W., Cabral Ribeiro, P. C., Mazutti, J., Lange Salvia, A., Bonato Marcolin, C., Lima Silva Borsatto, J. M., Sharifi, A., Sierra, J., Luetz, J., Pretorius, R., & Viera Trevisan, L. (2024). Using artificial intelligence to implement the UN sustainable development goals at higher education institutions. International Journal of Sustainable Development & World Ecology, 31(6), 726-745. https://doi.org/10.1080/13504509.2024.2327584
  • Lee, J., Davari, H., Singh, J., & Pandhare, V. (2018). Industrial artificial intelligence for Industry 4.0-based manufacturing systems. Manufacturing Letters, 18, 20-23. https://doi.org/10.1016/j.mfglet.2018.09.002
  • Lezoche, M., Hernandez, J. E., Alemany-Díaz, M. M. E., Panetto, H., & Kacprzyk, J. (2020). Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Computers in Industry, 117, 103187. https://doi.org/10.1016/j.compind.2020.103187
  • Li, L., Liu, J., Yang, Y., & Wei, C. (2020). Evaluation of poverty-stricken families in rural areas using a novel case-based reasoning method for probabilistic linguistic term sets. Computers and Industrial Engineering, 147, 106658. https://doi.org/10.1016/j.cie.2020.106658
  • Li, L.-L., Lou, J.-L., Tseng, M.-L., Lim, M. K., & Tan, R. R. (2022). A hybrid dynamic economic environmental dispatch model for balancing operating costs and pollutant emissions in renewable energy: A novel improved mayfly algorithm. Expert Systems with Applications, 203, 117411. https://doi.org/10.1016/j.eswa.2022.117411
  • Li, X., Wang, Q., & Tang, Y. (2024). The impact of artificial intelligence development on urban energy efficiency - based on the perspective of smart city policy. Sustainability, 16(8), 3200. https://doi.org/10.3390/su16083200
  • Liang, T., & Wang, X. (2022). A statistical analysis model of big data for precise poverty alleviation based on multisource data fusion. Scientific Programming, 2022(1), 5298988. https://doi.org/10.1155/2022/5298988
  • Liu, Q. (2023). Technological innovation in the recognition process of Yaozhou Kiln ware patterns based on image classification. Soft Computing. https://doi.org/10.1007/s00500-023-08528-8
  • Liu, H., Liu, Y., Qin, Z., Zhang, R., Zhang, Z., & Mu, L. (2021). A novel DBSCAN clustering algorithm via edge computing-based deep neural network model for targeted poverty alleviation big data. Wireless Communications and Mobile Computing, 2021(1), 5536579. https://doi.org/10.1155/2021/5536579
  • Liu, G., Zhang, B., Fu, X., & Zhang, R. (2020). Analysis on poverty reduction effects and its' influencing factors of farmer cooperatives in contiguous and extremely poor areas based on the investigation of Qinling-Bashan mountainous regions in Sichuan province. In Y. Ahn, & F. Wu (Eds.), E3S Web of Conferences (Vol. 214, 02033). https://doi.org/10.1051/e3sconf/202021402033
  • Liu, Z., Sun, Y., Xing, C., Liu, J., He, Y., Zhou, Y., & Zhang, G. (2022). Artificial intelligence powered large-scale renewable integrations in multi-energy systems for carbon neutrality transition: Challenges and future perspectives. Energy and AI, 10, 100195. https://doi.org/10.1016/j.egyai.2022.100195
  • Lohani, N. (2024). AI-based environmental sustainability: Transforming conservation efforts. International Journal for Multidisciplinary Research, 6(2). https://doi.org/10.36948/ijfmr.2024.v06i02.16997
  • Lou, B., & Wu, L. (2021). AI on drugs: Can artificial intelligence accelerate drug development? Evidence from a large-scale examination of bio-pharma firms. MIS Quarterly, 45(3), 1451-1482. https://aisel.aisnet.org/misq/vol45/iss3/17
  • Lowe, M., Qin, R., & Mao, X. (2022). A review on machine learning, artificial intelligence, and smart technology in water treatment and monitoring. Water, 14(9), 1384. https://doi.org/10.3390/w14091384
  • Luo, S., & Wang, H. (2024). Digital twin research on masonry - timber architectural heritage pathology cracks using 3D laser scanning and deep learning model. Buildings, 14(4), 1129. https://doi.org/10.3390/buildings14041129
  • Lütz, F. (2023). Gender equality and artificial intelligence: SDG 5 and the role of the UN in fighting stereotypes, biases, and gender discrimination. In E. Fornalé, & F. Cristani (Eds.), Women's empowerment and its limits (pp. 153-180). Palgrave Macmillan. https://doi.org/10.1007/978-3-031-29332-0_9
  • MacIntyre, C. R., Chen, X., Kunasekaran, M., Quigley, A., Lim, S., Stone, H., Paik, H.-y., Yao, L., Heslop, D., Wei, W., Sarmiento, I., & Gurdasani, D. (2023). Artificial intelligence in public health: The potential of epidemic early warning systems. Journal of International Medical Research, 51(3). https://doi.org/10.1177/03000605231159335
  • Mannuru, N. R., Shahriar, S., Teel, Z. A., Wang, T., Lund, B. D., Tijani, S., Pohboon, C. O., Agbaji, D., Alhassan, J., Galley, J., Kousar, R., Ogbadu-Oladapo, L., Kumar Saurav, S., Srivastava, A., Tummuru, S. P., Uppala, S., & Vaidya, P. (2023). Artificial intelligence in developing countries: The impact of generative artificial intelligence (AI) technologies for development. Information Development, 0(0). https://doi.org/10.1177/02666669231200628
  • Masood, A., & Ahmad, K. (2021). A review on emerging artificial intelligence (AI) techniques for air pollution forecasting: Fundamentals, application and performance. Journal of Cleaner Production, 322, 129072. https://doi.org/10.1016/ j.jclepro.2021.129072
  • Mathur, R., Kathyal, R., Gunwal, I., & Chandra, S. (2023). Artificial intelligence in sustainable agriculture. International Journal for Research in Applied Science and Engineering Technology, 11(6), 4047-4052. https://doi.org/10.22214/ijraset.2023.54360
  • Matin, A., Islam, M. R., Wang, X., Huo, H., & Xu, G. (2023). AIoT for sustainable manufacturing: Overview, challenges, and opportunities. Internet of Things, 24, 100901. https://doi.org/10.1016/j.iot.2023.100901
  • Mehmood, H., Mukkavilli, S. K., Weber, I., Koshio, A., Chinaporn, M., Piman, T., Mubea, K., Tortajada, C., & Liao, D. (2020). Strategic foresight to applications of artificial intelligence to achieve water-related sustainable development goals (Report Series, No. 9). United Nations University Institute for Water, Environment and Health. https://collections.unu.edu/view/UNU:7645
  • Mehrotra, A. (2019). Financial inclusion through FinTech - a case of lost focus. In 2019 International Conference on Automation, Computational and Technology Management (ICACTM) (pp. 103-107). IEEE. https://doi.org/10.1109/ICACTM.2019.8776857
  • Memarian, B., & Doleck, T. (2023). ChatGPT in education: Methods, potentials and limitations. Computers in Human Behavior: Artificial Humans, 1(2), 100022. https://doi.org/10.1016/j.chbah.2023.100022
  • Mercurio, B., & Yu, R. (2021). An AI policy for the (near) future. In I. Borchert, & L. A. Winters (Eds.), Addressing impediments to digital trade (pp. 73-104). CEPR Press. https://cepr.org/publications/books-and-reports/addressing-impediments -digital-trade
  • Mhlanga, D. (2021). Artificial intelligence in Industry 4.0 and its impact on poverty, innovation, infrastructure development, and the Sustainable Development Goals: Lessons from emerging economies? Sustainability, 13(11), 5788. https://doi.org/10.3390/su13115788
  • Mhlanga, D. (2022). Human-centered artificial intelligence: The superlative approach to achieve sustainable development goals in the Fourth Industrial Revolution. Sustainability, 2(14), 7804. https://doi.org/10.3390/su14137804
  • Mikelatou, A., & Arvanitis, E. (2023). Pluralistic and equitable education in the neoliberal era: Paradoxes and contradictions. International Journal of Inclusive Education, 27(14), 1611-1626. https://doi.org/10.1080/13603116.2021.1904018
  • Miloslavich, P., O'Callaghan, J., Heslop, E., McConnell, T., Heupel, M., Satterthwaite, E., Lorenzoni, L., Schloss, I., Belbeoch, M., Rome, N., Widdicombe, S., Olalekan Elegbede, I., & Fontela, M. (2024). Ocean Decade Vision 2030 White Papers - Challenge 7: Sustainably expand the global ocean observing system (Ocean Decade Series, Vol. 51.7). Intergovernmental Oceanographic Commission. https://unes doc.unesco.org/ark:/48223/pf0000390124
  • Milton, S., & Alhamawi, M. (2024). Peace-centred sustainable development: An analysis of SDG 16 in the Arab states. World Development Perspectives, 34, 100587. https://doi.org/10.1016/j.wdp.2024.100587
  • Monaco, A., & Prouzet, P. (Eds.). (2014). Value and economy of marine resources. John Wiley & Sons.
  • Monje-Cueto, F., Gonzalez-Perez, M. A., Barbery-Merida, O. N., Cordova, M., & Nava-Aguirre, K. M. (2024). Shaping sustainable futures: Multi-stakeholder perspectives on government-business partnerships for achieving the 2030 Agenda in Latin America and the Caribbean. Entrepreneurial Business and Economics Review, 12(4), 7-24. https://doi.org/10.15678/EBER.2024.120401
  • Mukhopadhyay, R., & Gupta, A. (2022). Constructing a blue economy architecture for small islands. In E. R. Urban Jr., & V. Ittekkot (Eds.), Blue economy (pp. 379-416). Springer. https://doi.org/10.1007/978-981-19-5065-0_13
  • Munshi, P., & Wakefield, N. (2024, March 7). How AI is being adopted to accelerate gender equity in the workplace. PwC Global. https://www.pwc.com/gx/en/about/diversity/gender-equity/ai-accelerating-womens-inclusion-workplace.html
  • Nadarzynski, T., Puentes, V., Pawlak, I., Mendes, T., Montgomery, I., Bayley, J., & Ridge, D. (2021). Barriers and facilitators to engagement with artificial intelligence (AI)-based chatbots for sexual and reproductive health advice: A qualitative analysis. Sexual Health, 18(5), 385-393. https://doi.org/https://doi.org/10.1071/SH21123
  • Nahar, S. (2024). Modeling the effects of artificial intelligence (AI)-based innovation on sustainable development goals (SDGs): Applying a system dynamics perspective in a cross-country setting. Technological Forecasting and Social Change, 201, 123203. https://doi.org/10.1016/j.techfore.2023.123203
  • Naman, N. (2024). Utilising artificial intelligence (AI) for sustainable agriculture: Precision farming as a catalyst for environmental conservation. International Journal of Agriculture Extension and Social Development, 7(3E), 405-409. https://doi.org/10.33545/26180723.2024.v7.i3e.441
  • Nasir, O., Javed, R. T., Gupta, S., Vinuesa, R., & Qadir, J. (2023). Artificial intelligence and sustainable development goals nexus via four vantage points. Technology in Society, 72, 102171. https://doi.org/10.1016/j.techsoc.2022.102171
  • Noronha, M., Hayashi, V., Martins, J., & de Oliveira, T. C. L. L. (2023). AI support for organizational agility in Cleantechs for resource orchestration. Revista de Administração Sociedade e Inovação, 9(2), 69-89. https://doi.org/10.20401/rasi.9.2.733
  • Nozari, H. (2024). Green Supply Chain Management based on Artificial Intelligence of Everything. Journal of Economics & Management, 46, 171-188. https://doi.org/10.22367/jem.2024.46.07
  • Nti, E. K., Cobbina, S. J., Attafuah, E. E., Senanu, L. D., Amenyeku, G., Gyan, M. A., Forson, D., & Safo, A.-R. (2023). Water pollution control and revitalization using advanced technologies: Uncovering artificial intelligence options towards environmental health protection, sustainability and water security. Heliyon, 9(7), e18170. https://doi.org/10.1016/j.heliyon.2023.e18170
  • Nuary, M. G., Asfahani, Nurliyah, E. S., Muriyanto, & El-Farra, S. A. (2022). Impact of AI in education and social development through individual empowerment. Journal of Artificial Intelligence and Development, 1(2), 89-97. https://edujavare.com/index.php/JAI/article/view/301/254
  • Nyberg, D., & Wright, C. (2022). Climate-proofing management research. Academy of Management Perspectives, 36(2), 713-728. https://doi.org/10.5465/amp.2018.0183
  • Ochuba, N. A., Usman, F. O., Okafor, E. S., Akinrinola, O., & Amoo, O. O. (2024). Predictive analytics in the maintenance and reliability of satellite telecommunications infrastructure: A conceptual review of strategies and technological advancements. Engineering Science & Technology Journal, 5(3), 704-715. https://doi.org/10.51594/estj.v5i3.866
  • Odilla, F. (2024). Unfairness in AI anti-corruption tools: Main drivers and consequences. Minds & Machines, 34, 28. https://doi.org/10.1007/s11023-024-09688-8
  • Oermann, M. H., & Knafl, K. A. (2021). Strategies for completing a successful integrative review. State of Review, 31(3-4), 65-68. https://doi.org/10.1111/nae2.30
  • Olatunde, T. M., Adelani, F. A., & Sikhakhane, Z. Q. (2024). A review of smart water management systems from Africa and the United States. Engineering Science & Technology Journal, 5(4), 1231-1242. https://doi.org/10.51594/estj.v5i4.1014
  • Olawade, D. B., Wada, O. Z., Odetayo, A., David-Olawade, A. C., Asaolu, F., & Eberhardt, J. (2024). Enhancing mental health with Artificial Intelligence: Current trends and future prospects. Journal of Medicine, Surgery, and Public Health, 3, 100099. https://doi.org/10.1016/j.glmedi.2024.100099
  • Palomares, I., Martínez-Cámara, E., Montes, R., García-Moral, P., Chiachio, M., Chiachio, J., Alonso, S., Melero, F. J., Molina, D., Fernández, B., Moral, C., Marchena, R., de Vargas, J. P., & Herrera, F. (2021). A panoramic view and SWOT analysis of artificial intelligence for achieving the sustainable development goals by 2030: Progress and prospects. Applied Intelligence, 51, 6497-6527. https://doi.org/10.1007/s10489-021-02264-y
  • Panda, C., Mishra, A. K., Dash, A. K., & Nawab, H. (2023). Predicting and explaining severity of road accident using artificial intelligence techniques, SHAP and feature analysis. International Journal of Crashworthiness, 28(2), 186-201. https://doi.org/10.1080/13588265.2022.2074643
  • Pandey, P. C., & Pandey, M. (2023). Highlighting the role of agriculture and geospatial technology in food security and sustainable development goals. Sustainable Development, 31(5), 3175-3195. https://doi.org/10.1002/sd.2600
  • Papadimitriou, I., Gialampoukidis, I., Vrochidis, S., & Kompatsiaris, I. (2024). AI methods in materials design, discovery and manufacturing: A review. Computational Materials Science, 235, 112793. https://doi.org/10.1016/j.commatsci.2024.112793
  • Parris-Piper, N., Dressler, W. H., Satizábal, P., & Fletcher, R. (2023). Automating violence? The anti-politics of 'smart technology' in biodiversity conservation. Biological Conservation, 278, 109859. https://doi.org/10.1016/j.biocon.2022.109859
  • Patel, V., Chesmore, A., Legner, C. M., & Pandey, S. (2021). Trends in workplace wearable technologies and connected-worker solutions for next-generation occupational safety, health, and productivity. Advanced Intelligent Systems, 4(1), 2100099. https://doi.org/10.1002/aisy.202100099
  • Patón-Romero, J. D., Vinuesa, R., Jaccheri, L., & Baldassarre, M. T. (2022). State of gender equality in and by artificial intelligence. IADIS International Journal on Computer Science and Information Systems, 17(2), 31-48. https://www.iadisportal.org/ijcsis/papers/2022170203.pdf
  • Patra, G., & Roy, R. K. (2023). Business sustainability and growth in journey of Industry 4.0 - a case study. In A. Nayyar, M. Naved, & R. Rameshwar (Eds.), New horizons for Industry 4.0 in modern business. Contributions to environmental sciences & innovative business technology (pp. 29-50). Springer. https://doi.org/10.1007/978-3-031-20443-2_2
  • Pereira, E. T., & Shafique, M. N. (2024). The role of artificial intelligence in supply chain agility: A perspective of humanitarian supply chain. Engineering Economics, 35(1), 77-89. https://doi.org/10.5755/j01.ee.35.1.32928
  • Peters, M. A., & Green, B. J. (2024). Wisdom in the age of AI education. Postdigital Science and Education, 6, 1173-1195. https://doi.org/10.1007/s42438-024-00460-w
  • Plathottam, S. J., Rzonca, A., Lakhnori, R., & Iloeje, C. O. (2023). A review of artificial intelligence applications in manufacturing operations. Journal of Advanced Manufacturing and Processing, 5(3), e10159. https://doi.org/10.1002/amp2.10159
  • Popescu, S. M., Mansoor, S., Wani, O. A., Kumar, S. S., Sharma, V., Sharma, A., Arya, V. M., Kirkham, M. B., Hou, D., Bolan, N., & Chung, Y. S. (2024). Artificial intelligence and IoT driven technologies for environmental pollution monitoring and management. Frontiers in Environmental Science, 12, 1336088. https://doi.org/10.3389/fenvs.2024.1336088
  • Probst, W. N. (2020). How emerging data technologies can increase trust and transparency in fisheries. ICES Journal of Marine Science, 77(4), 1286-1294. https://doi.org/10.1093/icesjms/fsz036
  • Prodanovic, V., Bach, P. M., & Stojkovic, M. (2024). Urban nature-based solutions planning for biodiversity outcomes: Human, ecological, and artificial intelligence perspectives. Urban Ecosystems, 27, 1795-1806. https://doi.org/10.1007/s11252-024-01558-6
  • Quan, H., Li, Y., Liu, D., Zhou, Y. (2024). Protection of Guizhou Miao batik culture based on knowledge graph and deep learning. Heritage Science, 12, 202. https://doi.org/10.1186/s40494-024-01317-y
  • Rafsanjani, H. N., & Nabizadeh, A. H. (2023). Towards human-centered artificial intelligence (AI) in architecture, engineering, and construction (AEC) industry. Computers in Human Behavior Reports, 11, 100319. https://doi.org/10.1016/j.chbr. 2023.100319
  • Raghavendra, A. H., Majhi, S. G., Mukherjee, A., & Bala, P. K. (2023). Role of artificial intelligence (AI) in poverty alleviation: A bibliometric analysis. VINE Journal of Information and Knowledge Management Systems, ahead-of-print. https://doi.org/10.1108/VJIKMS-05-2023-0104
  • Rahmani, F. M., & Zohuri, B. (2023). The transformative impact of AI on financial institutions, with a focus on banking. Journal of Engineering and Applied Sciences Technology, 5(6), 1-6. https://www.onlinescientificresearch.com/articles/the-trans formative-impact-of-ai-on-financial-institutions-with-anbspfocus-on-banking.pdf
  • Raj, N., & Pasfield-Neofitou, S. (2024). Assessment and prediction of sea level and coastal wetland changes in small islands using remote sensing and artificial intelligence. Remote Sensing, 16(3), 551. https://doi.org/10.3390/rs16030551
  • Rane, N. (2023). Roles and challenges of ChatGPT and similar generative artificial intelligence for achieving the Sustainable Development Goals (SDGs). https://doi.org/10.2139/ssrn.4603244
  • Randler, C. (2021). Users of a citizen science platform for bird data collection differ from other birdwatchers in knowledge and degree of specialization. Global Ecology and Conservation, 27, e01580. https://doi.org/10.1016/j.gecco.2021.e01580
  • Rashid, A., Baloch, N., Rasheed, R., & Ngah, A. H. (2024). Big data analytics-artificial intelligence and sustainable performance through green supply chain practices in manufacturing firms of a developing country. Journal of Science and Technology Policy Management (ahead-of-print). https://doi.org/10.1108/JSTPM-04-2023-0050
  • Ratten, V. (2024). Artificial intelligence: Building a research agenda. Entrepreneurial Business and Economics Review, 12(1), 7-16. https://doi.org/10.15678/EBER.2024.120101
  • Renna Camacho, C., Getirana, A., Rotunno Filho, O. C., & Mourão, M. A. A. (2023). Large-scale groundwater monitoring in Brazil assisted with satellite-based artificial intelligence techniques. Water Resources Research, 59(9), e2022wr033588. https://doi.org/10.1029/2022WR033588
  • Richards, C. E., Tzachor, A., Avin, S., & Fenner, R. (2023). Rewards, risks and responsible deployment of artificial intelligence in water systems. Nature Water, 1, 422-432. https://doi.org/10.1038/s44221-023-00069-6
  • Robinson, S. C. (2020). Trust, transparency, and openness: How inclusion of cultural values shapes Nordic national public policy strategies for artificial intelligence (AI). Technology in Society, 63, 101421. https://doi.org/10.1016/j.techsoc.2020.101421
  • Sacks, R., Girolami, M., & Brilakis, I. (2020). Building information modelling, artificial intelligence and construction tech. Developments in the Built Environment, 4, 100011. https://doi.org/10.1016/j.dibe.2020.100011
  • Saddiqi, M. M., Zhao, W., Cotterill, S., & Dereli, R. K. (2023). Smart management of combined sewer overflows: From an ancient technology to artificial intelligence. Wires Water, 10(3), 1635. https://doi.org/10.1002/wat2.1635
  • Sætra, H. S. (2021). AI in context and the sustainable development goals: Factoring in the unsustainability of the sociotechnical system. Sustainability, 13, 1738. https://doi.org/10.3390/su13041738
  • Sadeghi-R K., Ojha, D., Kaur, P., Mahto, R. V., & Dhir, A. (2024). Explainable artificial intelligence and agile decision-making in supply chain cyber resilience. Decision Support Systems, 180, 114194. https://doi.org/10.1016/j.dss.2024.114194
  • Saiz-Rubio, V., & Rovira-Más, F. (2020). From smart farming towards agriculture 5.0: A review on crop data management. Agronomy, 10(2), 207. https://doi.org/10.3390/agronomy10020207
  • Salas, P., Ramos, V., Ruiz-Pérez, M., & Alorda-Ladaria, B. (2023). Methodological proposal for the analysis of urban mobility using Wi-Fi data and artificial intelligence techniques: The case of Palma. Electronics, 12(3), 504. https://doi.org/10.3390/electronics12030504
  • Samaei, S. R., & Ghahfarrokhi, M. A. (2023). AI-enhanced GIS solutions for sustainable coastal management: Navigating erosion prediction and infrastructure resilience. In 2th International Conference on Creative achievements of architecture, urban planning, civil engineering and environment in the sustainable development of the Middle East. https://www.researchgate.net/publication/377474121_AI-Enhanced_ GIS_Solutions_for_Sustainable_Coastal_Management_Navigating_Erosion_Prediction_and_Infrastructure_Resilience
  • Sanchez-Graells, A. (2024). Responsibly buying artificial intelligence: A 'regulatory hallucination'. Current Legal Problems, 77(1), 81-126. https://doi.org/10.1093/clp/cuae003
  • Santoro, S., Pérez, I., Gegúndez-Arias, M. E., & Calzada, J. (2022). Camera traps and artificial intelligence for monitoring invasive species and emerging diseases. Ecological Informatics, 67, 101491. https://doi.org/10.1016/j.ecoinf.2021.101491
  • Schoormann, T., Strobel, G., Möller, F., & Petrik, D. (2021). Achieving sustainability with artificial intelligence - survey of information systems research. Proceedings of International Conference on Information Systems (ICIS) 2021 (Vol. 2, Paper 1375). AIS. https://aisel.aisnet.org/icis2021/soc_impact/soc_impact/2
  • Schwalbe, N., & Wahl, B. (2020). Artificial intelligence and the future of global health. The Lancet, 395(10236), 1579-1586. https://doi.org/10.1016/s0140-6736(20)3022 6-9
  • Scucchia, F., Sauer, K., Zaslansky, P., & Mass, T. (2022). Artificial intelligence as a tool to study the 3D skeletal architecture in newly settled coral recruits: Insights into the effects of ocean acidification on coral biomineralization. Journal of Marine Science and Engineering, 10(3), 391. https://doi.org/10.3390/jmse10030391
  • Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., & Biancone, P. (2021). The role of artificial intelligence in healthcare: A structured literature review. BMC Medical Informatics and Decision Making, 21, 125. https://doi.org/10.1186/s12911-021-01488-9
  • Seelos, C., Mair, J., & Traeger, C. (2023). The future of grand challenges research: Retiring a hopeful concept and endorsing research principles. International Journal of Management Reviews, 25(2), 251-269. https://doi.org/10.1111/ijmr.12324
  • Sharifi, A., Tarlani Beris, A., Sharifzadeh Javidi, A., Nouri, M., Gholizadeh Lonbar, A., & Ahmadi, M. (2024). Application of artificial intelligence in digital twin models for stormwater infrastructure systems in smart cities. Advanced Engineering Informatics, 61, 102485. https://doi.org/10.1016/j.aei.2024.102485
  • Shiraj, T. B., Nishat, S. T., Chowdhury, F. H., Easha, U. H., Jahan, A. I., Arif, J., & Hossam-E-Haider, M. (2024, April). Sustainable waste management system using artificial intelligence and satellite communication: A case study. In 2024 3rd International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE) (pp. 1-6). IEEE. https://doi.org/10.1109/ICAEEE62219.2024.10561816
  • Shirley, H., & Nair, B. M. (2023). The efficacy of artificial intelligence-driven immersive reader for dyslexic students in special schools: A case study. Journal of English Language Teaching, 65(5), 3-8. https://journals.eltai.in/index.php/jelt/article/view/JELT650502
  • Sieja, M., & Wach, K. (2023). Revolutionary artificial intelligence or rogue technology? The promises and pitfallsof ChatGPT. International Entrepreneurship Review, 9(4), 101-115. https://doi.org/10.15678/IER.2023.0904.07
  • da Silva Rocha, E., de Morais Melo, F. L., Ferro de Mello, M. E., Figueiroa, B., Sampaio, V., & Endo, P. T. (2022). On usage of artificial intelligence for predicting mortality during and post-pregnancy: A systematic review of literature. BMC Medical Informatics and Decision Making, 22(1), 334. https://doi.org/10.1186/s12911-022-02082-3
  • Silvestro, D., Goria, S., Sterner, T., & Antonelli, A. (2022). Improving biodiversity protection through artificial intelligence. Nature Sustainability, 5(5), 415-424. https://doi.org/10.1038/s41893-022-00851-6
  • Singh, A., Kanaujia, A., Singh, V. K., & Vinuesa, R. (2024). Artificial intelligence for Sustainable Development Goals: Bibliometric patterns and concept evolution trajectories. Sustainable Development, 32(1), 724-754. https://doi.org/10.1002/sd.2706
  • Singha, S., & Singha, R. (2024). The application of artificial intelligence in education: Opportunities and challenges. In G. S. Prakasha, M. Lapina, D. Balakrishnan, & M. Sajid (Eds.), Educational perspectives on digital technologies in modeling and management (pp. 282-292). IGI Global. https://doi.org/10.4018/979-8-3693-2314-4.ch014
  • Sivarethinamohan, R., Jovin, P., & Sujatha, S. (2022). Unlocking the potential of (AI-powered) blockchain technology in environment sustainability and social good. In P. Raj, G. Nagarajan, & R. I. Minu (Eds.), Applied edge AI: Concepts, platforms, and industry use cases (1st ed., pp. 193-213). Auerbach Publications. https://doi.org/10.1201/9781003145158
  • Smith, G., & Rustagi, I. (2023). When good algorithms go sexist: Why and how to advance AI gender equity. Stanford Social Innovation Review. https://ssir.org/articles/entry/when_good_algorithms_go_sexist_why_and_how_to_advance_ai_gender_equity
  • Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333-339. https://doi.org/10.1016/j.jbusres.2019.07.039
  • Sova, O., Bieliaieva, N., Antypenko, N., & Drozd, N. (2023). Impact of artificial intelligence and digital HRM on the resource consumption within sustainable development perspective. E3s Web of Conferences, 408, 01006. https://doi.org/10.1051/e3sconf/202340801006
  • Stankovich, M., Hasanbeigi, A., & Neftenov, N. (2020). Use of 4IR technologies in water and sanitation in Latin America and the Caribbean (Technical Note Nº IDB-TN-1910). Water and Sanitation Division, Inter-American Development Bank. https://doi.org/10.18235/0002343
  • Strewart, C. (2023). AI in healthcare market size worldwide 2021-2030. Statista. Retrieved April 30, 2024 from https://www.statista.com/statistics/1334826/ai-in-healthcare-market-size-worldwide/
  • Succetti, F., Rosato, A., Araneo, R., Di Lorenzo, G., & Panella, M. (2023). Challenges and perspectives of smart grid systems in Islands: A real case study. Energies, 16(2), 583. https://doi.org/10.3390/en16020583
  • Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58-73. https://doi.org/10.1016/j.aiia.2020.08.002
  • Tan, H., Zhang, R, Chen, Q., Zhang, C., Guo, C., Zhang, X., Yu, H., Shi, W. (2022). Computational toxicology studies on the interactions between environmental contaminants and biomacromolecules, Chinese Science Bulletin, 67(35), 4180-4191. https://doi.org/10.1360/TB-2022-0613
  • Tanveer, M., Hassan, S., Bhaumik, A. (2020). Academic policy regarding sustainability and artificial intelligence (AI). Sustainability, 12(22), 9435. https://doi.org/10.3390/su12229435
  • Tarafdar, M., Beath, C. M., & Ross, J. W. (2019). Using AI to enhance business operations. MIT Sloan Management Review, 60(4), 37-44. https://sloanreview.mit.edu/article/using-ai-to-enhance-business-operations/
  • Teh, D., & Rana, T. (2023). The use of Internet of Things, big data analytics, and artificial intelligence for attaining UN's SDGs. In Handbook of big data and analytics in accounting and auditing (pp. 235-253). Springer Nature. https://doi.org/10.1007/978-981-19-4460-4_11
  • Thapa, B. E. P. (2019). Predictive analytics and AI in governance: Data-driven government in a free society. The European Liberal Forum. https://liberalforum.eu/wpcontent/uploads/2021/07/PUBLICATION_AI-in-e-governance.pdf
  • Thi Hang, H., Mallick, J., Alqadhi, S., Bindajam, A. A., & Abdo, H. G. (2024). Exploring forest fire susceptibility and management strategies in Western Himalaya: Integrating ensemble machine learning and explainable AI for accurate prediction and comprehensive analysis. Environmental Technology & Innovation, 35, 103655. https://doi.org/10.1016/j.eti.2024.103655
  • Toronto, C. E., & Remington, R. (2020). A step-by-step guide to conducting an integrative review. Springer. https://doi.org/10.1007/978-3-030-37504-1
  • Torraco, R. J. (2005). Writing integrative literature reviews: Guidelines and examples. Human Resource Development Review, 4(3), 356-367. https://doi.org/10.1177/1534484305278283
  • Tschopp, M., & Salam, H. (2023). Spot on SDG 5: Addressing gender (in-) equality within and with AI. In H. S. Sætra (Ed.), Technology and sustainable development: The promise and pitfalls of techno-solutionism (pp. 109-126). Routledge. https://doi.org/10.1201/9781003325086
  • Tsolakis, N., Schumacher, R., Dora, M., & Kumar, M. (2023). Artificial intelligence and blockchain implementation in supply chains: A pathway to sustainability and data monetisation? Annals of Operations Research, 327(1), 157-210. https://doi.org/10.1007/s10479-022-04785-2
  • Tsui, T. H., van Loosdrecht, M. C. M., Dai, Y., & Tong, Y. W. (2022). Machine learning and circular bioeconomy: Building new resource efficiency from diverse waste streams. Bioresource Technology, 369, 128445. https://doi.org/10.1016/j.biortech.2022.128445
  • Tuu, H. H., & Khoi, N. H. (2024). The role of food-related consideration of future consequences, health and environmental concerns in explaining sustainable food (fish) attitudes. Journal of Economics and Development, 26(3), 253-271. https://doi.org/10.1108/JED-01-2024-0003
  • Ucar, A., Karakose, M., & Kırımça, N. (2024). Artificial intelligence for predictive maintenance applications: Key components, trustworthiness, and future trends. Applied Sciences, 14(2), 898. https://doi.org/10.3390/app14020898
  • United Nations [UN]. (2015). Transforming our world: The 2030 Agenda for Sustainable Development (A/RES/70/1). United Nations. https://sustainabledevelopment.un. org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf
  • Usmanova, A., Aziz, A., Rakhmonov, D., & Osamy, W. (2022). Utilities of artificial intelligence in poverty prediction: A review. Sustainability, 14(21), 14238. https://doi.org/10.3390/su142114238
  • Vaseashta, A. (2022). Future of water: Challenges and potential solution pathways using a nexus of exponential technologies and transdisciplinarity. In A. Vaseashta, G., Duca, & S. Travin (Eds.), Handbook of research on water sciences and society (pp. 37-63). IGI Global. https://doi.org/10.4018/978-1-7998-7356-3.ch002
  • Villon, S., Iovan, C., Mangeas, M., & Vigliola, L. (2022). Confronting deep-learning and biodiversity challenges for automatic video-monitoring of marine ecosystems. Sensors, 22(2), 497. https://doi.org/10.3390/s22020497
  • Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A., Langhans, S. D., Tegmark, M., & Fuso Nerini, F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature Communications, 11(1), 233. https://doi.org/10.1038/s41467-019-14108-y
  • Wach, K., Duong, C. D., Ejdys, J., Kazlauskaitė, R., Korzynski, P., Mazurek, G., Paliszkiewicz, J., & Ziemba, E. (2023). The dark side of generative artificial intelligence: A critical analysis of controversies and risks of ChatGPT. Entrepreneurial Business and Economics Review, 11(2), 7-24. https://doi.org/10.15678/EBER.2023.110201
  • Wang, Y., Yang, Y., Qin, Z., Yang, Y., & Li, J. (2023). A literature review on the application of digital technology in achieving green supply chain management. Sustainability, 15(11), 8564. https://doi.org/10.3390/su15118564
  • Wani, A. K., Rahayu, F., Ben Amor, I., Quadir, M., Murianingrum, M., Parnidi, P., Ayub, A., Supriyadi, S., Sakiroh, S., Saefudin, S., Kumar, A., & Latifah, E. (2024). Environmental resilience through artificial intelligence: Innovations in monitoring and management. Environmental Science and Pollution Research, 31, 18379-18395. https://doi.org/10.1007/s11356-024-32404-z
  • WCED. (1987). Development and international economic cooperation: Environment (Report of the World Commission on Environment and Development). United Nations. https://sswm.info/sites/default/files/reference_attachments/UN%20WCED% 201987%20Brundtland%20Report.pdf
  • Weber, A.-L., Ruesink, B., & Gronau, S. (2023). Dynamics of refugee settlements and energy provision: The case of forest stocks in Zambia. Journal of Economics and Development, 25(3), 266-283. https://doi.org/10.1108/JED-11-2022-0230
  • Wells, R. (2023, October 13). 6 AI wellbeing tools for work you should try this mental health day. Forbes. https://www.forbes.com/sites/rachelwells/2023/10/08/6-ai-well being-tools-for-work-you-should-try-this-mental-health-month/
  • Whitehead, D., Cowell, C. R., Lavorgna, A., & Middleton, S. E. (2021). Countering plant crime online: Cross-disciplinary collaboration in the FloraGuard study. Forensic Science International: Animals and Environments, 1, 100007. https://doi.org/10.1016/j.fsiae.2021.100007
  • WHO. (2024). The role of artificial intelligence in sexual and reproductive health and rights (Technical brief). https://www.who.int/publications/i/item/9789240090705
  • Winkler, M., Jackson, D., Sutherland, D., Payden, Lim, J. M. U, Srikantaiah, V., Fuhrimann, S., & Medlicott, K. (2017). Sanitation safety planning as a tool for achieving safely managed sanitation systems and safe use of wastewater. WHO South-East Asia Journal of Public Health, 6(2), 34-40. https://pubmed.ncbi.nlm. nih.gov/28857061/
  • Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big data in smart farming – a review. Agricultural Systems, 153, 69-80. https://doi.org/10.1016/j.agsy.2017.01.023
  • Xiang, X., Li, Q., Khan, S., & Khalaf, O. I. (2021). Urban water resource management for sustainable environment planning using artificial intelligence techniques. Environmental Impact Assessment Review, 86, 106515. https://doi.org/10.1016/j.eiar.2020.106515
  • Xu, R., Sun, Y., Ren, M., Guo, S., Pan, R., Lin, H., Sun, L., & Han, X. (2024). AI for social science and social science of AI: A survey. Information Processing & Management: an International Journal, 61(3), 103665. https://doi.org/10.1016/j.ipm.2024.103665
  • Yao, Y., Fu, B., Liu, Y., Wang, Y., & Song, S. (2021). The contribution of ecosystem restoration to Sustainable Development Goals in Asian dry-lands: A literature review. Land Degradation and Development, 32(16), 4472-4483. https://doi.org/10.1002/ldr.4065
  • Yu, S., Guan, X., Zhu, J., Wang, Z., Jian, Y., Wang, W., & Yang, Y. (2023). Artificial intelligence and urban green space facilities optimization using the LSTM model: Evidence from China. Sustainability, 15(11), 8968. https://doi.org/10.3390/su15118968
  • Zanfei, A., Menapace, A., & Righetti, M. (2023). An artificial intelligence approach for managing water demand in water supply systems. IOP Conference Series Earth and Environmental Science, 1136(1), 012004. https://doi.org/10.1088/1755-1315/1136/1/012004
  • Zare, A., Ablakimova, N., Kaliyev, A. A., Mussin, N. M., Tanideh, N., Rahmanifar, F., & Tamadon, A. (2024). An update for various applications of Artificial Intelligence (AI) for detection and identification of marine environmental pollutions: A bibliometric analysis and systematic review. Marine Pollution Bulletin, 206, 116751. https://doi.org/10.1016/j.marpolbul.2024.116751
  • Zavalevskyi, Y., Kyrilenko, S., Kijan, O., Bessarab, N., & Mosyakova, I. (2024). The role of AI in individualizing learning and creating personalized programs. Amazonia Investiga, 13(73), 200-208. https://doi.org/10.34069/AI/2024.73.01.16
  • Zavolokina, L., Dolata, M., & Schwabe, G. (2016). FinTech – What’s in a name? In ICIS 2016 Proceedings (Article 12). https://aisel.aisnet.org/icis2016/DigitalInnovation/Presentations/12
  • Zechiel, F., Blaurock, M., Weber, E., Büttgen, M., & Coussement, K. (2024). How tech companies advance sustainability through artificial intelligence: Developing and evaluating an AI x Sustainability strategy framework. Industrial Marketing Management, 119, 75-89. https://doi.org/10.1016/j.indmarman.2024.03.010
  • Zhang, M., Zou, Y., Xiao, S., & Hou, J. (2023). Environmental DNA metabarcoding serves as a promising method for aquatic species monitoring and management: A review focused on its workflow, applications, challenges and prospects. Marine Pollution Bulletin, 194(Part A), 115430. https://doi.org/10.1016/j.marpolbul.2023.115430
  • Zhang, X. (2022). The use of Ethereum blockchain using Internet of Things technology in information and fund management of financial poverty alleviation systems. International Journal of System Assurance Engineering and Management, 13(S3), 1205-1215. https://doi.org/10.1007/s13198-022-01644-y
  • Zhao, J. (2024). Promoting more accountable AI in the boardroom through smart regulation. Computer Law & Security Review, 52, 105939. https://doi.org/10.1016/j.clsr.2024.105939
  • Zhou, Y. (2022). Artificial intelligence in renewable systems for transformation towards intelligent buildings. Energy and AI, 10, 100182. https://doi.org/10.1016/j.egyai.2022.100182
  • Ziemba, E. W., & Grabara, D. (2024). Sustainability affected by ICT adoption in enterprises. Journal of Computer Information Systems. https://doi.org/10.1080/08874417.2024.2321529

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
57065160

YADDA identifier

bwmeta1.element.ojs-doi-10_22367_jem_2024_46_19
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.